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Multiple biologically active components of human milk support infant growth, health and development. Milk
provides a wide spectrum of mammary epithelial cell-derived extracellular vesicles (MEVS) for the infant. Although
the whole spectrum of MEVs appears to be of functional importance for the growing infant, the majority of recent

studies report on the MEV subfraction of milk exosomes (MEX) and their miRNA cargo, which are in the focus of

this entry.
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| 1. Introduction

Breastfeeding is considered to represent the ideal source of infant nutrition. During the postnatal period, the infant
‘s epithelial barrier of the gastrointestinal (Gl) tract matures, while adaptive immunity is still developing .
Accumulating evidence indicates that human milk (HM) is critically involved in the regulation of intestinal maturation
and immune cell education 2B, Multiple biologically active components of HM and various interacting signaling

pathways drive developmental processes which remain largely obscure 4.

Recently, attention has been paid to the wide spectrum of lipid bilayer-enclosed milk extracellular vesicles (MEVS),
especially the subfraction of milk exosomes (MEX) that contain proteins, lipids, Our perception that milk is not “just
food” for the growing infant but represents a complex metabolic and endocrine signaling system for postnatal
growth and programming via transfer of mTORC1-activating amino acids and gene-regulatory miRNAs Bl has
been substantiated in recent years. MEX, a most important subfamily of MEVs, are biomolecular nanostructures
released from mammary gland epithelial cells (MGECS), carrying specific biomolecular information. MEX are found

in the milk of all mammals including HM and have received increasing scientific attention in recent years

miRNA-148a is also the most abundant miRNA of triacylglycerol-rich milk fat globules (MFGs) of HM [l
Remarkably, the abundantly expressed miRNAs of human MEX exhibit striking nucleotide sequence homologies
with the corresponding milk miRNAs of other mammals 229 |t has recently been demonstrated that the top 10
highly expressed MEX-derived miRNAs are evolutionarily conserved across the milk of various mammalian
species, including humans 1. Notably, the immune-related miRNAs enriched in MEX are resistant to harsh

environmental conditions 2],
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It is the intention of this review to provide up-to-date information on the impact of MEX and MEX-derived miRNAs
on intestinal maturation and their systemic effects in human and animal tissues, which are important to understand

the eminent role of MEX in infant health and development.

| 2. Exosomal miRNAs and Intestinal Maturation

Cells take up exosomes by a variety of endocytic pathways, including clathrin-dependent endocytosis, and clathrin-
independent pathways such as caveolin-mediated uptake, macropinocytosis, phagocytosis and lipid raft-mediated
internalization 13J24I15] Bovine MEX uptake in human and rat intestinal epithelial cells (IECs) is mediated by
endocytosis and depends on cell and exosome surface glycoproteins 18, & demonstrated that incubation of
human MEX with normal colon cells (CRL1831) significantly increased cellular levels of miRNA-148a and
decreased the expression of DNMTL1. Furthermore, the addition of human MEX to normal fetal colon epithelial cells

increased cell proliferation in an miRNA-dependent manner (7],

Of note, knockdown of miRNA-148a inhibits IEC proliferation associated with an increase in the expression of
DNMT1 7 |t has been demonstrated in cultured human colonic LS174T cells that exposure to bovine MEX
enhances the expression of glucose-regulated protein 94 (GRP94) Furthermore, GRP94 plays a crucial role in gut
homeostasis via chaperoning crucial components of the canonical WNT pathway (8. Notably, mouse models
harboring intestinal knockout of GRP94 led to WNT signaling defects through loss of the WNT co-receptor LRP6,
resulting in early postnatal death with loss of intestinal barrier function, decreased number of villi and significant

reduction in crypts 28],

IGF-1 plays an important role in intestinal growth 22 and is a bioactive hormone of HM 29, The IGF system
proteins are located in the gastric glands and epithelium and in the apical portion of the villous epithelium of the
duodenum. Treatment with porcine MEX promoted IPEC-J2 cell proliferation, raised mice’ villus height, crypt depth
and the ratio of villus length to crypt depth of intestinal tissues. MEX also increased CDX2, PCNA and IGF1R and
inhibited p53 expression 211,

IGF-1 not only promotes growth of the GI tract 1222 byt protects IECs from oxidative stress, hypoxia, thermal
stress and apoptosis in the setting of intestinal injury 232412511261 \joreover, IGF-1 exerts anti-inflammatory
properties [ZZ1, promotes the development and cytotoxic activity of human NK cells 28, improves intestinal barrier
function 2239 and decreases bacterial translocation B, IGF-1 has thus been suggested to play a promising role in

the treatment or prevention of necrotizing enterocolitis (NEC) [121[32][33],

IGF1gene expression is induced bylGF1P2 promoter demethylation B4I83381 |t has been demonstrated that
DNMT1 silencing significantly increases the expression of IGF-1, whereas DNMT1 up-regulation directly results in
hypermethylation ofIGF1,thereby reducing IGF-1 expression B4, In accordance, MEX derived from bovine (8],
porcine [l rat 33 and yak milk “94 promote proliferation and survival of IECs. Notably, metabolic activity of

human colorectal adenocarcinoma epithelial (Caco-2) cells after co-incubation with bovine colostrum and MEX
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from high immune responder cows was significantly greater than after co-incubation with MEX from low immune

responder cows pointing towards immune-genetic variations of MEX bioactivity [42],

Leucine-rich-repeat-containing G-protein-coupled receptor 5 (LGR5), a WNT target gene with restricted crypt
expression, has been identified as marker for intestinal stem cells (ISCs) 43, Recent evidence indicates that MEX
interact with ISCs. Human MEX exposure to H202-treated prominin-1+ISCs derived from small intestines of the
neonatal rat increased ISC viability compared to MEX-free controls 44l To elucidate the mechanism by which MEX

act in promoting cell growth, Hock et al.

The intestinal epithelium establishes a selectively permeable barrier that supports nutrient absorption and waste
secretion while preventing intrusion by luminal materials. The appropriate maturation of the intestinal permeability
barrier is of critical importance for the neonate and is often immature in preterm infants, who are at increased risk
for developing NEC associated with disrupted tight junctions (TJs) 42148l Formation of functional TJs is critical for
the maintenance of gut permeability and intestinal barrier function “4[48 zonula occludens 1 (ZO-1) are

considered crucial for creating the seal and thus regulate intestinal permeability 4ZI[421[50]

Remarkably, bovine MEX derived from the 100,000xgultracentrifugation fraction of commercial cow milk restored
the expression of ZO-1, which was diminished by dextran sodium sulfate (DSS) in a DSS-induced murine model of
colitis B, It has recently been demonstrated that porcine MEX attenuated deoxynivalenol (DON)-induced damage
of IECs. OCLN mRNA and protein in IPEC-J2 cells and the small intestinal tissues during continuous DON
exposures could be significantly rescued by porcine MEX 2. |In accordance, human MEX administration 6 h prior
to induction of experimental NEC, showed milder intestinal tissue injury than controls and had lower levels of pro-

inflammatory cytokines and higher levels of epithelial TJ proteins ZO-1, claudin and occludin 23],

The IECs are covered by a thick layer of mucus, which is produced by goblet cells. Secreted/gel-forming mucins
such as MUC2 are responsible for the formation of the mucus layer over the epithelium, whereas the
transmembrane mucins such as MUC1 are poorly understood B4I33, Mucus in the small intestine forms a diffusion
barrier where anti-microbial substances keep the epithelium free from microorganisms 8!, Thus, goblet cells and

their secreted mucins play a critical role in intestinal barrier function and immune homeostasis.

B7 investigated the effects of bovine MEX on goblet cell expression in experimental NEC. To study the effect on
mucin production, human colonic LS174T cells were cultured and exposed to bovine MEX. Compared to the
control, bovine MEX promoted goblet cell activity, as demonstrated by increased mucin production and relative
expression levels of goblet cell expression markers trefoil factor 3 (TFF3) and MUC2 B4, Quantification of

immunostaining revealed no difference in goblet cell numbers between raw and HoP human MEX.

Among the factors influencing the mucus barrier, the microbiome plays a major role in driving mucus changes 52,
Mucus forms large pores and is penetrable to bacteria and other components, but despite this, in normal situations,
the contact between bacteria and the epithelium is limited 2859, The continuous secretion of mucus and its flow

towards the intestinal lumen donates anti-bacterial agents including lysozyme, deleted in malignant brain tumors 1
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(DMBT1), immunoglobulin A (IgA), defensins, regenerating islet-derived 3y (Regllly) and phospholipase A2-IIA,

which all keep bacteria away from the epithelial surface [521[60161][62]

mice was coupled to increased bacterial colonization of the intestinal epithelial surface and enhanced activation of
intestinal adaptive immune responses by the microbiota (62, Thus, Regllly is a fundamental mechanism of innate
immunity that promotes host-bacterial mutualism by regulating the spatial relationships between microbiota and
host 841, Regllly expression depends on MyD88-mediated signaling downstream of toll-like receptors and the IL-1
receptor family, which is critically involved in the induction of protective host responses upon infections (31,
Functional expression of MyD88 in IECs protected mice during intestinal infection, which was associated with

enhanced epithelial barrier integrity and increased expression of the Regllly 2],

In fact, bovine MEX have been shown to alter bacterial gene expression promoting the growth ofEscherichia coliK-
12 Notably, lachnospiraceae, which are butyrate-producing intestinal bacteria [68l6768]  exhibit reduced abundance
in ulcerative colitis 2. Remarkably, children with lower risk of IgE-mediated allergic diseases showed an earlier
maturation of gut microbiota and an increased abundance of butyrate-producing bacteria, associated with earlier
maturation of regulatory T (Treg) cells and lower IgE production 9. The increase in highly activated Treg cells was
associated with a relative abundance ofBifidobacterium longumfollowed by increased colonization with butyrate-

producing bacteria 9.

Intestinal Treg cells are crucial to maintain immune tolerance to dietary antigens and gut microbiota 1. The
differentiation, migration and maintenance of intestinal Treg (iTreg) cells are controlled by specific signals from the
local environment 22, |ntestinal tolerance requires gut homing and expansion of FOXP3+Treg cells in the lamina
propria 231, Antigen can be acquired directly by intestinal phagocytes, or pass through enterocytes or goblet cell-

associated passages prior to capture by DCs in the lamina propria.

Importantly, DNA demethylation regulates stable FOXP3 expression associated with selective demethylation of an
evolutionarily conserved element within theFOXP3locus named TSDR (Treg-specific demethylated region) 4173
[6I7778] |n CD4+T cells, the DNA methyltransferases DNMT1 and DNMT3b reside within theFOXP3locus and
function to methylate CpG residues, thereby repressing FOXP3 expression in CD4+cells, whereas complete
demethylation of this site is required for stable FOXP3 expression 2. Epigenetic regulation ofFOXP3can be

predictably controlled with DNMT inhibitors to generate functional, stable and specific Treg cells 2.,

Exosomes play a pivotal role in important aspects of immune regulation and signaling between various cells of the
immune system [BLI82 especially in inflammatory bowel diseases 831841 [83] ghserved increased numbers of
FOXP3+CD4+CD25+Treg cells in peripheral blood mononuclear cells (PBMC) incubated with human MEX. In
accordance, rat pups exposed to B-lactoglobulin (BLG), one of the main allergenic proteins in cow milk, in the
presence of maternal rat milk developed an immune response profile similar to that of unchallenged dam-reared
rats associated with a greater FOXP3 expression and increased numbers of FOXP3+CD4+T cells 88l Treg cells

via exosome release transfer miRNAS, including let-7d, let-7b and miRNA-155, to conventional T cells.
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Remarkably, increased Treg cell numbers are associated with raw farm milk exposure and lower atopic
sensitization and asthma in childhood BZ. Of note, the protective effect of farm milk consumption on childhood
asthma and atopy was lost when boiled farm milk was consumed instead of raw cow milk, pointing to a heat-labile
protective factor in milk B8 There is evidence that vigorous heat-treatment such as ultraheat-treatment (UHT:
135 °C, > 1 s) and boiling (100 °C) of commercial cow milk destroys MEVs and MEX and their miRNA cargo,
including miRNA-148a [2AR1 whereas pasteurization (72-78 °C, >15 s) of commercial milk did not affect total MEV
numbers and preserved nearly 25-40% of milk’s total small RNAs, including miRNA-148a 2%, |n comparison to

high pressure processing of HM, HoP of HM (62.5 °C, 30 min) resulted in a significant decrease in MEX numbers
[92],

Thus, early-life exposure to unpasteurized milk may protect against atopy, asthma and related conditions,
independently of the place of residence and farming status, in both children and adults [23. HM and unprocessed
farm milk may enhance DNMT1-dependent stable Treg cell maturation. A recent randomized controlled trial
showed that preterm neonates who received bovine colostrum had higher FOXP3 Treg cell levels compared to

controls (241,

Interleukin 2 (IL-2) and transforming growth factor-B1 (TGF-1) also play a central role in Treg cell homeostasis.
Strong TCR signal inactivates glycogen synthase kinase 3 (GSK3) to rescue DNMTL1 protein from proteasomal
degradation and suppresses miRNA-148a to derepress Interestingly, commercial cow milk contains MEX
expressing immune-regulatory TGF-B 23, Of note, TGF-B1 was significantly less secreted into mature milk of

allergic mothers compared to non-allergic mothers 281,

miRNA-155 is another miRNA necessary for the development of Treg cells [BZ28] Notably, miRNA-155 is highly
expressed in human and bovine milk 22299 via targeting signal transducer and activator of transcription 1
(SOCS1) may activate IL-2/STAT5 signaling which promotes Treg cell development 2011921 Both FOXP3 and
TGF-B increase the expression of miRNA-155 [R7IO8I104] which plays a key role in the activation and
differentiation of iTreg and thymic Treg (tTreg) cells [7I28],

Recent evidence indicates that the expression of uncoupling protein 3 (UCP3) is involved in the regulation of Treg
cells 1931 When compared to UCP3+/+mice, CD4+T cells from UCP3-/-mice had increased FOXP3 expression
under iTreg cell conditions 1931, Notably, UCP3 is a direct target of miRNA-148a. MEX via transfer of miRNA-148a,
MiRNA-155 and TGF-

It has been demonstrated in various experimental models of NEC that the addition of human, bovine and porcine
MEX attenuated the expression of inflammatory cytokines such as interleukin 6 (IL-6), interleukin 1 (IL-1) and
tumor necrosis factor-a (TNF-a) , TLR4 20811071 and nuclear factor kB 191, Previous studies showed that miRNA-

146a, miRNA-155, miRNA-125b and miRNA-21, abundant immune-regulatory miRNAs of human and bovine milk
and MEX [LO8I92II0]121[109] "inhibit TLR-triggered production of inflammatory cytokines [1101[111][112][113][114]
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In phagocytes, changes in cytosolic Ca2+regulate receptor-mediated endocytosis, phagosome-lysosome fusion
and antigen processing. There is recent evidence that miRNAs are critically involved in the regulation of DC
differentiation and function 113, CaMKI!I inhibitors blocked the antigen-induced increase in total cellular MHC class
molecules as well as their trafficking to the plasma membrane, which was associated with decreased presentation
of particulate and soluble MHC class lI-restricted antigen 1181171 CaMKII has been identified as an activator of IkB

kinase (IKK) specifically in response to TCR stimulation (218!,

Furthermore, miRNA-148a was found to be a direct repressor of IkB kinase B (IKKPB) encoded onlKBKBLL, KK
via phosphorylation of IkB results in dissociation of IkB from NF-kB allowing NF-kB translocation to the nucleus,
which induces the synthesis of pro-inflammatory cytokines 129, Apparently, MEX-derived miRNA-148a, miRNA-
146a, miRNA-155, miRNA-125b and miRNA-21 in a synergistic fashion negatively regulate the activation of
immune cells and prevent over-activation of immune responses. signaling may play a key role in the regulation of

immune homeostasis and intestinal inflammation 21211,

[122]1123] physically associates with the Rel family transcription factors, nuclear factor of activated T cells (NFAT)
and NF-kB, and blocks their ability to induce the endogenous expression of key pro-inflammatory cytokine genes
(1241125 Thys, miRNA-148a, the most abundant miRNA of HM and MEX 22, interrupts NF-kB signaling at multiple
immune-regulatory checkpoints: CaMKIl, IKKB and FOXP3 (Figure 1). signaling relies on the induction of IkB,
which traps activated NF-kB in inactive cytoplasmic complexes [128112711128] ‘MEX-derived miRNA-148a operates in
a synergistic fashion with corticosteroids maintaining high cellular levels of IkB that attenuates pro-inflammatory

NF-kB signaling.
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Figure 1. Anti-inflammatory actions of miRNA-148a and miRNA-22 on nuclear factor kB signaling. miRNA-148a via
suppression of DNA methyltransferase 1 (DNMT1) enhances the expression of FOXP3, which is a negative
regulator of nuclear factor kB. miRNA-148a directly targets calcium/calmodulin-dependent protein kinase lla
(CaMKIlla), which phosphorylates CARD-containing MAGUK protein 1 (CARMAL) involved in the activation of IkB
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kinase a (IKKa) and IkB kinase B (IKK[(), Notably, miRNA-148a directly targets IKKa and IKK[3, thereby enhancing
the inhibitory effect of IkB on NF-kB. In addition, miRNA-148a targets the interleukin 6 (IL-6) signal transducer
gp130. miRNA-22, which is highly expressed in preterm MEX, targets nuclear receptor co-activator 1 (NCOA1) and
cystein-rich protein 61 (CYR61), which both activate NF-kB. miRNA-30b via targeting RIP140 suppresses IL-6

expression. MEX-derived miRNAs thus provide anti-inflammatory signaling.

The pathway with the most significant enrichment in miRNA targets from preterm HM is glycosphingolipid
biosynthesis 129 which is important for neurodevelopment, membrane function and signal transduction of lipid
rafts (129 [130] demonstrated significant differences in MEX miRNA composition between the HM of mothers
delivering preterm infants compared to the HM produced for term infants. The abundant miRNAs in preterm MEX
are similar to those from term MEX, whereas 21 low abundance miRNAs are specifically expressed in preterm
MEX compared to early term MEX 39, Notably, miRNA-22 is highly expressed in extremely preterm MEX followed
by miRNA-148a 139

Furthermore, miRNA-22 is involved in the regulation of metabolism, energy expenditure and immune functions.
Important targets of mMiRNA-22 are PTEN, purine rich element binding protein B (PURB), caveolin 3 (CAV3), -y co-
activator 1la (PGC-1la), peroxisome proliferator-activated receptor-a (PPARa) and sirtuin 1 (SIRT1), which
coordinate fatty acid metabolism, mitochondrial biogenesis and energy homeostasis 1311321 | oss of mMiRNA-22

reduces fat mass gain induced by high-fat diet and enhanced energy expenditure [131]133]

miRNA-22 exerts strong anti-inflammatory activities via targeting the mRNA of cysteine-rich protein 61 134 a
component of the extracellular matrix, which is produced and secreted by several cell types including endothelial
cells, fibroblasts and smooth muscle cells. CYR61 was mainly up-regulated in intestinal mucosa after intestinal
ischemia/reperfusion injury in pigs 1351 In addition, miRNA-22 attenuates myocardial ischemia-reperfusion injury
via an anti-inflammatory mechanism in rats 236! and via targeting CREB binding protein (CBP) protects against

myocardial ischemia-reperfusion injury through anti-apoptosis in rats 1271,

It has been demonstrated in murine macrophages that CYR61 activates NF-kB-mediated transcription, and
induces a pro-inflammatory genetic program characteristic of classically activated M1 macrophages that
participates in Thl responses. miRNA-22 over- expression significantly inhibited NF-kB activity by decreasing
nuclear receptor co-activator 1 (NCOA1) expression (Figure 1) (13811391 Thys over-expressed miRNA-22 in MEX
delivered to preterm infants with low birthweight appear to promote growth, weight gain, tissue maturation and
attenuates inflammatory responses. This suggests that preterm milk and their MEX-derived miRNAs may have

adaptive functions for growth and maturation in premature infants.

Murine and human Lgr5+ISCs showed high expression of the immune cell-associated circRNA circPan3 40,
circRNAs are related to inflammatory bowel disease and intestinal barrier formation 141, [142] dentified 6756
circRNAs both in preterm human colostrum and term colostrum, of which 66 were up-regulated and 42 were down-
regulated in preterm colostrum. In particular, MEX found in preterm colostrum and term colostrum promoted VEGF

protein expression and induced the proliferation and migration of small IECs [142],
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Taken together, the physiological adaptations of colostrum and MEX RNAs in the milk of mothers, who delivered
preterm infants, may accelerate intestinal maturation, barrier function and innate immunity, critical factors for the
prevention of NEC.

| 3. Milk Processing and Exosome Bioavailability

There is recent interest to use MEX and their miRNA cargo for the treatment and prevention of NEC 143l and to
supplement MEX-deficient artificial formula 224, Whereas UHT (135 °C, >1 s) and boiling (100 °C) of commercial
cow milk destroys MEVs and MEX and their miRNA cargo RUR1 pasteurization (72—78 °C, >15 s) of commercial
cow milk did not affect MEV numbers and preserved nearly 25-40% of milk’s total small RNAs 29, However, the
effects of UV-C irradiation on MEX structure and bioavailbilty have not yet been studied. Notably, lyophilization of
exosomes without the cryoprotectant trehalose results in exosome aggregation, while the addition of trehalose

prevents aggregation during lyophilization 14211461,
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