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Endocrine disruptors (EDs) are contaminants that may mimic or interfere with the body’s hormones, hampering the normal

functions of the endocrine system in humans and animals. These substances, either natural or man-made, are involved in

development, breeding, and immunity, causing a wide range of diseases and disorders. The traditional detection methods

such as enzyme linked immunosorbent assay (ELISA) and chromatography are still the golden techniques for EDs

detection due to their high sensitivity, robustness, and accuracy. Nevertheless, they have the disadvantage of being

expensive and time-consuming, requiring bulky equipment or skilled personnel. On the other hand, early stage detection

of EDs on-the-field requires portable devices fulfilling the Affordable, Sensitive, Specific, User-friendly, Rapid and Robust,

Equipment free, Deliverable to end users (ASSURED) norms. Electrochemical impedance spectroscopy (EIS)-based

sensors can be easily implemented in fully automated, sample-to-answer devices by integrating electrodes in microfluidic

chips.
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Endocrine disruptors (EDs) are environmental contaminants that disrupt the normal functioning of the endocrine system in

mollusk, crustacea, fish, reptiles, birds, and mammals. For humans, these compounds may cause cancerous tumors 

 and infertility . Natural EDs originate in living organisms and can be either hormones (testosterone, estrogen, or

progesterone) or mycotoxins such as zearalenone. Synthetic EDs can be found in plastic additives, industrial reagents,

and waste. Some of the most common synthetic EDs are precursors in the production of rubber, pesticides and plastic

additives such as atrazine, alkylphenols, bisphenol A (BPA) , parabens, perfluoroalkyl acids , phthalates and

polychlorinated biphenyls (PCBs) . A list of relevant EDs is given in Table 1.

A variety of analytical methods have been used for the detection of EDs, including liquid chromatography coupled with

mass spectrometry (LC-MS) , gas chromatography coupled with mass spectrometry (GS-MS) , high-performance

liquid chromatography (HPLC) coupled with fluorescence detection  or with mass spectrometry . These methods

usually require laborious and time-consuming steps for sample pre-concentration, and high amounts of reagents. By

comparison, electrochemical sensors and biosensors offer advantages such as low cost, portability, and do not require

complex pretreatment steps. Moreover, biosensors can be used for selective, fast, and direct detection of analytes in real

samples.

Table 1. List of relevant EDs compounds.

Analyte IUPAC Name Chemical Structure
Molecular
Weight
(g/mol)

Source Ref.

17β-estradiol
(E2)

(8R,9S,13S,14S,17S)-13-Methyl-
6,7,8,9,11,12,14,15,16,17-

decahydrocyclopenta[a]phenanthrene-3,17-
diol

272.388
endogenous

hormone,
medication

Acetamiprid
(AAP)

N-[(6-chloro-3-pyridyl)methyl]-N′-cyano-N-
methyl-acetamidine 222.678 insecticide

Atrazine
(ATZ)

6-chloro-N2-ethyl-N4-(propan-2-yl)-1,3,5-
triazine-2,4-diamine 215.69

herbicide for
grassy weeds in

crops

Pentabromodiphenyl
ether

(BDE-47)
2,2′,4,4′-Tetrabromodiphenyl ether 485.79 flame retardant
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Analyte IUPAC Name Chemical Structure
Molecular
Weight
(g/mol)

Source Ref.

Bisphenol A
(BPA) 4,4′-(propane-2,2-diyl)diphenol 228.291

precursor to
polycarbonates,

plastic and
epoxy resins

Carbendazim
(CBZ) methyl 1H-benzimidazol-2-ylcarbamate 191.187 fungicide

Cortisol 11β,17α,21-Trihydroxypregn-4-ene-3,20-
dione 362.46

endogenous
hormone,

medication

Dibutyl phthalate
(DBP) Dibutyl benzene-1,2-dicarboxylate 278.348 plasticizer

Dichloro-diphenyl-
trichloroethane

(DDT)

1-chloro-4-[2,2,2-trichloro-1-(4-
chlorophenyl)ethyl]benzene 354.48 pesticide

Di(2-ethylhexyl)
phthalate
(DEHP)

Bis(2-ethylhexyl) benzene-1,2-dicarboxylate 390.564 plasticizer

Microcystin-LR
(MC-LR)

(5R,8S,11R,12S,15S,18S,19S,22R)-15-[3-
(diaminomethylideneamino)propyl]-18-

[(1E,3E,5S,6S)-6-Methoxy-3,5-dimethyl-7-
phenylhepta-1,3-dienyl]-1,5,12,19-

tetramethyl-2-methylidene-8-(2-
methylpropyl)-3,6,9,13,16,20,25-heptaoxo-

1,4,7,10,14,17,21-
heptazacyclopentacosane-11,22-

dicarboxylic acid

995.189 cyanobacteria
toxin

Norfluoxetine
(NorFLX)

(S)-3-Phenyl-3-[4-
(trifluoromethyl)phenoxy]propan-1-amine 295.305 antidepressant

3,3’,4,4’-
tetrachlorobiphenyl

(PCB-77)
3,3′,4,4′-tetrachloro-1,1′-biphenyl 291.99

flame retardants,
plasticizers,

dielectric and
heat transfer

fluids

Testosterone

(8R,9S,10R,13S,14S,17S)-17-Hydroxy-10,13-
dimethyl-1,2,6,7,8,9,11,12,14,15,16,17-

dodecahydrocyclopenta[a]phenanthren-3-
one

288.431
endogenous

hormone,
anabolic steroid

Tributyltin hydride tributylstannane 291.06
precursor in

organic
synthesis

Zearalenone
(ZEN)

(3S,11E)-14,16-Dihydroxy-3-methyl-
3,4,5,6,9,10-hexahydro-1H-2-

benzoxacyclotetradecine-1,7(8H)-dione
318.369 mycotoxin

Electrochemical impedance spectroscopy (EIS) is a sensitive technique which can be used to monitor biomolecular

events occurring at the electrode surface. These events include affinity interactions involving peptides, receptors, nucleic

acids, whole cells, and antibodies.
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1. EIS Biosensors for the Detection of EDs

1.1. Immunosensors

Immunoassays are based on the specific interaction between an antigen and the corresponding antibody (Ab), which can

be transduced into a measurable physical signal . Immunosensors can be prepared using monoclonal, polyclonal or

recombinant Abs. Immunosensors have been used for the detection of EDs, such as DES, estradiol, phthalates and

bisphenol A .

1.2. Aptamer-Based Biosensors

Aptamers are oligonucleotides that bind to a specific target. Because of their in vitro selection and production, the

relatively new technology of aptamers has emerged as an alternative to antibodies, as they are obtained through chemical

synthesis, with high reproducibility, and their production is not dependent on living organisms. They can be easily

regenerated, have a much longer shelf life, and can be stored at ambient temperature.

1.3. Estrogen Receptor-Based Biosensors

Human-estrogen receptor alpha (ER-α) is a protein that belongs to the nuclear receptor group and can bind

xenoestrogens such as 17β-estradiol. Due to its specificity and ability to be engineered, ER-α was used as bio-recognition

element for the development of ED detection methods . Estrogen receptor-based biosensors are not often

encountered.

1.4. Enzyme-Based Biosensors

Other biorecognition elements, such as enzymes, were used to develop the ED biosensors. In the case of phenolic

compounds, these biosensors are often based on the enzymatic oxidation by enzymes such as tyrosinase  or laccase

. Metal composites have been used to modify the working electrodes and to provide a large surface area for enzyme

immobilization and improved surface charge transfer.

1.5. Peptide-Based Biosensors

Peptides are oligomers and polymers that can be customized with highly controlled preparation methods, due to the

variety of natural and synthetic amino acids available for synthesis. Peptides have been employed in biosensing due to

their specificity, better chemical and conformational stability compared to antibodies , low cost and facile synthesis and

modification protocols that allow customization for a wide variety of applications .

1.6. Microbial Biosensors

Microbial biosensors use microorganisms as a sensitive biological element. Their main advantage is the fact that, unlike

molecule-based biosensors, they provide information on toxicity or bioavailability . The microbes are usually genetically

engineered by modifying their structure to serve as bio-receptors for the target molecule .
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