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Artificial intelligence (AI) has increasingly been serving the field of radiology over the last 50 years. As modern medicine is

evolving towards precision medicine, offering personalized patient care and treatment, the requirement for robust imaging

biomarkers has gradually increased. Radiomics, a specific method generating high-throughput extraction of a tremendous

amount of quantitative imaging data using data-characterization algorithms, has shown great potential in individuating

imaging biomarkers. Radiomic analysis can be implemented through the following two methods: hand-crafted radiomic

features extraction or deep learning algorithm. Its application in lung diseases can be used in clinical decision support

systems, regarding its ability to develop descriptive and predictive models in many respiratory pathologies.
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1. Introduction

Described as the “high-throughput extraction of large amounts of image features from radiographic images” , radiomics

is the subject of much research. This quantitative instrument is beginning to establish itself as a recognized imaging

biomarker and paraclinical tool, serving both the fields of diagnosis and prognosis, along with predicting or monitoring

response to treatment. The aim of radiomics is to extract quantitative, actionable information from standard-of-care

medical images (computed tomography (CT), magnetic resonance imaging (MRI), positron emission tomography (PET),

etc.), which are not easily visible or quantifiable with the naked eye, in order to build a model assessing clinical outcomes,

including diagnostic, prognostic or predictive perspectives, to precisely identify and describe a pathological entity.

The following two methods can be used to perform a radiomic analysis: hand-crafted feature processing, or deep learning

(DL). Hand-crafted feature (e.g., texture, shape, intensity, wavelet) processing will afford information on a specific targeted

area of the imaging modality, distinctively from other related data (e.g., clinical, biological, genomic, histological, or

treatment-related data). Contrastingly, deep learning methods will proceed to an extensive data-driven approach,

processing a huge amount of information on the model of a simplified neural brain network, and without needing prior

image segmentation (Figure 1).

Figure 1. Traditional radiomics and deep learning approaches. Radiomic analysis workflow for handcrafted features (top)

and deep learning method (bottom).

The basic concepts inherent to radiomics and artificial intelligence are displayed in Table 1. Some of these concepts will

be repeatedly used in the following sections.

Table 1. AI and radiomics: basic concepts.
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Terminology Used in Radiomics and AI

Artificial intelligence
Wide-ranging branch of computer science, generating complex software that perform tasks that
would typically have required human intelligence, by sensing and responding to a feature of their
environment.

CAD (Computer Aided
Detection or Diagnosis)

Technology combining elements of artificial intelligence with radiological and pathology image
processing. Its aim is to assist in the detection and/or diagnosis of diseases, improving the
accuracy of radiologists with a reduction in time in the interpretation of images.

Radiomics Method that extracts a large number of quantitative features from radiographic medical images
using data-characterization algorithms, to help in disease diagnosis and prognosis.

Machine Learning

Field in artificial intelligence studying computer algorithms that improve automatically through
experience, by building a model based on sample data, known as “training data”, in order to make
predictions or decisions.
Supervised learning: The computer receives example inputs and their foreseen outputs. Its goal is
to learn a general and reproducible function that links inputs to outputs.
Unsupervised learning: The computer receives no labels to the learning algorithm for previously
undetected patterns in a data set, leaving it on its own to find structure in its input.

Convolutional neural
networks

Class of deep neural networks, which have the particularity of being fully connected networks. It
gives them the advantage of understanding the hierarchical pattern in data and assembling more
complex patterns using smaller and simpler patterns.

Voxel
Single sample, or data point, on a regularly spaced, three-dimensional grid. In CT scans, the
values of voxels are Hounsfield units.
A voxel is a 3D pixel.

ROI (Region of Interest) Image areas containing the information relevant to image processing.

Skew of histogram
Measure of the asymmetry of attenuation distribution.
The lung normal attenuation histogram is skewed to the left.
There is a decreased leftward skewness in IPF.

Kurtosis of histogram Measurement of how sharp an attenuation distribution curve is.
Kurtosis is abnormally low in idiopathic pulmonary fibrosis (IPF).

Threshold measurement

Total count of pixels/voxels above or below a specific attenuation value that determines a relative
volume.
Threshold measures in emphysema quantifies the extent of emphysema according to a specific
index of −950 Hounsfield units (HU).

Texture analysis Statistical methods that evaluate spatial relationship between voxels in an ROI, in order to
characterize textural features of the parenchyma and give information about heterogeneity.

As a young and developing tool in medicine, radiomics is still facing challenges that are limiting its wide use in clinical

practice. Those include technical artifacts (inadequacy between acquisition and reconstruction, and inaccuracy in

preprocessing procedures such as in segmentation), the lack of standard criteria to establish the accuracy of the results in

the training and validation processes, and limited real-world experience in assessing the impact of quantitative imaging on

clinical outcomes and diagnostic algorithm. Despite these limiting factors, research in the field is extensive, and should

possibly and gradually establish radiomics as a clinical tool of major importance.

Applied to lung diseases, quantitative CT analysis extracts features such as threshold, histogram, and morphologic and

texture analysis, and produces a quantifiable and reproducible evaluation of parenchymal changes. Radiomics has been

used in the fields of nodules and cancer, obstructive and restrictive diseases, and infiltrative diseases (including idiopathic

pulmonary fibrosis (IPF), hypersensitivity pneumonitis, connective tissue-related interstitial lung disease and combined

pulmonary fibrosis and emphysema (CPFE)).

The aim of this narrative review is to report the recent literature, and briefly summarize the interest of radiomics and

Artificial intelligence (AI) in chest CT and their application in the field of pulmonary diseases, from a clinician’s perspective.

2. The Role of Radiomics in Lung Diseases

The application of radiomics in the field of lung diseases could lead to improvements in the clinical and paraclinical

workflow in diagnosis, prognosis, management, follow-up and monitoring the response to treatment.

2.1. Lung Nodules

Lung nodules appearance provides a substantial clinical challenge, raising the question of diagnosis, prognosis and

management. The detection of small nodules is known to be a difficult task. Indeed, the current diagnostic classification
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relies on size and growth rate as the main differentiators between benign and malignant nodules . However, this

approach is still imperfect and needs to be improved. Furthermore, the final diagnosis still relies on invasive biopsy.

Different research groups among the quantitative imaging network (QIN)  are currently developing radiomic models to

describe nodules or tumors, based on size, shape, margins, texture and intensity. Their aim is to assess if the lesion is

malignant or benign, and to determine its inherent prognosis, to evaluate its response to treatment and eventually to

correlate imaging with genomics or histology. The application of artificial intelligence and radiomics in pulmonary nodule

management is promising . Studies of interest concerning radiomics and lung nodules are described in Table 2.

Table 2. Radiomics and lung nodules.

Study Description Cohort Performance

Chen et al.
(2018) 

750 extracted features, among which 76 relevant

features were selected

4-feature signature

Aim: nodule characterization

33 benign CT
42 malignant
CT

Benign vs. malignant
Accuracy 84%
Sensitivity 92.85%
Specificity 72.73%

De Koning et
al. (2020) 

15,792 patients, divided into a screening group

(T0–T1 year–T2 years–T3 years) and a no-

screening group

Follow-up of 10 years

Aim: nodule characterization through volume and

VTD

15,792
patients

Benign vs. malignant: impact on
mortality
At 10 years, cancer mortality = 2.5
deaths/100,000 persons/years
(screening group) vs. 3.3
deaths/100,000 (no-screening
group)
Cumulative ratio 0.76 (p = 0.01)

Ma et al.
(2016) 

583 extracted features

Random forest classifier

Aim: nodule characterization

36 benign CT
94 malignant
CT

Benign vs. malignant
Accuracy 82.7%
Sensitivity 80%
Specificity 85.5%

Hawkins et al.
(2016) 

219 extracted features, among which 23 showed

concordance correlation > 0.95

Aim: nodule characterization

328 benign CT
170 malignant
CT

Benign vs. malignant
Accuracy 80%

Huang et al.
(2018) 

1108 extracted features

Aim: nodule characterization

Training
cohort
70 benign CT
70 malignant
CT
Validation
cohort
26 benign CT
20 malignant
CT

Benign vs. malignant
Accuracy 91%
Sensitivity 95%
Specificity 88%

Uthoff et al.
(2020) 

Extracted features from nodule and perinodular

parenchyma tissue

Aim: nodule characterization

Training
cohort
289 benign CT
74 malignant
CT
Validation
cohort
50 benign CT
50 malignant
CT

Benign vs. malignant
Accuracy 98%
Sensitivity 100%
Specificity 96%

[2][3][4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]



-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

- -

-

Study Description Cohort Performance

Mao et al.
(2019) 

385 extracted features

Comparison of radiomic model versus model of

ACR Lung-RADS

Aim: nodule characterization

Training
cohort
156 benign CT
40 malignant
CT
Validation
cohort
75 benign CT
23 malignant
CT

Benign vs. malignant
Accuracy 89.8%
Sensitivity 81%
Specificity 92.2%

Maldonado et
al. (2021) 

8-feature signature

Aim: to validate the BRODERS classifier (benign

versus aggressive nodule evaluation using

radiomic stratification) as a HRCT-based

classifier for indeterminate pulmonary nodules

Validation
cohort
91 malignant
CT
79 benign CT

Benign vs. malignant
AUC 0.90
Sensitivity 92.3%
Specificity 62%

Mehta et al.
(2021) 

1018 nodule CTs, malignancy rating from 1 to 5

according to volume

Fully supervised and semi-supervised classifiers

Aim: to reach an hybrid algorithm to estimate

nodule malignancy by combining imagery and

biomarkers/volumetric radiomic features

1018 CTs
Malignancy
rating from 1
to 5

Benign vs. malignant
AUC 0.87 on fully supervised 3D
CNN + random forest model
(images, biomarkers and
volumetric features)
AUC 0.93 on semi-supervised
random forest (biomarkers only)

Digumarthy et
al. (2019) 

92 extracted features

2 significant features at baseline

52 significant features at follow-up

Aim: nodule characterization according to

temporal changes

31 benign CT
77 malignant
CT

Benign vs. malignant according
to temporal changes
AUC 0.741

Lee et al.
(2014) 

Clinical, thin-section CT and texture features

Aim: prediction of transient vs. persistent pattern

of nodule

Transient
PSNs
39 benign CT
Persistent
PSNs
17 benign CT
30 malignant
CT

Prediction of persistent part-solid
nodules
AUC 0.93 if texture analysis was
combined to clinical and CT
features

Autrusseau et
al. (2021) 

>1000 extracted features

Aim: to compare quantitative and qualitative

concordance of pulmonary nodule risk

assessment by radiomic software between full-

dose (FD) chest CT and ultra-low-dose (ULD)

chest CT

99 lung
nodules

FD chest

CT imaging

ULD chest

CT imaging

Concordance between FD and
ULD chest CT in radiomic-guided
nodule risk assessment
ICC of 0.82, displaying a good
agreement in malignancy
similarity index between ULD and
FD chest CT

Diagnosis. Apart from differentiating lung cancer from benign pulmonary nodules, thanks to nodule-size evaluation and

texture-based analysis, radiomic analysis also extends its perspective to histological sub-typing among the same lesion,

linking it to genomic information, and subsequently revealing prognostic and response to treatment evaluations. Several

radiomic signatures that are able to accurately classify lung nodules have been published. For example, Chen et al. 

defined a four-features radiomic signature, displaying an 84% accuracy in lung nodule classification. Additionally, the use

of volumetric software leads to a more accurate and quantitative nodule sizing. In the same field, studying the volume

doubling time (VTD) can lead to a better assessment of nodule growth rate. For example, a nodule with a VTD higher than

[13]

[14]

[15]

[16]

[17]

[18]

[7]



400–600 days has a 4.1% probability of malignancy, whereas a VTD lower than 400 days displays a malignancy

probability of 9.7% . Analysis of the NELSON trial results demonstrated that lung cancer mortality was significantly

lower in high-risk patients who underwent volume CT screening (semi-automated extraction), than among those who

underwent no screening . Nodule texture can also be studied, empowering the accuracy with which radiomics can

classify malignant and benign nodules. For example, Ma et al.  achieved an accuracy of 82.7%, and Hawkins et al. 

demonstrated an accuracy of 80.0%. Other teams also reached relevant results . Mao et al.  reported an overall

accuracy of 89.8% in the qualitative diagnosis of small solitary pulmonary nodules (SSPNs), which outperformed the

American College of Radiology (ACR) Lung-RADS approach . Moreover, when texture analysis was combined to

clinical and CT features, Lee et al.  demonstrated an improvement in the model performance (area under the curve,

AUC), from 0.79 (clinical and CT features alone) to 0.93 (texture analysis incorporating clinical and CT features).

Interestingly, there is a good concordance between the diagnostic abilities of radiomics software using ultra-low-dose

chest CT compared to full-dose chest CT for lung nodule risk assessment, even if those are preliminary results .

Furthermore, Maldonado et al.  implemented and validated the BRODERS classifier (benign versus aggressive nodule

evaluation using radiomic stratification), a high-resolution CT (HRCT)-based radiomic classifier in the characterization of

indeterminate pulmonary nodules. Early works on convolutional neural networks (CNNs) compared to computer-aided

detection/diagnosis (CAD) demonstrated a superiority of the radiomic approach in nodule classification, with a decrease in

false positives, possibly reducing the need of several follow-ups . Mehta et al. combined biomarkers, volumetric

radiomics, and 3D CNNs to reach an algorithm classifying lung nodules . Concerning histological subtyping, numerous

studies have demonstrated the correlation between radiomic features and histology. For example, Wu et al.  described

53 radiomic features significantly associated with tumor histology, thus leading to an AUC of 0.72 in predicting the

histological subtype. As discussed below (see “Section 2.2”), the possibility of radiomics to accurately predict the

underlying gene expression of an identified tumor is also gathering considerable attention in recent years.

Prognosis. It has been shown that radiomic analysis performs well in the identification of nodules that are more at risk of

evolution towards cancer. This has direct clinical implications, as it means shorter follow-up CT imaging and early

detection of lung cancer. According to Digumarthy et al. , temporal changes in the radiomic features (process called

delta-radiomics) of subsolid lung nodules indicates malignant etiology over benign. Indeed, they demonstrated that the

radiomic features of benign nodules were stable over time, whereas the radiomic features of malignant nodules changed

significantly between the baseline and follow-up CT, thus improving the accuracy up to 70.8% in the distinction between

malignant and benign nodules with follow-up temporal changes.

One of the open questions that still remains is the sensitivity of quantitative imaging, and the correlation between imaging

features computed with different segmentation algorithms. Indeed, segmentation algorithms ought to be highly

reproducible, as the data extracted will serve for clinical purposes. Moreover, different segmentations might affect the

radiomic features extraction. By performing a multicentric study based on a common set of reference images, Jayashree

et al.  demonstrated a high correlation between groups of features (e.g., size and intensity features), whereas specific

features within these groups did not correlate (e.g., reporting or not the size of airspaces within the lesion, affecting the

mean intensity of the total nodule), uncovering subtle differences in the approach and calculations among the different

centers. More research needs to be conducted to develop robust segmentation methods to provide accurate and

reproducible nodule segmentation .

2.2. Cancer

Lung cancer is still the leading cause of death among neoplastic diseases in men and women worldwide . The National

Lung Cancer Screening Trial (NLST) demonstrated that CT screening in current and ex-smokers provides a significant

survival benefit . As of today, biopsies are still needed to establish the diagnosis and status of tumors. Nevertheless,

this procedure is invasive and only reflects the characteristics of the part of the tumor from which the sample was

obtained, considering that some tumors can be anatomically heterogeneous. Due to technological advances in AI,

radiomic analysis could be seen as a virtual biopsy tool, and could have the potential to diagnose and determine tumor

phenotypes. Radiomics has been used to assess tumor phenotypes using various imaging modalities, such as CT, MRI

and PET CT . Studies of interest, concerning radiomics and lung cancer, are described in Table 3.

Table 3. Radiomics and lung cancer.
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Study Description Cohort Performance

Wu et al.
(2016) 

440 extracted features

53 features associated with tumor

histology

Aim: to predict cancer histopathology

Training
cohort
198 malignant
CT
Validation
cohort
152 malignant
CT

Tumor histology correlation
AUC 0.72

Yu et al.
(2019) 

9 relevant features selected

Aim: to diagnose and predict pathologic

stage in NSCLC

Training
cohort
87 NSCLC CT
Validation
cohort
58 NSCLC CT

Diagnosis and staging in NSCLC
AUC > 0.70, with predictive accuracy higher
in lung adenocarcinoma than in lung
squamous cell carcinoma

Liu et al.
(2016) 

219 extracted radiomic features, among

which 59 robust features were selected

Aim: search for correlation with EGFR

mutation status in adenocarcinomas

298 malignant
CT

Prediction of mutation status
AUC EGFR+ status prediction 0.647,
improved to 0.709 when adding a clinical
model

Rios
Velasquez et
al. (2017) 

26 relevant features selected

Aim: search for correlation with KRAS

and EGFR mutation status in

adenocarcinomas

Training
cohort
353 malignant
CT
Validation
cohort
352 malignant
CT

Prediction of mutation status
AUC EGFR + versus EGFR− status 0.70
AUC KRAS + versus KRAS− status 0.63
AUC EGFR+ versus KRAS+ status 0.80

Tang et al.
(2018) 

Pathology markers studied: CD3 count

and %PDL1

490 extracted features, among which 12

robust features were selected, then

targeted into 4 features to generate 4

clusters (immune-pathology informed

model)

Aim: to predict immune modulator status

in NSCLC

Training
cohort
114 malignant
CT
Validation
cohort
176 malignant
CT

Prediction of immune modulator status
Favorable outcome in low CT intensity and
high heterogeneity with low PDL 1 and high
CD3

Wu et al.
(2020) 

18 relevant features selected

Comparison of radiomic models

(ground-glass and solid features) with

other models (Brock model, clinical

semantic and volumetric models)

Aim: to predict invasiveness of lung

adenocarcinoma by using ground-glass

and solid features from part-solid

nodules

Training
cohort
229 NSCLC
Validation
cohort
68 NSCLC

Prediction of invasiveness
AUC 0.98 for the model combining ground-
glass and solid features
Improvement of 0.14 in AUC when adding
ground-glass radiomic features to solid
features

[24]

[31]
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[33]
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Study Description Cohort Performance

Coroller et al.
(2015) 

445 extracted features, among which 35

relevant features were selected

Aim: to determine the capability of

radiomic analysis to predict distant

metastasis

Training
cohort
98 malignant
CT
Validation
cohort
84 malignant
CT

Prediction of distant metastasis
A multivariate radiomic signature (3
features) yielded a high prognostic
performance for distant metastasis (CI 0.61)

He et al.
(2019) 

519 extracted features, among which 35

relevant features were selected

Aim: to predict lymph node metastasis in

resectable NSCLC

Training
cohort
423 NSCLC CT
Validation
cohort
294 NSCLC CT

Prediction of lymph node metastasis
Good discrimination for the model defining
a radiomics-based predictive score (C index
0.785)

Ferreira et al.
(2018) 

2777 extracted features, among which

100 most relevant features were

selected

Aim: to predict lung cancer

histopathology and metastases using

machine learning models

Training
cohort
52 malignant
CT
Validation
cohort
16 malignant
CT

Histology and distant metastasis
AUC lymph nodal metastasis 0.89
AUC distant metastasis 0.97
AUC histopathology 0.92

Mattonen et
al. (2016) 

104 extracted features, among which

the 5 most relevant features were

selected

Aim: to assess physicians’ ability to

detect local recurrence versus radiomic

tool

182 malignant
CT

Prediction of recurrence after SBRT
AUC 0.85 (radiomic signature of 5 features
predicting local recurrence)

Coroller et al.
(2016) 

15 relevant radiomic features selected

Aim: to assess if radiomics can predict

response after neoadjuvant

chemoradiation (NCT) in locally

advanced NSCLC

127 malignant
CT
Training
cohort
80%
Validation
cohort
20%

Prediction of response after NCT
AUC for pathologic gross residual disease
prediction (7 features) > 0.6
AUC for pathologic complete response (1
feature) 0.63
AUC for poor response 0.63 (spherical
disproportionality) or 0.61 (heterogeneous
texture)

Kim et al.
(2017) 

37 relevant radiomic features selected

Aim: to determine if radiomic features

combined to conventional clinical

features improved predictive

performance in prediction of PFS in

EGFR+ adenocarcinoma

48 malignant
CT (NSCLC,
EGFR mutant)

Prediction of response to TKI
Addition of radiomics to clinical factors

improved predictive performance of

response to TKI (concordance index:

combined model 0.77, clinical model

0.69; p < 0.0001)

Lafata et al.
(2019) 

39 extracted features

Aim: to verify the hypothesis that lung

texture, in addition to lung density, is

partly responsible for correlation

between PFT and CT imaging

64 malignant
CT (NSCLC)

Prediction of PFTs
Higher DLCO correlated with dense,

heterogeneous pulmonary tissue (p <

0.002)

Lower FEV1 correlated with

homogeneous, low attenuating

pulmonary tissue (p < 0.03)
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Diagnosis. Several studies have demonstrated the potential of radiomics in lung cancer diagnosis and staging 

. Beyond anatomical characterization, radiomics could be used to predict the presence of particular mutations in genes.

For example, Liu et al. and Zhang et al.  established a correlation between CT radiomic features and EGFR

(epidermal growth factor receptor) mutation, whereas Rios Velazquez et al.  created a radiomic model to classify

mutations in pulmonary adenocarcinoma. Weiss et al.  assessed the potential of textural analysis to radiologically

differentiate K-RAS mutations from pan-wildtype tumors, reaching an accuracy of 89.6%. In the same perspective, Tang et

al.  defined 12 robust radiomic features, generating an immune-pathology informed model to predict immune modulator

status (interesting Cluster of differentiation 3 (CD3) and Programmed death-ligand 1 (PDL1)). Lastly, hypothesizing the

fact that radiomics could provide histopathological analysis, while having the advantage of being non-invasive, Wu et al.

 performed radiomic analysis to predict the histopathological types of non-small cell lung carcinoma (NSCLC), reaching

a correlation with tumor histology of 0.72 (AUC). Additionally, another study demonstrated that separating ground-glass

and solid CT radiomic features of part-solid nodules was useful in diagnosing the invasiveness of lung adenocarcinoma.

Their radiomic model based on ground-glass and solid features yielded an AUC of 0.98 on the test data set, which was

significantly higher than five other models tested (Brock University model, clinical semantic model, volumetric models,

radiomic signature based solely on gross tumor volume (GTV) features, and perinodular features) .

Prognosis. Numerous studies corroborated the correlation between radiomic features and prognosis, in terms of the

survival or occurrence of distant metastases . For instance, Mattonen et al.  demonstrated the

accuracy of radiomics to predict local recurrence in patients with early stage NSCLC, treated with stereotactic ablative

radiotherapy. Their results also suggested that radiomics could detect early changes in the tumor, associated with local

recurrence, which would not have been taken into account by clinicians.

Therapy. The use of radiomics to predict response to therapy was explored by several research groups, but has not yet

been translated to clinical use . Coroller et al.  studied pre-treatment radiomics data to determine if they could

have predicted the response after neoadjuvant therapy in patients with locally advanced NSCLC. They found seven

radiomic features that were predictive of residual disease (AUC > 0.6), and one radiomic feature that was predictive of a

complete response (AUC 0.63). Similarly, Kim et al.  used radiomic analysis in combination with conventional clinical

features to predict the response to tyrosine kinase inhibitors (TKI) in epidermal growth factor receptor (EGFR) mutant

NSCLC, achieving a good predictive performance, with a concordance index of 0.77.

Despite facing limitations inherent to its novelty (see “Section 3”), radiomics is seen as a revolutionary precision medicine

approach in lung cancer. Its applications, as follow, in the field of research are broad and extensive: diagnosis, staging

and prognosis, prediction of treatment response, and disease monitoring . These characteristics are highly interesting,

as lung cancer can face a rapid progression, but studies are still needed to reach real-life clinical application.

2.3. Obstructive Lung Diseases

In current clinical practice, pulmonary function tests are crucial to assess the characteristics of obstructive lung diseases.

However, while being useful in assessing respiratory performance, as well as volume and resistance ranges, they cannot

inform the clinician about the local extent of emphysema or air trapping. Overcoming this anatomical deficiency,

quantitative CT analysis can be used, and extensive research has been carried out to automate the quantification of

emphysema or air trapping severity and distribution , as well as to characterize airway diseases more precisely .

In this way, quantitative CT analysis and radiomics could be applied to various obstructive lung diseases, such as in the

characterization of chronic obstructive pulmonary disease (COPD) or asthma, the detection of bronchiolitis obliterans, or

even in planning eventual emphysema reduction therapy.

In obstructive pulmonary diseases, the lung texture and density are influenced by increased air abundance, compared to

normal lungs. The origin of this excess of air plethora can be anatomical (emphysema) or functional (air trapping). In

addition, the study of lung texture and density is highly biased by the respiratory phase . During inspiration, the CT

appearance of emphysema can be characterized by the following two methods: areas with a parenchyma density < −950

HU (emphysema index: percentage of parenchyma below attenuation threshold of −950 HU) , or areas related to the

lowest 15th percentile (emphysema index: lung voxels below threshold value in HU, for which 15% of all lung voxels have

a decreased attenuation value on the attenuation histogram) . During expiration, air trapping can be defined as the

area with a parenchyma density < −856 HU on expiratory CT. However, it might be difficult to differentiate low attenuation

from air trapping versus low attenuation from emphysema. To address this issue, Pompe et al.  applied parametric

response mapping (PRM), a method using a combination of threshold-based measures taken simultaneously during

inspiratory and expiratory phases on co-registered CT, allowing a biphasic characterization of voxels.
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Parallel to parenchyma characterization, quantitative analysis of airways can be realized up to the fifth bronchial

generation. Quantitative CT metrics of airways include the study of wall thickness, area and density, and lumen diameter

and area. However, its use faces a certain number of limitations, as airway metrics are highly influenced by lung volume,

aging and inflammation . Therefore, applying airway metrics in clinical practice is still at the preliminary stage.

2.3.1. COPD

Diagnosis. Applying radiomics could lead to better COPD characterization and quantification . Lynch et al.  used

an integrative description of the visual and quantitative evaluation of CT images in COPD to determine COPD

phenotypes, and classified them into emphysema-predominant subtypes (six different subclassifications) and airway-

predominant subtypes (two subclassifications). Beyond the classical anatomical characterization, several research groups

demonstrated the potential of CT radiomics features to correlate with lung function .

Prognosis. Cho et al. performed a radiomic analysis to predict survival and apply risk stratification in COPD, and reached

a five-feature model displaying a C-index of 0.774, accurately identifying patients with an increased risk of mortality .

Interestingly, CT vascular features can also be helpful in the characterization of COPD, as the quantitative assessment of

pulmonary vascular alterations in COPD patients exhibited correlations with clinical parameters, such as pulmonary

function tests (PFTs) and survival, in the The Korean Obstructive Lung Disease (KOLD) cohort .

Therapy. Quantitative CT analysis can also be used to assess the progression of emphysema in alpha-1-antitrypsin

deficiency and the response to augmentation therapy . Moreover, the assessment of lung lesions in emphysema, by

CT quantification and perfusion scintigraphy, implements the best prediction of outcome in lung volume reduction (LVR) as

a therapeutic option .

2.3.2. Asthma

Asthma phenotyping is of utmost importance for disease categorization and personalized treatment. In this context, airway

remodeling is seen as a possible imaging biomarker. Quantitative imaging led to the definition of asthma clusters, which

were found to respond differently to the bronchodilator between the different imaging clusters . Further characterization

has been possible with the quantification of air trapping. For example, Choi et al.  found that four radiological clusters

had differences in their response to high-dose inhaled corticosteroids (ICS). Quantitative CT analysis in asthma can also

be used as a novel marker to predict or assess the response to treatment, which can lead to more personalized therapy

.

2.4. Interstitial Lung Diseases

As a heterogeneous group of pathologically distinct processes, but sometimes radiologically overlapping entities,

interstitial lung diseases (ILD) can represent a diagnostic challenge and face an unpredictable clinical course. Combined

to biological data and PFTs, thin-section chest CT is essential in differentiating interstitial lung diseases, evaluating their

severity and evolution over time, and possibly monitoring their response to therapy. Nevertheless, visual assessments of

thin-section CT and traditional PFTs evaluation are relatively insensitive to slight changes or early disease. Moreover,

visual evaluation of HRCT pattern is highly subjective and variable, even among experts. The finest analysis of specific

radiological patterns, such as ground-glass opacities, honeycombing, traction bronchiectasis, attenuation and reticular

density, and their volumetric distribution and spatial relationships, can lead to more precise diagnosis. Therefore, the

contribution of radiomics, as a reproducible and accurate imaging tool, is a major issue. Some studies also reported a

strong correlation between radiomic features in ILD and pulmonary function tests. Studies of interest, concerning

radiomics and interstitial lung diseases, are described in Table 4.

Table 4. Radiomics and interstitial lung diseases.

Study Description Cohort Performance

Schniering
et al. (2019)

154 radiomic features extracted

Aim: to evaluate the potential of CT

radiomics features for staging

experimental ILD and assess

transferability to human ILD

66 ILD CT (20
mild ILD and 46
advanced ILD)

Staging of ILD (proof of concept)
AUC 0.929

[60]

[61][62] [63]

[42][64]

[65]

[66]

[67]

[68][69]

[70]

[71]

[71][72]

[73]
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-

-

-
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-

-

-

-

-

-

-

-

-

-

Study Description Cohort Performance

Stefano et
al. (2020) 

Extraction of 10 HRCT parameters

Aim: to assess the diagnostic

performance of radiomic features in IPF

32 IPF CT

Severity of IPF
NL (normally attenuated lung) at -200 HU
demonstrated the strongest correlation
with disease severity (p = 0.009)

Martini et al.
(2020) 

1116 extracted radiomic features

Aim: to retrospectively evaluate if

radiomics features are able to detect

ILD and distinguish the stages in SSc

66 SSc CT
Training cohort
70%
Validation cohort
30%

Severity and staging of SSc-ILD
Radiomics features can predict GAP

stage with a sensitivity of 84% and a

specificity of almost 100%. AUC 0.96.

Correlation of radiomics with GAP

stage (but not with the visually

defined features of ILD-HRCT)

Ungprasert
et al. (2017)

Extraction of quantitative CT indexes

with CALIPER

Aim: To evaluate the correlation

between

Quantitative HRCT analysis with

CALIPER software and pulmonary

function tests (PFTs) in patients with

idiopathic inflammatory myopathies

(IIM)-associated interstitial lung disease

(ILD).

110 ILD CT
110 baseline

CT

110 1-year

follow-up CT

Correlation with PFTs in IIM associated
ILD

Baseline: Ground-glass opacities and

reticular density had a significant

negative correlation with diffusing

capacity for carbon monoxide

(DLCO), total lung capacity (TLC),

and oxygen saturation

1 year: changes in total interstitial

abnormalities had a significant

negative correlation with changes in

TLC and oxygen saturation

Kim et al.
(2015) 

Extraction of quantitative CT indexes

(MLA, variance, skewness, kurtosis,

median)

Aim: to compare known CT histogram

kurtosis and a classifier-based

quantitative score to assess baseline

severity and change over time in

patients with IPF.

57 IPF patients
57 baseline

CT

57 7-months

follow-up CT

Correlation with baseline lung function
and prediction of evolution in IPF

All baseline histogram indices (texture

features) and QLF and QILD scores

were correlated well with baseline

FVC and DLCO

When assessing associations with

changes in FVC and DLCO over time,

only QLF score was statistically

significant (r = −0.57; p < 0.0001 for

FVC and r = −0.34; p = 0.025 for

DLCO), whereas kurtosis was not.

De Giacomi
et al. (2017)

Extraction of quantitative CT indexes

with CALIPER

Aim: to use quantitative CT analysis to

differentiate NSIP versus IPF and

assess long-term survival

40 biopsy-
confirmed UIP
20 biopsy-
confirmed NSIP

Differentiation NSIP vs. IPF
Compared with NSIP, IPF patients

experienced greater functional decline

(CVF, p = 0.02) and radiologic

progression (reticulation volume, p =

0.048).

Both baseline and short-term changes

in quantitative radiologic findings were

predictive of mortality.

[74]

[75]

[76]

[77]

[78]
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Study Description Cohort Performance

Lee et al.
(2018) 

Aim: to assess quantitative imaging in

the evaluation of lymph nodes in

pulmonary sarcoidosis and tuberculosis

26 CT from
tubrcolosis
patients, 21 CT
from sarcoidosis
patients.

Differentiation between tuberculosis and
sarcoidosis LN

Significant differences in the values of

the Feret’s diameter, perimeter, area,

circularity, mean grey value, SD,

median, skewness, and kurtosis

between tuberculous and sarcoid LNs

(p < 0.05)

Best et al.
(2008) 

Extraction of quantitative CT indexes

(MLA, skewness, kurtosis) and visual

scores (fibrosis, GGO, emphysema)

Aim: to retrospectively evaluate

quantitative CT indexes as predictors of

mortality and describe 12-months

changes in CT in IPF patients

167 IPF patients
167 baseline

CT

167 1-year

follow-up CT

Prediction of mortality and progression in
IPF

FVC (p = 0.006) and fibrosis (p =

0.002) were predictors of short-term

mortality

Fibrosis index (p = 0.03), Mean Lung

attenuation (p = 0.003), skewness (p
< 0.001) and kurtosis (p < 0.001)

predicted disease progression

Maldonado
et al. (2014)

Extraction of quantitative CT indexes

and their mean volumetric quantification

Aim: to verify the hypothesis that short-

term radiological changes may be

predictive of survival by the use of novel

software tool CALIPER (computer-

aided lung informatics for pathology

evaluation and rating)

55 IPF patients

Correlation between CT changes and
mortality in IPF

Interval change in quantitative

volumetrics (p < 0.05) as quantified by

CALIPER were predictive of survival

after a median follow-up of 2.4 years

Jacob et al.
(2017) 

Extraction of quantitative CT indexes to

define a quantitative lung fibrosis score

(QLF)

Aim: to compare computer algorithm

CALIPER to convention CT and PFTs

for mortality prediction in IPF

283 IPF CT

Prediction of mortality in IPF
Independent predictors of mortality

were CPI “composite physiologic

index” (p < 0.001) and the following

two CALIPER parameters: pulmonary

vessel volume (p = 0.001) and

honeycombing (p = 0.002)

Kim et al.
(2011) 

Extraction of quantitative CT indexes

Aim: to assess the efficacy of

cyclophosphamide in SSc-ILD using

texture-based scores (impact on QLF)

83 SSc-ILD CT
83 baseline

CT

83 1-year

follow-up CT

Evaluate the effectiveness of
cyclophosphamide in SSc-ILD

Between-treatment

Difference in whole-lung QLF was

~5% (p = 0.0190).

Significant associations between

changes in QLF and FVC (r = −0.33),

dyspnea score (r = −0.29), and

consensus visual score (p = 0.0001).

Diagnosis. Many studies have demonstrated the performance of quantitative CT analysis and its potential to assess the

severity of ILD . In IPF, Stefano et al.  demonstrated a strong correlation between radiological features and

disease severity (p = 0.009). In scleroderma-related ILD, Martini et al.  used radiomics to detect ILD in sclerodermic

patients and to predict their GAP (Gender, Age, Physiology) stage, as generally used in ILD evaluation (AUC 0.96). Many

teams also determined correlations between quantitative radiological features and baseline PFTs . One remaining

[79]

[80]

[81]

[82]

[83]

[84][73] [74]

[75]

[76][77]



recurrent matter of concern is the discernment between IPF and fibrosing non-specific interstitial pneumonia (NSIP). A

recent study addressed this issue by using a CALIPER tool (computer-aided lung informatics for pathology evaluation and

rating), combining PFTs and quantitative imaging to significantly discriminate NSIP from IPF . Among other diagnostic

issues, identifying the nature of mediastinal lymphadenopathy without recourse to a biopsy, in order to differentiate

sarcoidosis and tuberculosis, remains challenging. Lee et al.  used quantitative imaging to discriminate sarcoidosis

from tuberculosis lymphadenopathy, displaying significant differences in quantitative CT features between the two groups.

All these studies make us consider the distant utopia of reaching a fully virtual biopsy, in which no tissue sample would be

needed to obtain the same histological information, even if research and its clinical application are still at a preliminary

stage.

Prognosis. The comparison of changes in radiological features led many teams to prove that radiomic features could

predict the evolution of lung function, disease progression or mortality in ILD. In their study, by evaluating quantitative CT

indexes and lung function, Best et al.  showed that forced vital capacity (FVC) and fibrosis index were predictors of

short-term mortality in IPF, whereas more precise features (fibrosis index, mean lung attenuation, skewness and kurtosis)

predicted disease progression. This is in line with the findings of Kim et al. , who demonstrated that quantitative lung

fibrosis (QLF) score correlated well with changes in PFTs and disease progression in IPF. In the same perspective, other

teams  used the CALIPER tool (computer-aided lung informatics for pathology evaluation and rating) to predict

survival in IPF.

Therapy. Concerning the monitoring of response to therapy in ILD, few studies are currently available. Proving the

usefulness of radiomics in this precise field, Kim et al.  assessed the efficacy of cyclophosphamide in scleroderma-

related ILD, by using texture-based scores determining the QLF score. They established a significant change in QLF

score after treatment, supporting the efficacy of cyclophosphamide over placebo, and also demonstrated a significant

association between changes in QLF score, forced vital capacity (FVC) and dyspnea score. These few results, already

promising, are the first signs of what radiomics could bring in the precise and quantifiable evaluation of the response to

treatment in ILD.

2.5. Vascular Lung Diseases

The application of artificial intelligence in the field of vascular lung diseases is still at the preliminary stages. Only a few

studies report results and mainly focus on pulmonary hypertension (PH). For example, Kiely et al.  managed to apply

artificial intelligence in order to achieve a predictive model, using existing and real-world data to determine patients at high

risk of idiopathic pulmonary hypertension, resulting in 99.99% specificity and 14.10% sensitivity.

However, it is strongly believed that AI and machine learning could be of high interest in the diagnostic and prognostic

classification of PH. For instance, one area of research is the accurate segmentation of cardiac chambers on MRI or CT,

and the segmentation of the pulmonary vascular network . One notable current limitation of imaging is the inability to

properly assess distal pulmonary arterial vasculature, which is the pathological site interesting pulmonary arterial

hypertension (PAH). Therefore, applying radiomics on CT or MRI imaging could lead to a more accurate evaluation of

pulmonary perfusion . Lastly, as PH diagnosis still relies on right heart catheterization (RHC), any non-invasive

diagnostic tool could be highly welcomed. Lungu et al.  hypothesized that combining mathematical and

cardiopulmonary metrics with AI classifiers could add diagnostic value. Their classifier showed that 92% of patients were

correctly classified, which led to the conclusion that combining the PH biomarker with AI classification algorithms

enhanced the diagnostic performance of non-invasive techniques in PH.

2.6. Pleural Diseases

The rare studies exploring the pleura from a radiomic perspective only concern pleural tumor invasion in lung cancer. For

example, Yang et al.  exposed a strong association between tumor imaging phenotype, as defined by radiomic

features, and dry pleural dissemination. Studies are still needed in the field of radiomics, applied to benign or malignant

primitive pleural diseases.
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