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An important direction in the design of tetrapyrrole macrocyclic receptors for a certain substrate type is modification

of the macrocycle periphery with bulky substituents or molecular fragments of different natures. Bulky highly-

branched lateral substituents are capable of forming additional complexing cavities that can be used for

identification and selective binding of substrates of a certain type.

porphyrin  receptor  molecular recognition  host–guest interactions

1. Introduction

Molecular recognition is a process in which host molecules (receptors) select and bind guest molecules

(substrates) into structurally highly organized systems through multipoint intermolecular interactions .

Porphyrins are extremely useful for this purpose. Their unique properties are the result of the unusual geometric

and electronic structure of the porphyrin macrocycle, containing a developed aromatic conjugated system.

Selective chemical modification of porphyrins by fragments of other classes of compounds makes it possible to

synthesize molecular systems that are different in their nature and positions of the reaction centers relative to each

other . This entry discusses the progress made so far in the design and sensing and binding

abilities of porphyrins modified with calix arenes, calix pyrroles, oxacalix- -arenes- , and resorcinarenes and

with bulky carbazolylphenyl substituents of different generations towards substrates of different natures. The

molecular structures, sensing mechanism, and successful applications of these macrocyclic compounds with well-

defined geometries as heterotopic receptors for molecular recognition and reversible binding of anions, cations,

and small organic molecules are discussed in detail. Data on the ion-assisted binding ability of tetrapyrrole

macroheterocyclic compounds decorated with additional complexing cavities and channels are of particular

interest. It is shown that the binding ability of the porphyrin core depends on the conformation mobility of the

substituents and the possibility of formation of intramolecular cavities and channels of various shapes within them.

2. Molecular Receptors Based on Porphyrin Conjugates with
Macrocyclic Compounds of Different Natures

Interest in the chemistry of porphyrins was first sparked by the participation of these compounds in photosynthesis.

However, it has now turned in another direction as porphyrins can be used as selective molecular receptors for

certain types of substrates . The fact that it is possible

to chemically modify the tetrapyrrole molecule has enabled researchers to synthesize porphyrin conjugates with

other macrocyclic compounds(porphyrin conjugates with calix[n]arenes 
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, cyclodextrines , calix[n]pyrroles, fullerenes, ferrocenes, and

resorcinarenes ) possessing their own properties, allowing them to form

complexes with ions and organic molecules of different natures. Table 1 and Table 2 present some data on

“molecular tweezer” macrocyclic receptors and the substrates they bind, based on results of the analysis of the

most interesting works in this field.

Table 1. Bis-porphyrin “molecular tweezers” for binding of substrates of different natures 
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Table 2. Structure of the porphyrin fragments.

“Molecular Tweezers” Substrates Ref. “Molecular Tweezers” Substrates Ref.MPorph. Linked MPorph. Linked

ZnPorph.11 ZnPorph.9

ZnPorph.3 H Porph.12 ZnPorph.3 H Porph.12

ZnPorph.6 DABCO ZnPorph.9 DABCO

ZnPorph.13 ZnPorph.14

Bis-porphyrin “molecular tweezers” for recognition of chiral guest molecules.
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The 1H-NMR spectra of porphyrinate 7 in the presence of pyridine (Py) and imidazole (Im) have two rows of

signals of aromatic protons belonging to the free and bound porphyrinate molecules of the substrate ( Figure 1 ).

The ring current shielding effect of the porphyrin macrocycle results in an up-field shift of the aromatic protons of

the bound substrate molecules compared with the respective protons of the unbound substrate molecules.
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Figure 1.  H-NMR spectra of the 7-Py (a) and 7-Im (b) complexes in CDCl  at 298 K. The   and * symbols denote

the signals of the free and bound substrate molecules .

Thus, Zn-porphyrin 7 capped with calix arene offers in its cavity a guest-binding environment for selective binding

of small organic molecules, which makes it possible to distinguish even small structural differences between

pyridine and 4-methylpyridine. Guests that are shaped in a way that is complementary to the confined cavity are

capable of fitting into and binding to the cavity by van der Waals attractive interactions.

The synthesis and binding ability of a Zn-porphyrin ( 12) with a calix arene cap were presented in . In order to

synthesize such a bridged porphyrin, 5,15-Bis-(carboxynaphtyl)-10,20-diphenylporphyrin ( 13) with syn

arrangement of two naphthalene rings was prepared. Reaction of the porphyrin 13 with calix arene with two amino

functions ( 14) and subsequent treatment of the reaction product with zinc acetate gave the calix arene-capped

Zn-porphyrin 12 ( Scheme 4 ).

3. Molecular Receptors Based on Porphyrins Modified at the
Macrocycle Periphery with Bulky Substituents

It was established by the spectrophotometric titration and 1H-NMR methods that the formation of a complex

between zinc porphyrinate ( 79) and triazole (TrA) ( Scheme 26 ) leads to the formation of one family of spectral

curves corresponding to its own set of isobestic points ( Figure 2 a).

Figure 2. Changes in the absorption spectra (a) and titration curves (b) of porphyrinate 79 and TrA in toluene, 20

°C. [109] = 2.7 × 10  M, [TrA] = 0 ÷ 6 × 10  M.

It should be said that complex formation is accompanied by considerable changes in the cryptand conformation,

according to . Figure 3 shows an example of complex formation between cryptand-  and a potassium

cation and conformational changes accompanying this process in the complex.

1
3

o

[47]

[4]

[5] [49]

[5]

[5]

−5 −5

[81] [2][2][2]



Macrocyclic Receptors | Encyclopedia.pub

https://encyclopedia.pub/entry/14173 6/13

Figure 3. Conformational changes in cryptand-[2,2,2] during the formation of a complex with a potassium cation.

It should be also said that the 79-Cr1 complex is destroyed as well when trifluoroacetic acid is added to the solution

( Scheme 30 ). If the porphyrinate–ligand complex destruction under the action of the metal cation is caused by

changes in the cryptate geometry in comparison with that of the cryptand, the complex destruction under the action

of the acid is, evidently, caused by the breakage of the zinc–nitrogen bond between the porphyrinate metal cation

and cryptand nitrogen upon protonation of the cryptand nitrogen atom.

According to , the formation of a complex between the porphyrinate zinc and the phenyl-pyridine nitrogen atom (

Figure 4 ) causing conformational changes in the macrocycle dendrimer environment affects the ability of the outer

carbazole layer of the 87G 2 receptor to form complexes with C 60.

[82]
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Figure 4. The scheme of selective binding of the fullerenes by 87G  in absence (a) and presence (b) of the PhPy.
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