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Glioblastoma (GBM) is the most aggressive central nervous system (CNS) primary malignancy in adults, with a median

age at diagnosis of 65 years.
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1. Introduction

The annual incidence of glioblastoma is approximately 3 per 100,000 per person year. The disease is more common in

males and incidence increases with age . The standard of care in newly diagnosed GBM includes maximal safe

surgical resection, followed by radiotherapy and concurrent and adujvant temozolomide (TMZ) . Median overall survival

(OS) varies between 12–18 months  and the 5-year survival in GBM is below 7% . In adults, younger age and a

good performance status (Karnofsky performance score KPS > 70 or WHO score 0) at diagnosis are favorable prognostic

factors .

After first line medical management, the tumour virtually always recurs and when it does prognosis is very poor (i.e.,

median PFS of 1.5–6 months and median OS of 2–9 months) . Treatment options for recurrent GBM (rGBM) patiens

are limited and the management remains a challenge. Loco-regional therapy may be evaluated in selected cases while

traditional systemic therapy showed limited efficacy. In recent years, with greater knowledge of the underlying molecular

characteristics, a multitude of new drugs and new combination regimens have been tested for efficacy in rGBM patients.

2. Molecular Characteristics of rGBM

2.1. MGMT Promoter Methylation in rGBM

It was first discovered over two decades ago that MGMT promoter methylation is associated with response to alkylating

chemotherapy in GBM patients . The predictive role of this biomarker was completed following confirmation in a

randomized controlled clinical trial, and further strengthened in two trials in elderly GBM patients . Perhaps

somewhat less well known is the observation that MGMT promoter methylation is also prognostic: GBM patients with a

methylated MGMT promoter have a longer survival, irrespective of treatment with alkylating chemotherapy.

Several studies have shown that MGMT promoter methylation is also prognostic at the time of recurrence in GBM

patients. In general, post-progression survival is around 3–4 months longer in patients harbouring MGMT-promoter

methylated v unmethylated tumors (10.9 v 7.2 months, 8.4 v 6.6 months, 12.5 v 7.9 months and 13.5 v 8.0 months in

studies reported by the German Glioma Network, EORTC 1542 (GSAM), the DIRECTOR trial and the EORTC 26101 trial,

respectively) . Most of these studies defined MGMT promoter methylation using data from the primary tumor.

This is possible since MGMT promoter methylation is relatively stable. At least three independent studies on paired

primary-rGBM samples demonstrated that methylation status is maintained in approximately 70–90% of tumor samples

. Data therefore indicate that patients harbouring MGMT-promoter methylated rGBMs have a slightly better post-

progression survival.

Evidence for a predictive effect of MGMT promoter methylation in response to alkylating chemotherapy in patients with

relapsed or rGBM is quite scarce. One study reported improved outcomes in patients with MGMT-promoter methylated v.

unmethylated tumors treated with fotemustine, where the opposite was observed when tumors were treated with

bevacizumab . As bevacizumab has limited clinical efficacy in GBMs, this study suggests that MGMT-promoter

methylation is predictive of response to alkylating chemotherapy at tumor progression. However, other studies did not

observe such differences between treatment and control (LOMUSTINE) arms in methylated v unmethylated tumors 

. Establishing this potential predictive role, therefore, remains to be determined but is important to guide treatment

decisions at tumor recurrence.
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2.2. The Genomic Landscape of rGBMs

To understand what makes rGBMs unique, and thus expose potential treatment targets, one has to compare differences

between tumors at diagnosis and at recurrence. For this review, we will only focus on tumors that were also diagnosed as

GBMs (IDH-wildtype, if known) at initial diagnosis: lower grade gliomas (IDH-mutant) that evolve into secondary GBMs

represent an entirely different tumor entity with unique evolutionary trajectories. Firstly, and perhaps slightly surprising, the

number of mutations in known cancer genes does not appear to increase at tumor recurrence, at least for the majority of

tumors  (though there is an increase in the overall mutational burden ). In line with the stability of the

number of mutations in driver genes is the observation that many of them (on average ~80%) are retained in the recurrent

tumor . One study reported preferential gains of mutations in LTBP4, MSH6, PRDM2 and IGF1R genes ,

though apart from the DNA mismatch repair gene MSH6, these have not been confirmed in other large cohort studies. No

common larger chromosomal changes have been documented at tumor progression , but some individual gains and

losses may show within tumor pairs . Despite this apparent similarity in genetic makeup, there is evidence for gain of

selective events in the majority (64%) of recurrent tumors and patients harbouring such tumors have worse outcomes .

Although this relatively large concordance in the genetic makeup between primary and rGBM is true for the majority of

tumors, there are some notable exceptions. Firstly, mutation retention is lower in the case of a distant recurrence ,

though distant recurrences are quite rare. Second, despite a generally high mutation retention rate in driver mutations,

there are some marked differences between individual genes. For example, mutations in the TERT promoter show the

highest mutation retention rate (~90%), whereas mutations in the EGFR gene is at the other end of the spectrum with a

retention rate of approximately 50% . Of note, there can be ‘driver switches’ where the same gene (such as

EGFR) is affected in primary and recurrent gliomas, but the mutation differs . Hypermutated tumors are the third

main exception to the relatively stable genotype ‘rule’. These are detailed in a separate section of this review.

Cataloguing the retention rate is important for clinicians when designing molecular targeted therapy trials. This is because

trials at tumor recurrence are usually based on molecular data from the primary tumor (repeat surgeries are not often

performed) and potential loss of a mutation should therefore be taken into account. To give an example, when an

objective response rate of ~40% is considered positive, the number of patients to be included in a trial is 41 (assuming a

power of 80% and a one-sided alpha of 0.025). However, when the genetic change is lost in 20% of samples, the number

of patients to achieve similar power is almost doubled (n = 80) .

Similarities between primary and rGBM are also apparent at RNA level, where unsupervised analysis highlighted a

significant overlap between primary and rGBM . Expression-based molecular subtypes are also relatively stable during

tumor progression . Some changes are however noticeable when looking at the expression of individual genes, for

example, in stemness-related genes . Methylation classes are also stable at progression in ~85% of cases . This

contrasts IDH-mutant low-grade gliomas which, at recurrence, often exhibit lower overall DNA methylation levels, an

increase in the frequency of poorer prognostic subclasses and worse outcomes for patients at progression .

Despite this similarity between primary and recurrent glioblastomas, there is evidence for considerable intratumoral

heterogeneity in both. For example, spatially separated samples taken from the same resection may differ with respect to

their genetic makeup . Even if most studies on intratumoral heterogeneity have been performed on primary tumor

samples it is therefore likely such heterogeneity also exist in recurrent glioblastomas and may affect treatment response

. In summary, recurrent gliomas generally retain the genetic and epi-genetic makeup of the primary tumor and, as such,

are likely to require similar treatment regimens.

2.3. Hypermutated GBMs

A subset of temozolomide-treated GBMs gain inactivating mutations in DNA damage repair genes, such as MSH6, MSH2
and MLH1, as first described in 2006 by the Sanger institute . Because of their impaired DNA repair pathways, these

tumors fail to correctly repair the damage inflicted by the alkylating agent and as a consequence, acquire an exceptionally

large number of mutations (often > 10 mutations per megabase) . Temozolomide-induced hypermutated tumors are

characterized by G:C > T:A transitions within a specific genetic context (COSMIC mutational signature 11) .

Hypermutated tumors may also arise de novo, which occurs in the context of germline mutations in DNA mismatch repair

genes . Such tumors have mutational signatures associated with mismatch repair pathways . Although

hypermutation is common in recurrent (IDH-mutant) low grade gliomas, it is quite rare in rGBMs, with frequencies

generally reported in the order of less than 10% (6/89 ), 14/186 , 16/99  and 0/29 ). Hypermutation appears to

occur more often in MGMT-methylated GBMs (23%) compared to MGMT-unmethylated tumors (5.6%) .
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Despite the large difference in the genetic makeup of hypermutated tumors, it is unclear whether patients with such

tumors have a different clinical course. One report suggested a longer survival , although other studies noted no

survival differences  or even a trend towards poorer survival in IDH-wt rGBMs . There is scarce evidence on

the efficacy of treatment of hypermutated GBMs. The effect of alkylating chemotherapy seems limited: a retrospective

analysis found highly similar survival between hypermutated and non-hypermutated tumors treated with alkylating

chemotherapy  and preclinical evidence suggested hypermutated tumors are resistant to temozolomide . Because of

their increased mutational burden, it has been speculated that hypermutated tumors may be more susceptible to immune

checkpoint inhibition. Initial anecdotal evidence supported this notion , although a later retrospective analysis of

gliomas with high mutational burden found no evidence for this, with no increased immune infiltration . However,

evidence in larger trials is thus-far lacking and to date, there are no specific treatment options for hypermutated GBMs .

3. Management of rGBM

3.1. Diagnosis of rGBM

The diagnosis of rGBM relies on clinical status and MRI findings, according to Response Assessment in Neuro-Oncology

(RANO) criteria and medical history . MRI features of rGBM are heterogeneously described . GBM may recur: (i) at

the initial tumor site—most frequently <2 cm from lesion—in about 80% of cases  and/or, (ii) distant, with

unifocal/multifocal parenchymal lesions or leptomeningeal spread . Surprisingly, among different localizations, cortical

GBMs seem more prone to multifocal recurrence .

The distinction between disease recurrence and treatment-related complications is challenging and needs specific

attention. The main treatment-related complications are pseudoprogression (PsP) and radionecrosis . PsP, more

common in MGMT methylated GBM, is seen in up to 30% of patients treated with standard of care . Usually, PsP is

characterized by tumor volume increase within 3 months post-chemoradiation therapy, but delayed cases have been

reported . This phenomenon is also seen after immunotherapies with a longer time frame leading to the development

of dedicated assessment tools: iRANO . Radiation necrosis is another complication seen later in GBM patients

treated with both radio and chemotherapy . It usually appears between 3-12 months after radiotherapy . In both

situations, RANO and iRANO criteria suggest: (i) careful selection of reference imaging, (ii) close clinical and radiological

follow-up and, (iii) avoidance of premature discontinuation of a potentially efficient treatment in the absence of worsening

symptoms . Multimodal imaging including spectroscopy MR, dynamic susceptibility MR perfusion and nuclear

imaging can help reach a final diagnosis . The importance of multimodal imaging is even more apparent with blood-

brain barrier permeability modifiers, such as antiangiogenic drugs .

Moreover, functional molecular imaging such as positron emission tomography (PET) using amino acid tracers emerged

as a promising investigational strategy in the setting of diagnosis, biopsy, resection and response assessment .

Histological proof remains the best approach to get molecular features of rGBM for potential molecular targeted therapies.

However, a limited number of rGBM patients are eligible for second biopsy or resection due to their frailty. Therefore, in

this setting, multimodal approach including PET and MRI appear an interesting alternative .

3.2. Prognostic Factors in rGBM

Older age at diagnosis and a decreased performance score (KPS or WHO) at recurrence have been associated with a

poor outcome in multiple cohorts of rGBM patients . In the same line, localization of recurrence (i.e., contact with SVZ

and/or ventricle) and ependymal spread on MRI have been linked to a poor outcome . In contrast, cortical

localization, volume of FLAIR hyperintensities on MRI do not significantly impact outcome . rGBM localization in

eloquent areas and tumor volume  time to first recurrence  and RTOG-RPA class  were also proposed as

prognostic indicators, but data are conflicting and warrant further investigations. As described previously, the MGMT
promoter methylation status can represent an important factor correlating with survival in rGBM patients.

3.3. Treatment of rGBM

Less than 50% of rGBM patients are eligible for second surgery (12–48%) . When feasible, surgical resection is

associated with increased OS (i.e., 5–11 months) and preserved neurological status (i.e., >90% of patients) 

. In these studies, an age of less than 65 years, a good performance status, radical surgery, tumor location and

chemotherapy treatment before recurrence were founded predictors of re-surgery benefits; in the presence of these

clinical and surgical parameters, second surgery at the time of GBM recurrence could be considered as a therapeutic
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strategy in selected patients. However, the observed increased survival should be taken with extreme caution due to a

selection bias of prognostically favorable patients for second surgery. The impact of surgery in rGBM was never assessed

in a prospective manner, nor compared to medical treatments.

Reirradiation (re-RT) can be a therapeutic option in rGBM. A secondary analysis of the Radiation Therapy Oncology

Group (RTOG) 0525 trial demonstrated a modest clinical benefit of re-RT compared to best supportive care alone in

rGBM patients (HR 0.74, 95% CI, 0.43–1.28). This survival benefit is amplified when re-RT is combined with systemic

therapies (HR 0.44, 95% CI, 0.30–0.63) . A systematic review and a metanalysis of 50 studies support the benefit of re-

RT with a PFS6 of 43% (95% CI, 35–50%, I  = 82%) . However, the lack of prospective trials, the heterogeneity of

studies for patients and the radiotherapy regimen limit the drawing of robust conclusions in rGBM . Re-RT can only

be proposed after careful consideration of the risk of radionecrosis . A phase III trial has currently been withdrawn due

to funding issues (NCT01830101). Stereotactic radiosurgery has been shown to be associated with a better PFS6 (47%).

It has the theoretical advantage of sparing normal tissue but is restricted to small tumors with well-defined borders - a rare

condition in rGBM .

With regard to systemic treatments in rGBM, multiple therapeutic options may be considered: (i) temozolomide

rechallenging , (ii) lomustine or bevacizumab or both , and (iii) tumor-treating fields , but most agents proved to be

limited or had no efficacy in randomized trial settings (median PFS of 2–3 months and PFS6 rate below 15% ). Thus,

due to a lack of validated standard of care, the National Comprehensive Cancer Network (NCCN) recommends clinical

trials as the preferred option for eligible patients .
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