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Marine bacterial natural products are molecules produced by marine bacteria through secondary metabolism genes,

which can provide them with competitive advantages. Certain natural products can have bioactive effects (e.g.

antimicrobial properties) and thus can be used by humans as therapeutics or leads for novel therapeutics.
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1. History

Nature has long been the most important source of therapeutics. The use of poultices and mixtures of plant material to

treat infections goes back to the early bronze age civilizations . Building on the prior knowledge acquired, early medicine,

pharmacology and chemistry started to develop therapeutics by studying nature. For example, extracts of willow bark

(genus Salix), containing salicylic acid, which was identified to be the bioactive molecule present in the bark in 1828, were

already used by Sumerians and Egyptians to treat inflammation and pain. In 1852 acetylsalicylic acid was first

synthesised and in 1899, Bayer patented it as aspirin . Ever since then, many terrestrial organisms and in particular

plants have been sought for use as natural products. It was only around the 1970s, that attention was first given to the

ocean as a source of useful natural products. As the oceans cover most of the Earth’s surface, they are home to a

substantial portion of the world’s biodiversity  which lives in distinctive and varied conditions and has evolved through a

long period of metabolic adaptations. When exploration of the ocean’s biodiversity and metabolic richness began, it

resulted in the discovery of thousands of structurally unique bioactive marine natural products .

Initially, the exploitation of marine wildlife for natural bioactive products focused on a small number of organisms which

included sponges, molluscs, tunicates and macroalgae . These were shown to produce a very diverse range of unique

molecular structures, like halogenated terpenes, polyketides and prostaglandins . This diversity of bioactive

structures is considered to be part of the defence, survival and predatorial strategies employed by these organisms, such

as, for example, sponges, which are sessile, soft-bodied organisms, lacking morphological defences like biological

armature or spines . Thus, these organisms appeared to be a great source for the discovery of novel bioactive

molecules. However, the bioactive molecules produced by these organisms can be present in quite small amounts. For

example, halichondrin B (1) (Figure 1), a macrolide first isolated from Halichondria okadai that has potent anticancer

activity, impeding mitotic division by targeting tubulin , is present in concentrations as low as 400 µg per kg wet weight

of tissue of Lissodendoryx sp. . Due to their low concentrations of bioactive molecules the use of these organisms

poses environmental problems, because high quantities of organisms would be needed to produce enough molecules to

even begin preclinical trials . Yet, its structure inspired a synthetic analogue, eribulin mesylate, which is now used in

breast cancer and lipocarcinoma treatment . As such, sponges, molluscs, tunicates and macroalgae still remain relevant

sources of new marine natural products .

Figure 1. Bioactive metabolites isolated from marine organisms. Halichondrin B (1), a macrolide first isolated from H.
okadai but also present in other sponges. Bryostatin 1 (2), which belongs to a family of polyketide macrolides first

identified in the marine bryozoan B. neritina. Salinosporamide A (3), is a proteasome inhibitor isolated from bacteria from

the genus Salinospora and is in phase III clinical trials for the treatment of multiple myeloma.
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The exploitation of other sources of bioactive marine organisms, mainly microorganisms, has also led to the discovery of

new promising leads. Indeed, some of the molecules associated with macroorganisms such as sponges, may have their

origin in associated microorganisms . This may be the case of bryostatins, found in the marine bryozoan Bugula
neritina . The bryostatins, exemplified by bryostatin 1 (2) are polyketide macrolactones with neurological and anticancer

properties that work by modulating the activity of the protein kinase C family and they were first isolated from this

bryozoan in 1982 . Yet, these macrolactones appear to be synthesised by a group of PKS genes of bacterial origin,

indicating that bryostatins are produced by a bacterium  [56].

Marine microorganisms, like members of Actinobacteria, Proteobacteria, Firmicutes, Cyanobacteria, fungi and

dinoflagellates, have shown to be great reservoirs of bioactive molecules . Yet, even though initial predictions pointed to

an immediate increase in the number of natural products discovered with the shift in focus from macroorganisms to

microorganisms, this did not occur . However, advances in the isolation of novel taxa, provided a boost in the discovery

of novel bioactive molecules. Analysis of the literature reveals an increase in the number of new molecules discovered in

all microorganisms from 2014 to 2018 , with a special emphasis on fungi and bacteria. Members of the genus

Salinospora (Actinobacteria) are examples of bacteria that lead to the discovery of salinosporamide A (3) . This

molecule has a potent cytotoxic activity due to a unique functionalisation of the core-fused γ-lactam-β-lactone bicyclic ring,

which contributes significantly to its activity . Salinosporamide A is now in phase III clinical trials for the treatment of

multiple myeloma under the brand name Marizomib .

Although salinosporamide A is the best example of the potential present in bacteria, many novel molecular structures are

discovered each year. In fact, in 2016, 179 new natural products of marine bacterial origin were discovered , in 2017,

the number rose to 242  and in 2018 a total of 240 new molecules were reported . The upwards trend seen in the

number of discovered molecules and the remarkable chemical diversity displayed, which ranges from peptides,

siderophores and polyketides to esters, macrolactones, quinones and terpenes, shows the bacterial potential for the

discovery of novel active principles.

2. Antimicrobial Marine Bacterial Natural Products

Bacteria are promising sources for novel antimicrobial natural product discovery. This is primarily due to two factors. One

is their variable and malleable metabolism  and the other is their competitive pressure for resources against other

microbes. Several recent examples of natural products from marine bacteria are provided below. The novel molecule

bacicyclin (4) (Figure 2), which is a cyclic peptide, was isolated from a Bacillus sp. strain BC028 isolated from the

common mussel (Mytilus edulis) . It displays antibacterial activity against E. faecalis and S. aureus with minimal

inhibitory concentration (MIC) values of 8 and 12 µM, respectively, and can help in the design of analogues with increased

antibiotic efficacy . Anthracimycin B (5), a polyketide with powerful anti-Gram-positive bacteria activity that was obtained

from a marine-derived Streptomyces cyaneofuscatus M-169, has expanded the knowledge of how the methyl group at C-

2 of anthracimycins plays a role in its antibacterial effect . Taromycin B (6), a lipodepsipeptide with potent activity

against methicillin-resistant S. aureus and vancomycin-resistant E. faecium which was isolated from the marine

actinomycete Saccharomonospora sp. CNQ-490, provides a promising start for the development of novel antibacterial

scaffoldings . Janthinopolyenemycin A (7) and B (8) are also polyketides and the first examples of molecules of their

structural type. Janthinopolyenemycins were isolated from the proteobacterium Janthinobacterium spp., strains ZZ145

and ZZ148, and have activity against Candida albicans . Streptoseomycin (9), a macrolactone isolated from the

actinobacterium Streptomyces seoulensis A01, has specific activity against microaerophilic bacteria, specially the

pathogen H. pylori . This restricted activity makes streptoseomycin a good starting point for the discovery of antibiotics

for the treatment of H. pylori infections. The polyketides ansalactams B (10), C (11) and D (12) are highly modified

ansamycins that show weak and mild anti-methicillin-resistant S. aureus and were identified in cultures of Streptomyces
sp. CNH189, isolated from marine sediments. Ansalactams B and D are cyclic polyketides with similarities to ansalactam

A. However, ansalactam D shows evidence of an uncommon oxetane ring. Ansalactam C is an open polyketide chain

resulting from a Baeyer–Villiger-type oxidation . Micromonohalimanes A (13) and B (14) are rare halimane-type

diterpenoids isolated from the actinobacterium Micromonospora sp. WMMC-218. Micromonohalimane A displays a very

weak inhibitory effect on methicillin-resistant S. aureus while micromonohalimane B displays moderate bacteriostatic

activity against it. Xestostreptin (15) is a modified diketopiperazine isolated from Streptomyces sp. S.4, resulting from the

condensation of the aminoacids threonine and alanine . Xestostreptin shows weak activity against the malarial agent P.
falciparum. Two macrolides, branimycins B (16) and C (17) were identified from a fermentation of the actinobacterium

Pseudonocardia carboxydivorans M-227, isolated from deep sea water . Branimycin B shows moderate antibacterial

activity against Gram-positive bacteria, while branimycin C displayed moderate antibacterial activity against Gram-

negative bacteria.
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Figure 2. Examples of recently isolated antimicrobial natural products from marine bacteria. Bacicyclin (4), a cyclic

peptide isolated from a Bacillus sp. BC028. Anthramicin B (5), a polyketide isolated from S. cyaneofuscatus M-169.

Taromycin B (6), a lipopeptide from Saccharomonospora sp. CNQ-490. Janthinopolyenemycin A (7) and

Janthinopolyenemycin B (8). The janthinopolyenemycins are polyketides isolated from two strains of the genus

Janthinobacterium. Streptoseomycin (9), a macrolactone isolated from S. seoulensis. Ansalactam B (10), a pentacyclic

polyketide. Ansalactam C (11), an open polyketide unlike ansalactam B. Ansalactam D (12), a hexacyclic polyketide.

Ansalactams B, C and D were isolated from Streptomyces sp. CNH189. Micromonohalimane A (13). Micromonohalimane

B (14). Micromonohalimanes A and B are terpenes isolated from Micromonospora sp. WMMC-218. Xestostreptin (15), a

diketopiperazine isolated from Streptomyces sp. S.4. Branimycin B (16) and Branimycin C (17) C are macrolides isolated

from the deep-sea bacterium P. carboxydivorans M-227. Lobosamide A (18), Lobosamide B (19) and Lobosamide C (20)

are macrolactams isolated from Micromonospora sp. RL09-050-HVF-A. Salinipostin A (21), a bicyclic phosphotriester

isolated from Salinispora sp. RLUS08-036-SPS-B.

Utilizing a genome-assisted discovery strategy, three macrolactams, lobosamides A (18), B (19) and C (20), were isolated

from Micromonospora sp. RL09-050-HVF-A . Lobosamides A and B showed bioactivity against the microbial agent of

African trypanosomiasis, Trypanosoma brucei in low concentrations. However, lobosamide C was not bioactive. Schulze

and colleagues  also identified salinipostins A-K bicyclic phosphotriesters isolated from the actinobacterium Salinispora
sp. RLUS08-036-SPS-B with potent and selective activity against P. falciparum. The salinipostin scaffold considerably

differs from any of the known antimalarial compounds, representing a novel lead structure in the development of

therapeutics for malaria. Experiments with salinipostin A (21), the most bioactive of the 11 salinipostins, indicate that it

exhibits growth stage-specific effects and no apparent resistance could be identified in parasite populations. A hybrid

peptide-polyketide, mollemycin A (22) (Figure 3) was isolated from the marine bacterium Streptomyces sp. CMB-M0244

and shows potent antimalarial and broad antibacterial activities . Actinosporin A (23) is a glycosilated polyketide which

shows antiparasitic activity against T. brucei and was isolated from a marine sponge associated Actinokineospora sp.

EG49 . Likewise, actinosporin B, was also isolated but showed no bioactivity, suggesting that actinosporin A is acting

selectively against the parasite. The linear lipopetides, gageopeptides A-D (24–27), gageotetrins A–C (28–30) and

gageostatins A–C (31–33) were isolated from the marine Bacillus subtilis 109GGC020. These lipopetides showed a range

of different antimicrobial bioactivities, with gageostatins A, B and C all showing good antimicrobial activity and moderate

cytotoxic activity to lung cancer cell line NCI-H23 . Gageotetrins A, B and C showed potent antimicrobial bioactivities but

not cytotoxic effect on human myeloid leukaemia K-562 . Furthermore, gageopeptides A, B, C and D all showed good

antifungal and moderate broad antibacterial activity, while not showing cytotoxicity to human myeloid leukaemia K-562

and mouse leukemic macrophage RAW 264.7 cell lines .
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Figure 3. Examples of recently isolated antimicrobial natural products from marine bacteria. Mollemycin A (22) is a hybrid

peptide-polyketide isolated from Streptomyces sp. CMB-M0244. Actinosporin A (23), a polyketide isolated from

Actinokineospora sp. EG49. Gageopeptide A (24). Gageopeptide B (25). Gageopeptide C (26), Gageopeptide D (27),

Gageotetrin A (28). Gageotetrin B (29). Gageotetrin C (30). Gageostatin A (31). Gageostatin B (32). Gageostatin C (33).

The gageopeptides, gageotetrins and gageostatins are linear lipopeptides isolated from B. subtilis 109GGC020.

3. Antiviral Marine Bacterial Natural Products

It is estimated that as many as 10 viruses inhabit the oceans , with concentrations ranging from 3 × 10  viruses mL

in deep sea waters to 10  viruses mL  in coastal waters , many of which are bacteriophages. Consequently, marine

bacteria are subjected to evolutionary pressure to develop defences against viral attacks. As such, marine bacteria may

be great reservoirs of antiviral leads.

A number of examples of marine bacterial natural products with antiviral bioactivities have been recently reported. Three

novel abyssomicin monomers, neoabyssomicins D (34) (Figure 4), E and A2 and two dimers—neoabyssomicins F (35)

and G (36)—were isolated from the marine Streptomyces koyangensis SCSIO 5802, with neoabyssomicin D showing

moderate anti-herpes simplex virus activity, and neoabyssomicins F and G showing low activity against vesicular

stomatitis virus . Streptomyces sp. OUCMDZ-3434, isolated from the marine alga Enteromorpha prolifera, was shown to

produce five new phenolic polyketides . Of these molecules, wailupemycin J (37) and (R)-wailupemycin K (38) proved

to be bioactive against the influenza A virus (H1N1). The indolosesquiterpenoids xiamycins C (39), D (40) and E (41) were

isolated from the marine-derived Streptomyces sp. #HK18, and showed strong inhibitory effect against the coronavirus

porcine epidemic diarrhoea virus . As such, xiamycins may provide useful leads in the development of antivirals with

broader spectrum activity against other coronaviruses.

31 [42] 6 −1

8 −1 [43]

[44]

[45]

[46]



Figure 4. Examples of recently isolated natural products from marine bacteria with antiviral activity. Neoabyssomicin D

(34). Neoabyssomicin F (35) and Neoabyssomicin E (36) are polycyclic polyketides isolated from S. koyangensis SCSIO

5802. Wailupemycin J (37) and (R)-wailupemycin K (38) are phenolic polyketides isolated from Streptomyces sp.

OUCMDZ-3434. Xiamycin C (39), Xiamycin D (40) and Xiamycin E (41) were isolated from Streptomyces sp. #HK18.

4. Anticancer Marine Bacterial Natural Products

As with antimicrobials, it is ascertained that marine bacteria are great reservoirs for cytotoxic natural products. While

salinosporamide A, already mentioned above, is a great example of marine cytotoxic drug discovery [58], every year,

novel anticancer bioactive structures are discovered. Actinobacteria, especially those of the genera Streptomyces and

Micromonospora, have been a very prolific source of cytotoxic compounds. There are several recent examples of

structures isolated from these bacteria. Dentigerumycin E (42) (Figure 5), is a cyclic hexapeptide bearing three piperazic

acids and a pyran-bearing polyketide acyl chain, isolated from the marine actinoabcterium Streptomyces albogriseolus
JB5 . It showed moderate cytotoxicity against lung carcinoma A549, colorectal cancer HCT116, breast cancer MDA-MB-

231, liver cancer SK-HEP-1 and stomach cancer SNU638 cell lines, while not being cytotoxic to the normal human breast

epithelial cell line MCF-10A [84]. Likewise, neothioviridamide (43) is a polythioamide cyclic peptide with strong cytotoxicity

against human ovarian adenocarcinoma (SKOV-3), malignant pleural mesothelioma (Meso-1) and immortalized human T

lymphocyte (Jurkat) cell lines . It was isolated after discovery of a novel biosynthetic cluster (thioviridamide-like

biosynthetic gene) in Streptomyces sp. MSB090213SC12 by genome mining and heterologous expression of a bacterial

artificial chromosome in Streptomyces avermitilis SUKA. Three cyclic depsipeptides, rakicidins G-I (44–46), isolated from

the marine actinobacterium Micromonospora chalcea FIM 02–523, have potent cytotoxic activity against the human

pancreatic cancer cell line PANC-1 and human colon carcinoma cell line HCT-8 . Rakicidins G-I differ in the length of

their β-hydroxy fatty acid moiety. The 26-membered polyene macrolactam, FW05328-1 (47), isolated from

Micromonospora sp. FIM05328, has potent bioactivity against three cells lines of human oesophageal squamous cell

carcinoma (KYSE30, KYSE180 and EC109) . The integration of genomic data in association with nuclear magnetic

resonance (NMR) analysis allowed the determination of the stereostructure of neaumycin B, a cytovaricin-ossamycin-

oligomycin macrolide, that was isolated from Micromonospora sp. CNY-010 . Neaumycin B (48) has shown potent anti-

human glioblastoma cell line U87 activity but it is unstable. Through genetic manipulation of promoters, six new

polyketides, pactamides A–F, were isolated from Streptomyces pactum SCSIO 02999. Pactamides B-F showed low to

moderate cytotoxic activity against human glioblastoma cell line (SF-268), human breast cancer cell (MCF-7), human

large-cell lung carcinoma (NCI-H460) and human liver cancer cell (HepG2) while pactamide A (49) showed potent

activity . Two cyclodepsipeptides, streptodepsipeptides P11A (50) and P11B (51), were isolated from Streptomyces sp.

P11-23B and displayed potent anti-proliferative bioactivity in four cell lines of human glioblastoma (U251, U87-MG, SHG-

44 and C6) . Research with Streptomyces sp. strain THS-55 yielded four new antimycin alkaloids, antimycins E-H (52–

55), which showed potent cytotoxic effect on HPV-transformed human cervix adenocarcinoma (HeLa) cells and moderate

anti-proliferative activity in human cervical cancer cell SiHa, human myelogenous leukaemia cell line K562, and human

leukaemia cell line HL-60 . However, cytotoxic effects were shown in healthy human embryonic kidney cells 293T. In a

knockout mutant of Streptomyces sp. CHQ-64, two new alkaloids, geranylpyrrol A and piericidin F (56), were

discovered . Of these, piericidin F showed potent anti-proliferative activity against several cancer cell lines, including

HeLa, human acute promyelocytic leukaemia (NB4) and human lung carcinoma (A549 and H1975).
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Figure 5. Examples of recently isolated cytotoxic natural products from marine bacteria. Dentigerumycin E (42), a cyclic

hexapeptide isolated from S. albogriseolus JB5. Neothioviridamide (43), a cyclic peptide from Streptomyces sp.

MSB090213SC12. Rakicidin G (44), Rakicidin H (45) and Rakicidin I (46) are cyclic depsipeptides isolated from M.
chalcea FIM 02–523. FW05328-1 (47), a polyene macrolactam isolated from Micromonospora sp FIM05328. Neaumycin

B (48), a macrolide from Micromonospora sp. CNY-010. Pactamide A (49), a polyketide isolated from S. pactum SCSIO

02999. Streptodepsipeptide P11A (50) and Streptodepsipeptide P11B (51) are cyclodepsipeptides from Streptomyces sp.

P11-23B. Antimycin E (52), Antimycin F (53), Antimycin G (54) and Antimycin H (55) are alkaloids isolated from

Streptomyces sp. THS-55. Piericidin F (56) is an alkaloid isolated Streptomyces sp. CHQ-64.

Two new chromodepsipeptides, neo-actinomycin A (57) (Figure 6) and neo-actinomycin B (58) were isolated from a

marine-derived Streptomyces sp. IMB094 . They showed strong cytotoxic effect on human colorectal carcinoma cell line

HCT116 and human lung carcinoma cell line A549.
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Figure 6. Examples of recently isolated cytotoxic natural products from marine bacteria. Neo-actinomycin A (57) and Neo-

actinomycin B (58) are chromopeptides from Streptomyces sp. IMB094. PM100117 (59) and PM100118 (60) are

macrolides isolated from S. caniferus GUA-06-05-006A. Lobophorin I (61), a spirotetronate isolated from Streptomyces
sp. 1053U.I.1a.3b. Haliamide (62), a hybrid of a polyketide synthase from H. ochraceum SMP-2. Tetra(indol-3-yl)ethenone

(63), an indole isolated from P. denitrificans BBCC725. O-Demethylpederin (64), a polyketide with a tetrahydropyran-core

from Labrenzia sp. PHM005.

Two new macrolides, PM100117 (59) and PM100118 (60) were isolated from a marine Streptomyces caniferus GUA-06-

05-006A . Both PM100117 and PM100118 show potent cytotoxic effect on human breast adenocarcinoma (MDA-MB-

231), human lung carcinoma (A549) and human colorectal carcinoma (HT-29) cell lines. The study of a symbiotic

Streptomyces sp. (strain 1053U.I.1a.3b) of cone snails lead to the isolation of two lobophorins, H and I . Lobophorins

are a large family of spirotetronates with antimicrobial and cytotoxic bioactivities. Of these, lobophorin I (61) showed

potent cytotoxic activity against human T-cell leukaemia cell line CEM-TART.

Besides Actinobacteria, other marine bacterial phyla are also proving to be relevant for the isolation of novel bioactive

molecules. As a result of a hybrid polyketide synthase (PKS) and non-ribosomal peptide synthetase (NRPS) biosynthesis,

haliamide (62) was isolated from a marine myxobacterium, Haliangium ochraceum SMP-2, and shows moderate

cytotoxicity towards the HeLa cell line . A novel cytotoxic indole, tetra(indol-3-yl)ethenone (63) was isolated from the

marine proteobacterium Pseudovibrio denitrificans BBCC725 . Tetra(indol-3-yl)ethenone has moderate cytotoxicity to

human lung carcinoma cell line A549 and the mouse fibroblasts cell line L929. Another marine proteobacterium, Labrenzia
sp. PHM005 produced a new tetrahydropyran-core polyketide and analogue of pederin . This novel pederin, 18-O-

demethylpederin (64) shows potent anti-proliferative activity against four cell lines: human lung carcinoma cell line A549,

human colon adenocarcinoma cell line HT-29, human breast adenocarcinoma cell line MDA-MB-231 and human pancreas

adenocarcinoma cell line PSN-1.

All these examples show the great potential displayed by marine bacteria which reveals the extraordinary chemical

diversity of their metabolism. When analysing the bioactive bacteria and their taxonomic groups, Actinobacteria proved to

be the most prolific and diverse producers (Tables 1–3). However, ignoring other less studied phyla denies access to

valuable chemical diversity, which is essential in the drug discovery process. Moreover, marine bacterial metabolites have

shown to have potential as treatment in both human and animal pathologies. Thus, marine bacterial natural products have

great significance under the “One Health” framework.

Table 1. Recently isolated bioactive molecules from marine bacteria with antimicrobial properties.

Molecule

Bacterial Origin
Chemical
Structure

Bioactivity

Strain Identification Phyla Effect Target

Actinosporin A
Actinokineospora sp.

EG49.
Actinobacteria Polyketide AP TBB

Lobosamide A
Micromonospora sp.

RL09-050-HVF-A
Actinobacteria Polyketide AP TBB

Lobosamide B
Micromonospora sp.

RL09-050-HVF-A
Actinobacteria Polyketide AP TBB

Micromonohalimane A
Micromonospora sp.

WMMC-218
Actinobacteria Polyketide AB MRSA

Micromonohalimane B
Micromonospora sp.

WMMC-218
Actinobacteria Polyketide AB MRSA

Branimycin B
Pseudonocardia
carboxydivorans M-227

Actinobacteria Polyketide AB G+
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Branimycin C
Pseudonocardia
carboxydivorans M-227

Actinobacteria Polyketide AB G-

Taromycin B
Saccharomonospora sp.

CNQ-490
Actinobacteria Peptide AB MRSA; VRE

Salinipostin A
Salinispora sp. RLUS08-

036-SPS-B
Actinobacteria Polyketide AP PF

Anthracimycin B
Streptomyces
cyaneofuscatus M-169

Actinobacteria Polyketide AB G+

Streptoseomycin
Streptomyces seoulensis
A01

Actinobacteria Polyketide AB H. pylori

Mollemycin A
Streptomyces sp. CMB-

M0244
Actinobacteria

Peptide-

polyketide
AB/AP

Broad

spectrum/PF

Ansalactam B Streptomyces sp. CNH189 Actinobacteria Polyketide AB MRSA

Ansalactam C Streptomyces sp. CNH189 Actinobacteria Polyketide AB MRSA

Ansalactam D Streptomyces sp. CNH189 Actinobacteria Polyketide AB MRSA

Xestostreptin Streptomyces sp. S.4 Actinobacteria Peptide AP PF

Bacicyclin Bacillus sp. BC028 Firmicutes Peptide AB G+

Gageopeptide A
Bacillus subtillis strain

109GGC020
Firmicutes Peptide AB/AF

Broad

spectrum

Gageopeptide B
Bacillus subtillis strain

109GGC020
Firmicutes Peptide AB/AF

Broad

spectrum

Gageopeptide C
Bacillus subtillis strain

109GGC020
Firmicutes Peptide AB/AF

Broad

spectrum

Gageopeptide D
Bacillus subtillis strain

109GGC020
Firmicutes Peptide AB/AF

Broad

spectrum

Gageotetrin A
Bacillus subtillis strain

109GGC020
Firmicutes Peptide AF

Broad

spectrum

Gageotetrin B
Bacillus subtillis strain

109GGC020
Firmicutes Peptide AF

Broad

spectrum

Gageotetrin C
Bacillus subtillis strain

109GGC020
Firmicutes Peptide AF

Broad

spectrum



Gageostatin A
Bacillus subtillis strain

109GGC020
Firmicutes Peptide AB/AF

Broad

spectrum

Gageostatin B
Bacillus subtillis strain

109GGC020
Firmicutes Peptide AB/AF

Broad

spectrum

Gageostatin C
Bacillus subtillis strain

109GGC020
Firmicutes Peptide AB/AF

Broad

spectrum

Janthinopolyenemycin A
Janthinobacterium spp.

ZZ145 and ZZ148
Proteobacteria Polyketide AF CA

Janthinopolyenemycin B
Janthinobacterium spp.
ZZ145 and ZZ148

Proteobacteria Polyketide AF CA

AB = Antibacterial, AF = Antifungal AP = Antiparasitic; CA = Candida albicans; G+ = Gram-positive bacteria; G- =

Gram-negative bacteria; MRSA = Methicillin-resistant S. aureus; PF = Plasmodium falciparum; TBB = Trypanosoma
brucei; VRE = Vancomycin-resistant E. faecium

 Table 2. Recently isolated bioactive molecules from marine bacteria with antiviral properties.

Molecule

Bacterial Origin

Chemical Structure

Bioactivity

Strain Identification Phyla Target

Neoabyssomicin D S. koyangensis SCSIO 5802 Actinobacteria Polyketide HSV

Neoabyssomicin F S. koyangensis SCSIO 5802 Actinobacteria Polyketide VSV

Neoabyssomicin G S. koyangensis SCSIO 5802 Actinobacteria Polyketide VSV

Wailupemycin J Streptomyces sp. OUCMDZ-3434 Actinobacteria Polyketide H1N1

R-wailupemycin K Streptomyces sp. OUCMDZ-3435 Actinobacteria Polyketide H1N1

Xiamycin C Streptomyces sp. #HK18 Actinobacteria Polyketide PEDV

Xiamycin D Streptomyces sp. #HK18 Actinobacteria Polyketide PEDV

Xiamycin E Streptomyces sp. #HK18 Actinobacteria Polyketide PEDV

HSV = Herpes simplex virus; VSV = vesicular stomatitis virus; H1N1 = influenza A virus; PEDV = porcine epidemic

diarrhea virus

Table 3. Recently isolated bioactive molecules from marine bacteria with cytotoxic properties.

Molecule

Bacterial Origin

Chemical
Structure

Bioactivity

Strain
Identification

Phyla Target



Dentigerumycin E
Streptomyces
albogriseolus JB5

Actinobacteria Peptide
HCT116; A549; MDA-MB-231;

SK-HEP-1; SNU638

Neothioviridamide
Streptomyces sp.

MSB090213SC12
Actinobacteria Peptide SKOV-3; Meso-1; Jurkat

Rakicidin G

Micromonospora
chalcea FIM 02-

523

Actinobacteria Peptide  PANC-1; HCT-8

Rakicidin H

Micromonospora
chalcea FIM 02-

523

Actinobacteria Peptide  PANC-1; HCT-8

Rakicidin I

Micromonospora
chalcea FIM 02-

523

Actinobacteria Peptide  PANC-1; HCT-8

FW05328-1
Micromonospora
sp. FIM05328

Actinobacteria Polyketide  KYSE30; KYSE180; EC109

Neaumycin B
Micromonospora
sp. CNY-010

Actinobacteria Polyketide U87

Pactamide A

Streptomyces
pactum SCSIO

02999

Actinobacteria Polyketide
SF-268; MCF-7; NCI-H460; Hep-

G2

Pactamide B

Streptomyces
pactum SCSIO

02999

Actinobacteria Polyketide
SF-268; MCF-7; NCI-H460; Hep-

G2

Pactamide C

Streptoyces
pactum SCSIO

02999

Actinobacteria Polyketide
SF-268; MCF-7; NCI-H460; Hep-

G2

Pactamide D

Streptomyces
pactum SCSIO

02999

Actinobacteria Polyketide
SF-268; MCF-7; NCI-H460; Hep-

G2

Pactamide E

Streptomyces
pactum SCSIO

02999

Actinobacteria Polyketide
SF-268; MCF-7; NCI-H460; Hep-

G2

Pactamide F

Streptomyces
pactum SCSIO

02999

Actinobacteria Polyketide
SF-268; MCF-7; NCI-H460; Hep-

G2

Streptodepsipeptide P11A
Streptomyces sp.

P11-23B
Actinobacteria Peptide U251; U87; SHG-44; C6



Streptodepsipeptide P11B
Streptomyces sp.

P11-23B
Actinobacteria Peptide U251; U87; SHG-44; C6

Antimycin E
Streptomyces sp.

THS-55
Actinobacteria Polyketide HeLa; SiHa; K562; HL-60; 293T

Antimycin F
Streptomyces sp.

THS-55
Actinobacteria Polyketide HeLa; SiHa; K562; HL-60; 293T

Antimycin G
Streptomyces sp.

THS-55
Actinobacteria Polyketide HeLa; SiHa; K562; HL-60; 293T

Antimycin H
Streptomyces sp.

THS-55
Actinobacteria Polyketide HeLa; SiHa; K562; HL-60; 293T

Piericidin F
Streptomyces sp.

CHQ-64
Actinobacteria Polyketide HeLa; NB4; A549; H1975

Neo-actinomycin A
Streptomyces sp.

IMB094
Actinobacteria Peptide HCT116; A549

Neo-actinomycin B
Streptomyces sp.

IMB094
Actinobacteria Peptide HCT116; A549

PM100117

Streptomyces
caniferus GUA-06-

05-006A

Actinobacteria Polyketide A549; MDA-MB-231; HT-29

PM100118

Streptomyces
caniferus GUA-06-

05-006A

Actinobacteria Polyketide A549; MDA-MB-231; HT-29

Lobophorin I
Streptomyces sp.

1053U.I.1a.3b
Actinobacteria Polyketide CEM-TART

Haliamide
Haliangium
ochraceum SMP-2

Myxobacteria Polyketide HeLa

Tetra(indol-3-yl)ethanone

Pseudovibrio
denitrificans
BBCC725

Proteobacteria Polyketide L929; A549

18-O-demethylpederin
Labrenzia sp.

PHM005
Proteobacteria Polyketide

A549; HT-29; MDA-MB-231; PSN-

1;

HCT116 = HCT-8 = HT-29 = human colorectal carcinoma; A549 = H1975 = human lung carcinoma; MDA-MB-231 = MCF-

7 = human breast adenocarcinoma; SK-HEP-1 = Hep-G2 = human hepatic adenocarcinoma; SNU638 = human gastric

carcinoma; SKOV-3 = human ovarian adenocarcinoma; Meso-1 = malignant pleural mesothelioma; Jurkat = immortalized

human T lymphocyte; PANC-1 = PSN-1 = human pancreas adenocarcinoma;  KYSE30 = KYSE180 = EC109 = human



oesophageal squamous cell carcinoma; U251 = U87 = SHG-44 = C6 = SF-268 = human glioblastoma cell line; HeLa =

SiHa = human cervix adenocarcinoma; K562 = HL-60 = NB4 = human leukaemia cell line;  293T = human embryonic

kidney cells; L929 = mouse fibroblasts cell; CEM-TART = human T-cell leukaemia
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