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Spermatogenesis is a highly coordinated process that begins with division of spermatogonia, followed by meiosis

to produce haploid spermatids, and finally the differentiation of haploid spermatids into mature spermatozoa.

Several stages of male germ cell development are regulated by epigenetic mechanisms that are important for

correct gamete development and functions.  The use of  Cannabis sativa has been demonstrated to induce

spermatogenesis dysfunctions. Cannabis sativa (Marijuana) exerts its effect by binding to and activating 

cannabinoid receptors CB  and CB . In males, both the receptors CB1 and CB2, are involved in male germ cell

development.  Here we will discuss on the importance of cannabinoid receptors signaling in the regulation of

several stages of male germ cell development and their role in mediating epigenetic modifications that may be

transmitted to the next generation by sperm.

spermatogenesis  cannabinoids  epigenetics  sperm  intergenerational effect

cannabinoid receptor

1. Introduction

Cannabinoid receptors are members of the superfamily of seven-transmembrane-spanning receptors and are

coupled with G proteins. Both cannabinoid receptors, CB  and CB , are implicated in male reproductive biology 

. However, they seem to have specific expression in germ cells at different stages of differentiation and distinct

roles in regulating fertility. 

2. Cannabinoid Receptor CB

CB  is prominently expressed in the central nervous system (CNS) and has attracted great attention as a

modulator of different brain functions. It is most abundant in the hippocampus, basal ganglia, cerebellum, and

prefrontal cortex and is involved in a variety of physiological functions including appetite, fear, anxiety and pain

 . However, it has also been detected in peripheral tissues including the reproductive system. CB  is encoded by

the gene CNR1 and consists of 472 amino acids in humans, 473 amino acids in rats and mice, with 97–99% amino

acid sequence identity among these species. In addition to the canonical long form, the presence of splice isoforms

both in humans and mice  , coming from 5′-UTR introns of the gene, have been described. These three isoforms

are differentially expressed in the human brain, skeletal muscle, liver, and pancreatic islet    and via different

signaling properties, contribute to the CB  receptor physiology.
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In the testis, CB  is expressed by somatic and germ cells of mammalian and non-mammalian vertebrates and its

activity is correlated to the Leydig cell differentiation, steroidogenesis, spermiogenesis, sperm maturation, and

quality. In both rat and mouse, a key role for CB  has been demonstrated in Leydig cell development, and its

expression in these cells positively correlates with differentiation events and negatively with respect to their

proliferation .

In mouse germ cells, CB  mRNAs expression is detectable in fetal gonocytes starting from E11.5 and their

expression level remains low and constant during embryo development and after birth . A higher level of CB

starts to be expressed during spermatogenesis in haploid cells and became more evident in sperm, indicating a

role of this receptor in the final steps of germ cell differentiation such as spermiogenesis and acquisition of

functional properties. It has been demonstrated that Cb1−/− male mice show inefficient histone displacement and

produce spermatozoa with uncondensed chromatin and damaged DNA    indicating that CB  is involved in

spermiogenesis and, in particular, plays a role in chromatin remodeling by regulating histone displacement and

Tnp2 expression levels.

Mouse sperm express an even higher level of CB  and its activation causes adverse effects on sperm function

including inhibition of motility, capacitation, and acrosome reaction . On the other hand, in the absence of CB

signaling, sperm acquire motility precociously and the percentage of motile spermatozoa recovered from the caput

of the epididymis is higher with respect to wild-type mice, suggesting a physiological role of this receptor in

controlling sperm motility in the epididymis  [48]. Physiologically, a gradient of the endocannabinoid 2-AG in the

epididymis prevents activation of sperm motility in caput, through activation of CB . Similarly, in humans, CB  is

expressed by sperm and its activation inhibits motility by decreasing mitochondrial activity , while CB  inhibition

through the use of rimonabant, a CB  antagonist, is able to increase sperm motility and viability and to induce

acrosome reaction and capacitation .

In human sperm, CB  receptor is localized in the plasma membranes of the head and middle piece and has been

also identified intracellularly on the mitochondria membrane (mtCB ) . Although the expression of functional

intracellular CB  in mitochondria has been demonstrated in other tissues such as brain  and skeletal muscles ,

where it can regulate cellular respiration and other bioenergetic processes , the role of mtCB  in sperm is not

entirely clarified. The fact that mitochondria are the principal suppliers of sperm energy and that cannabinoids are

potent inhibitors of sperm mitochondrial O2 consumption  suggests that mtCB  could mediate adverse effects of

cannabinoid drugs on mitochondrial functionality and thereforeexplain the negative effects on sperm motility.

In human sperm cells, CB  has been found co-localized with the vanilloid receptor TRPV1, known as the heat-

sensing receptor  . TRPV1 is activated by temperatures higher than 42 °C   and has been suggested to be a

mediator of sperm thermotaxis in humans  and to play a role in the stabilization of the plasma membranes in

capacitated sperm  . Mammalian spermatozoa, immediately after ejaculation, are unable to fertilize the oocytes

and acquire this competence during the transit within the female genital tract. Sperm cells undergo a series of

morpho-functional modifications, known as “capacitation”    that allow them to become able to recognize the

oocyte and to extrude the content of acrosomal vesicle (acrosome reaction, AR), thus penetrating the zona
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pellucida (ZP) and reaching the oocyte membrane. It has been proposed that both the receptors CB  and

TRPV1   could participate in the modulation of spermatozoa maturation allowing sperm to acquire fertilizing

ability  [82,83]. Specifically, CB  could be implicated in the Gi protein/cAMP/PKA pathway in the early stages

of post ejaculation, promoting the maintenance of membrane stability and avoiding premature acrosome reaction.

TRPV1, on the contrary, could be activated in the latest stages of capacitation determining the rapid increase in

intracellular calcium concentration needed for acrosome reaction. The observation that TRPV1 expression, at

mRNA and protein level, is not limited to human sperm cells but has been detected also in murine germ cells from

spermatocyte to spermatozoa and in Sertoli cells  suggests its potential protective role against heat stress and

in conferring heat resistance to male germ cells .    

3. Cannabinoid receptor CB

CB  is referred to as the peripheral cannabinoid receptor since it is predominantly expressed in the immune system

 where it participates in the regulation of immune responses and in mediating the anti-inflammatory effects of C.

sativa  . However, CB  shows a moderate expression in other peripheral tissues, including the cardiovascular

system, gastrointestinal tract, liver, adipose tissue, bone, and reproductive system. More recently a functional CB ,

expressed in neurons of the hippocampus, has been identified . CB  is encoded by the gene CNR2 and consists

of 360 amino acids in humans. Two isoforms of the CB  have been identified in humans: hCB A and hCB B.

Strikingly, these two isoforms show a tissue-specific expression: hCB A is mainly expressed in the testis, more

than 100-fold than in spleen and leukocytes, whereas the other hCB B is expressed predominantly in spleen and

at lower level in other peripheral tissues except the testis  . The expression of the testis-specific isoform might

indicate that hCB A could regulate functions related to spermatogenesis and fertilization. However, detailed

information on the expression and role of hCB A in human testis to date are unknown. Agirregoitia et al. reported

the expression of CB  in human sperm and suggested that, along with CB , it could be also involved in sperm

motility regulation . However, various evidence indicates that CB  is expressed at a higher level in germ cells at

early stage of differentiation in mice, rats, and humans . It is already expressed by gonocytes in fetal

mouse testis starting from E11.5 and its expression increases during embryo development reaching a very high

level in spermatogonia at birth . In postnatal mouse testis, CB  continues to be expressed by spermatogonia and

its expression dramatically decreases in spermatocytes, reaching a very low level in spermatids and disappearing

in mouse spermatozoa . Interestingly, spermatogonia possess also the higher level of the endocannabinoid 2-

AG, which decreases in spermatocytes (~2-fold) and in spermatids (~20-fold; see Figure 1). Accordingly,

spermatogonia express higher and lower levels of 2-AG biosynthetic and degrading enzymes, respectively, as

compared to meiotic and postmeiotic cells. Altogether these observations indicate the involvement of an

autocrine/paracrine endocannabinoid signaling mediated by CB  receptor and sustained by 2-AG, which may

regulate several functions in mitotic male germ cells. In this context, it has been demonstrated that activation of

CB , through the use of the selective agonist JWH-133, promoted in vitro meiotic entry of mouse spermatogonia

 while it did not affect mitotic germ cell proliferation (P.G., unpublished observation). Morphological and

molecular evidence supported these conclusions, since CB  activation in spermatogonia increased: (a) the number

of SYCP3 positive cells, corresponding to early meiotic prophase stages, (b) the expression of early meiotic genes,
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and (c) the expression of the meiosis-specific histone H3K4me3 methyltransferase Prdm9. PRDM9 trimethylates

specific H3K4 sites, at meiotic entry, specifying the recombination hotspots, essential for progression through

prophase I . Accordingly CB  activation in spermatogonia increases the global level H3K4me3 and induced

histone modifications at promoter regions of meiotic and premeiotic genes c-Kit and Stra8, compatible with their

transcriptional activation. All these events occur physiologically during spermatogenesis when B-type

spermatogonia enter meiosis and reach the leptotene stage of prophase I, suggesting that CB  could play a

physiological pro–meiotic role in spermatogenesis, controlling the timely coordinated progression of

spermatogenesis. Notably, chronic administration of JWH-133 to immature male mice induces an acceleration of

the onset of spermatogenesis, whereas the specific CB  antagonist delays germ cell differentiation, thus

demonstrating that both hyper- and hypo-stimulation of CB  disrupted the temporal dynamics of the spermatogenic

cycles . These findings highlight the importance of proper CB  signaling in the testis for the maintenance of a

correct temporal progression of spermatogenesis. Disruption of the temporal dynamics of the spermatogenic cycle

has important clinical implications because it frequently leads to reduced fertility or infertility due to increased germ

cell apoptosis  . Regarding CB , very recently, we have demonstrated that the hyperactivation of this cannabinoid

receptor in male mice, besides promoting germ cell differentiation, reduced sperm number recovered by cauda

epididymis . This apparent discrepancy could be explained by a loss of the accelerated germ cells caused by

apoptosis. Accordingly, a similar effect has been demonstrated in fetal oocyte at meiotic entry. In females,

activation of CB  signaling in fetal oocytes exerts a pro-meiotic effect in vitro and causes, in vivo, an increase in

apoptotic cell death that leads to reduced ovarian reserve at birth .

4. Role of Cannabinoid Receptors in Epigenetic
Modifications during Male Germ Cell Development

Recent evidence in humans and animal models reported that activation of cannabinoid receptors, through the

exposure to cannabinoids, is associated with epigenetic modifications . Indeed, in vitro and in vivo experiments

have reported that cannabinoid treatment induces alterations in DNA methylation and histone modifications in

several cell types. In human keratinocytes, it has been demonstrated that cannabinoids regulate the expression of

skin differentiation genes through DNA methylation  , while Rotter et al. reported that CB  expression is

regulated by DNA methylation in peripheral blood cells in subjects with THC dependence  . Along the same line,

another study addressed THC-induced epigenetic changes in immune cells showing histone modifications in some

genes of lymph node cells in mice . Regarding the CNS, it is known that the brain is particularly vulnerable to

cannabinoid exposure, which can lead to adverse effects resulting in mental health disorders. In a study in which

the molecular basis for this brain vulnerability was investigated, the authors identified histone modifications in three

rat brain areas (hippocampus, nucleus accumbens, and amygdala), after adolescent and adult chronic THC

exposure  . Similarly, Tomasiewicz et al. reported an increased Penk gene expression in response to rat

adolescent THC exposure associated to changes in histone methylation  .

The effect of cannabinoids on epigenetics has been also investigated during prenatal exposure in the developing

fetus, via maternal exposure during pregnancy. A study on the immune system in mice showed that in utero
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exposure to THC resulted in markedly defective T cell differentiation and impaired T cell function in offspring. This

immunosuppressive effect has been correlated to epigenetic mechanisms such as altered microRNA, DNA

methylation, and histone modification profiles  . In another study, maternal cannabis use has been reported to

alter the developmental regulation of mesolimbic dopamine D2 receptors in offspring through histone lysine

methylation . A summary of studies reporting associations between post-natal (A)/prenatal (B) exposure to

cannabinoids and epigenetic alterations is shown in Table 1.

Table 1. Epigenetic changes associated to cannabinoids exposure.

[50]

[51]

1.A. Epigenetic changes that occur within the lifespan due to direct cannabinoids exposure.

Drug Biological Target Epigenetic Marks Associated Effects Reference

THC
Peripheral blood cells

(human)

CB  and CB

promoter

methylation

Decreased CB1

expression in blood

cell

 

THC Immune cells (mouse)

Histone

modifications:

- H3K4me3

- H3K9me3;

- H3K27me3;

- H3K36me3;

- H3K9ac

Pleiotropic effect on

gene expression in

immune cells

 

THC - Hippocampus

- Nucleus accumbens

- Amygdala (rat)

Histone

modifications:

- H3K9me2,3

- H3K27me3

- H3K9ac

Vulnerability to

psychiatric disorders
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- H3K14ac

THC Adult brain (rat)

Histone

modifications

(H3K4me3;

H3K9me3)

Increased Penk gene

mRNA levels

THC
Mouse myeloid-derived

suppressor cells
miRNAs

Altered miRNA

involved in myeloid

expansion and

differentiation

 

THC Intestine (macaque) miRNAs

Induction of anti-

inflammatory

microRNA expression

WIN55,212-2
Adult mouse brain

(hippocampus)
DNA methylation

Decreased expression

of Rgs7; memory

impairment

1.B. Epigenetic changes that occur during fetal life due to direct in utero cannabinoids exposure.

Drug Biological Target
Epigenetic

Modification
Associated Effects Reference

THC
Adult nucleus

accumbens (rat)

Histone

modification

(H3K4me3;

H3K9me2)

Decreased Drd2 gene

expression level
 

THC
Human trophoblast cell

line (BeWo)

Increased HDAC3

expression

Gene dysregulation

during placental

development
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THC—Δ9-tetrahydrocannabinol ; WIN—WIN55,212-2 synthetic cannabinoid; CB—Cannabinoid receptor; H3K—

lysin of histone 3; HDAC—Histone deacetylase; Rgs7—Regulator of G-protein signaling 7 gene; Drd2—Dopamine

receptor D2 gene; Penk—Proenkephalin gene.

Differently from the somatic cell types, epigenetic modifications in the germline are especially important because

they can be transmitted to the progeny. Although compelling evidence is now showing that father exposure to

cannabis can induce heritable changes in the sperm epigenome, very few studies have up to now addressed this

point. In in vitro experiments on isolated mouse male germ cells, we reported alteration of H3K4me3 and H3K9me2

levels at the promoters of c-Kit, Stra8 and Gfra1 genes in mouse spermatogonia treated with the CB  agonist JWH-

133 , underlining the susceptibility of these cells to epigenetic modifications. A very interesting study of Murphy et

al. showed that cannabis use in humans, and THC exposure in rats, is associated with widespread changes in

sperm DNA methylation . From this study, they identified hypomethylation in autism candidate gene DLGAP2 in

the sperm of human and rat exposed to C. sativa. Moreover, they found the same hypomethylated state in this

gene in the nucleus accumbens of rats born from THC-exposed fathers , strongly supporting the potential for

intergenerational inheritance of altered sperm DNA methylation patterns. Some other studies are beginning to shed

light on cannabis/cannabinoid-induced epigenetic modifications paternally transmitted. Szutorisz et al. reported that

THC exposure of male and female adolescent rats resulted in behavioral and neurobiological abnormalities in the

subsequent F1 generation as a consequence of parental germline exposure to the drug  and, in a different

report, they showed that these defects were associated to altered gene expression in the nucleus accumbens due

to modified DNA methylation . Levin et al. reported that paternal THC exposure in rats induced DNA methylation

alterations in sperm and this correlated to impairment in attentional performance in the offspring  , while, another

study showed that male exposure to cannabinoids during adolescence induced stress vulnerability in the offspring

and this effect was associated to increased global DNA methylation in the offspring prefrontal cortex . All these

studies reveal that paternal exposure to cannabis and cannabinoids is associated with various behavioural and

neurobiological abnormalities in the offspring through epigenetic mechanisms transmitted by sperm cells. Very

recently, we investigated the effects of paternal selective activation of CB  on offspring. We found that chronic

exposure of prepubertal male mice to CB  agonist JWH-133 induced sperm DNA hypermethylation at paternally

expressed imprinted genes Plagl1 and Peg10, important for placental development and offspring growth. The

hypermethylation level in these imprinted genes correlated to decreased expression of Tet genes. Interestingly,

these specific alterations in sperm epigenome were inherited by the embryonic tissues and caused defects in

placental and embryonic growth . Overall, these studies clearly demonstrated that paternal cannabinoid

receptors overactivation can induce epigenetic alterations in male gametes that are then transmitted to the next

generation with an impact on offspring health as indicated in Figure 2. A summary of studies reporting associations

between parental exposure to cannabinoids before conception and epigenetic alterations transmitted to the

progeny is shown in Table 2. Altogether these evidence underline the susceptibility of male germ cells to epigenetic

modifications following drug exposure and highlight the critical role of sperm as key vector of inheritance.
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Figure 2. Paternal transmission of cannabinoid-induced epigenetic modifications. Cannabinoid exposure,

particularly that during young age, leads to epigenetic alterations in the germline of the father (red circle). The

epigenetic aberrations could appear in spermatogonial stem cells (SSC) or in spermatogonia (SPG) and could be

maintained during germ cell differentiation in meiotic cells (SPC), haploid cells (SPT) up to sperm. Epigenetic

alterations are then transmitted to F1 offspring by sperm with consequences on offspring health.

Table 2. Epigenetic changes that occur in parental germline before conception and transmitted to the F1

generation.

Drug Biological Target
Epigenetic

Modification
Associated Effects Reference

JWH-133
Spermatogonia

(mouse, in vitro)

Histone

modification

(H3K4me3;

H3K9me2)

Accelerated entry into meiosis

THC/Cannabis Sperm (rat/human) global DNA

methylation

Altered hippo signaling and

cancer pathways in sperm
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JWH—JWH-133 synthetic CB  agonist; DLGAP2—Disks large-associated protein 2 gene;Peg10-Paternally

expressed gene 10; Plagl1—PLAG1 Like Zinc Finger 1.
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