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Deep Reinforcement Learning (DRL) combines Reinforcement Learning and Deep Learning. It is more capable of learning

from raw sensors or images as input, enabling end-to-end learning, which opens up more applications in robotics, video

games, NLP, computer vision, healthcare, and more. A milestone in value-based DRL is employing Deep Q-Networks

(DQN) to play Atari games by Google DeepMindin 2013.
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1. Introduction

Where V(st) is the estimated state value, initialized using a certain strategy; α is a rate that influences the convergence; Gt

is the return from the time that the actor first visited the state-action pair (or sum of returns from each time it visited the

pair), can be calculated as below:(12)Gt=rt+1+γrt+2+…+γT−1rT

Q-learning:(14)Q(s,a)←Q(s,a)+α[r+γmaxαQ(s′,a′)−Q(s,a)](s←s′)

SARSA:(15)Q(s,a)←Q(s,a)+α[r+γQ(s′,a′)−Q(s,a)](s←s′,a←a′)

A table of representative DRL techniques is shown inTable 1.

Table 1. Representative DRL Techniques.

  DRL Algorithms Main Techniques

Value-
based

DQN Experience Replay, Target Network, Clipping Rewards, Clipping Rewards, and
Skipping Frames

  Double DQN Double Q-learning

  Dueling DQN Dueling Neural Network architecture

  Prioritized DQN Prioritized experience replay

  Bootstrapped DQN Deep exploration with DNNs

  Distributional DQN Distributional Bellman equation

  Noisy DQN Parametric noise added to weights

  Rainbow DQN Combine 6 extensions to the DQN

  Hierarchical DQN Hierarchical value functions

  Gorila Asynchronous training for multi agents

Policy-
based

TRPO KL divergence constraint

  PPO Specialized clipping in the objective function

Actor-Critic Deep DPG DNN and DPG

  TD3 Twin Delayed DDPG

  PGQ Policy gradient and Q-learning

  Soft Actor Critic (SAC) Maximum entropy RL framework
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  DRL Algorithms Main Techniques

  A3C Asynchronous Gradient Descent

2. Applications

Deep Reinforcement Learning has been widely utilized in many domains, as shown in Table 2, which is summarized from

. This chapter will discuss the recent advances in applications in games, robotics, Natural Language Processing (NLP),

transportation, industrial applications, communication and networking, and more topics. Usually, different techniques may

be employed in an application besides DRL, e.g., AlphaGo is trained using supervised learning and reinforcement

learning. In this report, POMDP problems are taken into more consideration, but in reality, it is hard to define an

application as a firm POMDP problem or not. We focus applications generally based on Deep Reinforcement Learning,

not only on POMDP problems.

Table 2. Various DRL Applications, summarized from .

Domains Applications

Healthcare DTRs, HER/EMR, diagnosis

Education Educational games, recommendation, proficiency estimation

Transportation Traffic control

Energy Decision control

Finance Trading, risk management

Science, Engineering, Art Math, Physics, music, animation

Business management Recommendation, customer management

Computer systems Resources management, security

Games Board games, card games, video games

Robotics Sim-to-real, control

Computer vision Recognition, detection, perception

NLP Sequence generation, translation, dialogue

2.1. Games

Researchers have continuously been studying RL algorithms with games as testbeds since long ago. This section

discusses this research in board games, card games, and video games. This section refers to Li’s overview .

2.1.1. Board Games

In the board games like Go, chess, checkers, and Backgammon, players have perfect information about each other, and

the environment is deterministic (not MDPs). The AI research in two-person games can trace back to the 1950s, Claude

Shannon and Alan Turing proposed computer programs that could challenge humans.

RL in Board Games

There have been significant steps in AI playing games towards the DRL direction. In 1994, TD-Gammon  was a Neural

Network to estimate evaluation function with TD learning for Backgammon. Buro  also wrote papers proposing methods

of playing Othello programs in the 1990s, for further references, see: https://skatgame.net/mburo/publications.html,

accessed on 11 January 2021. Schaeffer et al.  developed Chinook, playing checkers, between 1989 and 2007.

Ginsberg  is the inventor of GIB for playing the computer bridge. For the Hex games, Huang employed MCTS in

MoHex , and Gao et al.  trained the neural networks by canonical maximum likelihood to enhance MoHex 2.0.

Mannen’s thesis  implemented experiments in the training of neural networks as evaluation functions for a chess

program. Block et al.  used reinforcement learning in chess engines, extending KinghtCap’s  learning algorithm with

a larger database. Later, Lai  presented Giraffe, using Deep Reinforcement Learning with automatic feature extraction

in chess, outperformed other chess engines during the time.
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AlphaGo

In 2016, AlphaGo  became the first computer Go program that won the professional Go player Lee Sedol. This is the

historical moment that AI proves to be able to surpass human learning in board games. AlphaGo was trained by a

combination of supervised learning and reinforcement learning of self-play. The networks also combined Monte Carlo

simulation with value and policy networks. Later, Silver et al.  introduced ALphaGo Zero, based solely on RL without

human data or guidance beyond game rules. A neural network is trained to predict AlphaGo or other winner’s action

selections. This resulted in higher quality and more robust self-play features. Later, Silver et al.  also came up with a

general algorithm called AlphaZero. It realized superhuman performance in many other games and defeated champion

programs in chess, shogi, and Go. Furthermore, Kimura et al.  applied AlphaZero to POMDP maze problems, and it

turned out effective.

AlphaGo is a turning point in the application of Deep Reinforcement Learning. It has made tremendous progress in recent

years.

2.1.2. Card Games

Card games, like many variants of Poker, UNO, and mahjong, have incomplete information. The agents and the

environment are stochastic and uncertain. These games are usually POMDP problems.

Texas Hold’em Poker

One of the classic poker games is Texas Hold’em Poker. Davidson , Davidson et al. , Felixa and Reis , and

Bayes’ Bluff presented by Southey et al.  used Neural Networks to model opponents in Texas Hold’em Poker, thus the

network was able to predict the next actions of players correctly.

Zinkevich et al.  presented Counterfactual Regret Minimization(CFR). CFR is to compute an approximate Nash

equilibrium for the abstract game by iteratively traversing the game tree. Based on the CFR technique, Bowling et al. 

weakly solved Heads-up Limit Hold’em Poker. Furthermore, Deep CFR was discussed by Brown et al. .

DeepStack computer program presented by Moravčík et al. , uses deep neural networks as the value function for its

depth-limited look-ahead, defeated professional poker players for the first time, in heads-up no-limit Texas Hold’em. More

information about DeepStack can be found at https://www.deepstack.ai/, accessed on 11 January 2021.

Prior breakthroughs have been limited to settings with two players. Brown and Sandholm  proposed Pluribus, a

superhuman AI capable of defeating elite human professionals in six-player no-limit Texas hold’em poker, with self-play

through improved Monte Carlo CFR.

Hearts and Wizard

Hearts is a multi-player non-cooperative finite-state zero-sum imperfect-information game that can formulate a POMDP

. Fujita and Ishii  developed model-based RL for large-scale multi-player games with partial observability and applied

it to Hearts, using Markov Chain Monte Carlo (MCMC) technique. Sturtevant and White  developed a player for the

game of hearts of 4 players, based on stochastic linear regression and TD learning.

In 2017, Wagenaar’s thesis  used a multi-layer perceptron (MLP) and Monte Carlo learning to play Game Hearts and

realized DRL. However, more work is required to realize mature performance in the Hearts game.

Similar to Hearts, Wizard is also a multi-player imperfect-information poker game. RL has turned out effective for these

POMDP games. Backhus et al.  applied RL in the Wizard game, separately dealing with forecasting and trick playing.

RLCard

In recent years, the full-width extensive-form fictitious play (XFP) was introduced by Heinrich and Heinrich and Lanctot ,

Neural Fictitious Self-Play (NFSP) was presented by Heinrich and Heinrich and Silver , and Unified Game-Theoretic

Approach was proposed by Lanctot et al. . We can see that RL strategies can perform well in betting games. These

results give the inspiration for researchers to explore DRL in more card games.

Zha et al.  presented RLCard, an open-source toolkit for reinforcement learning research in card games. It provides

various card game environments, including Blackjack, Leduc Hold’em, Texas Hold’em, UNO, Dou Dizhu, and Mahjong,

with easy-to-use interfaces (see Figure 1).
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Figure 1. RLCard: It supports various styles of card games and board games .

2.1.3. Video Games

Video games are valuable resources with video frames as inputs to RL/AI agents, in which computer games are the most

popular testbeds for DRL algorithms. Similar to the MDP process as shown in Figure 1, DRL for video games employ

CNNs to extract features from the video frames (environment) to be recognized by the agents. Recently, DRL has been

applied in Sega, Nintendo, Xbox, etc. Shao et al.  made a comprehensive survey of DRL in video games. Based on

this, Figure 2 presents popular video-game platforms for RL research. In this section, we particularly dig into details about

games with POMDP characteristics.

Figure 2. Popular video-game platforms for Reinforcement Learning research, summarized from .

Atari

A traditional platform, the Arcade Learning Environment (ALE) , provides an interface to lots of games in Atari 2600 and

is a pioneer evaluation platform in RL research. As described in Chapter One, many value-based methods are tested in

Atari 2600 and the un-mentioned techniques, such as DRQN  and ADRQN . Aytar et al.  presented an exciting

method of playing Atari exploration games by watching Youtube. They map unaligned videos from several sources to a

common representation, then embed a single YouTube video in this representation to construct a reward function. Hence,

the agent learns to imitate human gameplay. This method exceeds human-level performance on MONTEZUMA’S

REVENGE, PITFALL! and PRIVATE EYE, with no environment rewards in games.

ViZDoom

Doom is a classical first-person shooter (FPS) game with a 3D environment, where agents observe perspective 2D

projections from their positions as pixel matrices. The partial observability of game states is the main challenge. ViZDoom

 is a Doom-based platform that offers API.

Lample and Chaplot  used a divide and conquered method in Doom to divide the action space. They trained an action

agent and a navigation agent. Different agents will act  based on the detection of an enemy. Akimov and Makarov 

proposed Categorical 51 with Multi-step (C51M) architecture, outperformed baseline methods in ViZDoom environment.

In the survey , they mentioned the following important techniques that evaluated in ViZDoom: Wu and Tian 

proposed a framework combining A3C with curriculum learning ; Parisotto and Salakhutdinov  developed Neural

Map, a memory system with an adaptable write operator, using a spatially structured 2D memory image to store arbitrary

environment information; Shao et al.  also introduced ACKTR, which teaches agents to battle in the ViZDoom

environment.
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The Open Racing Car Simulator (TORCS) is a racing game with acceleration, braking, and steering as actions. It has

been used as testbeds for visual-input games. It is also an essential platform for testing autonomous driving methods with

its realistic feature.

In 2014, Koutník et al.  had Max-Pooling Convolutional Neural Network (MPCNN) compressor and recurrent neural

network (RNN) controllers evolved successfully to control a car in TORCS based on visual input; DDPG , as

mentioned, was assessed in TORCS; Wang et al.  adopted DDPG and selected sensor information from TORCS as

inputs, evaluated on different modes in TORCS; Sallab et al.  formulated two categories of algorithms for lane-keeping

assist: DQN for discrete actions and Deep Deterministic Actor-Critic Algorithm (DDAC) for continuous actions;

Furthermore, Liu et al.  proposed DDPG method with expert demonstrations and supervised loss, simulated in TORCS,

which improves efficiency and stability significantly; Verma et al.  presented Programmatically Interpretable

Reinforcement Learning (PIRL), to generate interpretable agent policies and a new method called Neurally Directed

Program Search (NDPS), to find a programmatic policy with maximal reward;

In addition to the works shown above, some techniques discussed by Shao et al. : Sharma et al.  proposed Fine-

Grained Action Repetition (FiGAR) to improve DDPG; Gao et al.  used TORCS to evaluate Normalized Actor-Critic

(NAC); Mazumder et al.  developed a property called state-action permissibility (SAP), with which the agent learns to

solve the lane-keeping problem in TORCS, with faster training process; Li et al.  break the vision-based lateral control

system down into a perception module and a control module; Zhu and Zhao  uses DRL to train a CNN to perceive data.

Minecraft

Minecraft is a well-known sandbox video game where players can explore a blocky, procedurally-generated 3D world and

build structures and earthworks with freedom in different game modes. It supports scenarios from navigation and survival

to collaboration and problem-solving tasks, making it a rich environment to carry out RL.

Project Malmo  is an AI experimentation platform on top of Minecraft, created by Microsoft. Marlo, based on Malmo,

provides a higher-level API and a more standardized RL-friendly environment for RL study. In 2019, Guss et al. 

presented a comprehensive, large-scale, simulator-paired dataset of human demonstrations: MineRL, which provides an

RL environment and competitions.

Some RL tasks created in Minecraft were effectively achieved. Liu et al.  constructed tasks with shared characteristics

in Minecraft for multi-task DQN (MDQN), which turned out effective. Oh et al.  also designed tasks to evaluate DRL

architectures: Memory Q-Network (MQN), Recurrent Memory Q-Network (RMQN), and Feedback Recurrent Memory Q-

Network (FRMQN). Frazier  conducted experiments with two RL algorithms: Feedback Arbitration and Newtonian

Action Advice, enabling human teachers to give action advice. Furthermore, HogRider  is the champion agent of MCAC

in 2017, using a Q-learning approach with state-action abstraction and warm start; Tessler et al.  proposed a lifelong

learning system that is able to transfer knowledge from one task to another, incorporated with Hierarchical-DRLN with a

deep skill array and skill distillation; Jin et al.  utilized counterfactual regret minimization to update an approximation to

an advantage-like function iteratively.

DeepMind Lab

DeepMind Lab  is a 3D customizable first-person game platform for agent-based AI research, a modified version of

Quake III Arena. It is usually used to study how RL agents deal with complex tasks in large, partially observed, and

visually diverse worlds.

Many researchers have created RL tasks in DeepMind Lab and tested algorithms. Johnston  introduced an

unsupervised auxiliary task—“surprise pursuit”. It quantifies the surprise” the agent encounters when exploring the

environment and trains a policy to maximize this “surprise”.

There also are researchers who used DM-Lab to propose new architectures. As mentioned by , Mankowitz et al. 

proposed Unicorn, which demonstrates robust continual learning; Schmitt et al.  had a teacher agent to kickstart the

training of a new student agent. The method mentioned by Jaderberg et al.  trains plenty of agents concurrently from

lots of parallel matches, where agents play cooperatively in teams, competing in randomly generated environments.

Later on, DeepMind also invented Psychlab , a psychophysics testing room embedded inside the world of DM-Lab.

This framework allows DRL agents to be directly compared with humans, lifted from cognitive psychology and visual

psychophysics.
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Real-Time Strategy Games

Real-time strategy games (RTS) allow players to play the game in “real-time” simultaneously rather than to take turns to

play. RTS like StarCraft, Dota, and LOL are popular platforms in AI research. The real-time games usually consist of

thousands of time steps and hundreds of actions selected in real-time through the gameplay. StarCraft is a game in which

players balance high-level economic decisions in the control of tons of units. In each time step, the agent receives

imperfect information from observations. In 2019, DeepMind proposed AlphaStar , which defeats professional players

for the first time. Table 3 presents the techniques carried out in StarCraft.

MOBA (Multiplayer Online Battle Arena) games have two teams, and each team consists of five players. OpenAI Five 

used Dota2 as the research platform and achieved expert-level performance, and is the first AI system that could defeat

the world champions in an esports game.

Table 3. Techniques used in StarCraft, summarized based on .

StarCraft Algorithms Main Techniques

GMEZO Micromanagement; greedy MDP; episodic zero-order exploration

BiCNet Multiagent bidirectionally coordinated network

Stabilising Experience Replay Importance sampling; fingerprints

PS-MAGDS Parameter sharing multi-agent gradient descent SARSA(

)

MS-MARL Master-slave architecture; multi-agent

QMIX Decentralised policies in a centralised end-to-end training

NNFQ CNNFQ Neural network fitted Q-Learning

SC2LE FullyConv-A2C; baseline results

Relational DRL Self-attention to iteratively reason about the relations

TStarBots Flat action structure; hierarchical action structure

Modular architecture Splits responsibilities between multiple modules

Two-level hierarchical RL Macro-actions; a two-layer hierarchical architecture

2.2. Robotics

Robotics is widely used in science, industries, healthcare, education, entertainment, and many more domains. Robotics

has many challenging problems involved, including perceptron, control system, operation system, etc. The development

of Deep Reinforcement Learning paves the way in robotics. Many applications mentioned in the gaming section, including

AlphaGo, are also involved in Robotics. While in this section, we focus on manipulation and locomotion.

For more surveys in Robotics, see  in 2009, a study of robot learning from demonstration (LfD), with which a policy is

learned from demonstrations, provided by a teacher; Deisenroth  made a survey on policy search for robotics in 2013;

In 2014, Kober and Peters  provided a general survey on RL in robotics; Tai et al.  presented a comprehensive

survey for learning control in robotics from reinforce to imitation in 2018.

A 3D physics simulator MuJoCo physics engine , which stands for Multi-Joint dynamics with Contact, was developed

by OpenAI for continuous control. Mainly based on which series algorithms are evaluated.

2.2.1. Manipulation

Dexterous manipulation is one of the most challenging control problems in robotics due to the barriers of high

dimensionality, intermittent contact dynamics, and under-actuation in dynamic object manipulation; Dexterous

manipulation can be widely used in different domains. These make it a hot topic in Robotics. Nguyen and La  provided

a review of DRL for Robot Manipulation with the challenges, the existing problems, and future research directions.
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For reinforcement learning, researchers made significant progress, making DRL in manipulation tasks accessible in recent

years. For example, in 2008, Peters and Schaal  evaluated policy gradient methods on parameterized motor

primitives, and Episodic Natural Actor-Critic  outperforms the others; In 2010, Theodorou et al.  presented Policy

Improvement with Path Integrals (PI2); In 2010, Peters et al.  suggested Relative Entropy Policy Search (REPS)

method; In 2011, Kalakrishnan et al.  used PI2 with force control policies. Nair et al.  demonstrated overcoming the

exploration problem and solved the block stacking task using RL.

Multi-Fingered Hands

Dexterous multi-fingered hands can perform a wide range of manipulation skills. They are essential in research while it

requires high dimensional observation and ample action space. Kumar et al.  demonstrated online planning based on

an ADROIT platform, and Kumar et al.  described a model-based method combining optimizing Linear–Gaussian

controllers models with KL-constrained optimization. It was applied on a pneumatically-actuated tendon-driven 24-DoF

hand, which learned hand manipulation involving clockwise rotation of the object.

Rajeswaran et al.  then demonstrated that model-free DRL could scale up to complex manipulation tasks. It does not

require a model of the dynamics and can optimize the policy directly. They used a combination of RL and imitation

learning Demo Augmented Policy Gradient (DAPG), achieved in object relocation, in-hand manipulation, door opening,

and tool use tasks.

However, in the real world, the interaction time with the environment is limited, the model-free methods perform poorly in

such cases. Haarnoja et al.  studied how maximum entropy policies were trained using soft Q-learning. Policies

learned using soft Q-learning can be composed to create new policies, the optimality of which can be enclosed knowing

the divergence between the composing policies. By composing existing skills can efficiently improve the training process.

This method is sample efficient than prior model-free DRL methods and can be performed for simulated and real-world

tasks.

Zhu et al.  surveyed multi-fingered manipulation and used model-free DRL algorithms with low-cost hardware,

succeeded in learning complex contact-rich behaviors.

Considering interacting with fragile objects, Huang et al.  realized gentle object manipulation, minimizing impact

forces, with dynamics-based surprise and penalty-based surprise.

Grasping

Levine et al.  trained using guided policy search (GPS), which can perform policy search by supervised learning,

where supervision is granted by a simple trajectory-centric RL method. It was evaluated in various tasks, like learning to

insert, screw, fit, and place the objects. DRL has also been applied to learn grasping objects , Popov et al. 

introduced two extensions to the Deep Deterministic Policy Gradient (DDPG) algorithm to improve data efficiency with

linear speedup for 16 parallel workers. The method succeeded in grasping objects and precisely stacking them on another

in simulation. Kalashnikov et al.  introduced QT-Opt, a scalable self-supervised RL framework, enables closed-loop

vision-based control. They achieved real-world grasping tasks with a high success rate based only on RGB vision

perceptron.

Opening a Door

Gu et al.  presented Asynchronous NAF with practical extensions. The experiment shows success in several 3D

manipulation skills in simulation and a door opening skill on real robots.

Cloth Manipulation

Regarding cloth manipulation, the state of the cloth can vary, unlike rigid objects. Tsurumine et al.  proposed Deep P-

Network (DPN) and Dueling Deep P-Network (DDPN) to combine smooth policy update with feature extraction, evaluated

in flipping a handkerchief and folding a t-shirt by a dual-arm robot. Jangir et al.  investigated the effectiveness of

different textile state representations and the importance of speed and trajectory, solved dynamic cloth manipulation tasks

by restricting the manipulator workspace.

Magnetic Manipulation

Magnets can be utilized in magnetic resonance imaging (MRI) applications, lifting machinery, levitation devices, jewelry,

bearings, audio equipment, and hard disc drives. de Bruin et al.  deployed two experience replay databases in the

method, one filled with experiences in the First In First Out (FIFO) manner. The experiences are overwritten with new
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experiences in the other. This method limits the detrimental effects of exploration, tested on a simulated horizontal

magnetic manipulation task.

2.2.2. Locomotion

Over the recent years, many RL methods have been proposed to control locomotion, locomotion examples are shown in

Figure 3. On humanoid platforms such as Nao, Pepper, Asimo, and Robotis-op2 include the cameras , many

algorithms were evaluated. The main goal for robot locomotion is to imitate human motions dynamically. Several main

techniques such as DeepDPG , A3C , TRPO , etc., that were previously covered, were tested in robotics

locomotion and turned out effective. They are the key to the vast development of DRL algorithms in locomotion .

Figure 3. Locomotion examples.

In Robotics, many tasks are complex and poorly specified. Christiano et al.  had humans compare possible

trajectories, used the data to learn a reward function, and optimized the learned reward function with RL and scaled up

this method to DRL. In particular, the robotics tasks including walker, hopper, swimmer, etc., were implemented in MujoCo

and OpenAI Gym .

DeepLoco  adopted a two-level hierarchical control framework. First, low-level controllers (LLC) learn to operate at a

timescale and achieve robust walking gaits. Second, high-level controllers (HLC) learn the policy at the timescale of steps

by invoking desired step targets for the low-level controller. Both levels of the hierarchy use an identical style of the actor-

critic algorithm.

To develop sound strategies for integrating or merging policies for multiple skills, Berseth et al.  proposed Progressive

Learning and Integration via Distillation (PLAiD). Distillation refers to the combination of the policies of one or more

experts, thus creating one controller to perform the tasks of a set of experts. The main blocks are policy transfer and multi-

task policy distillation, evaluated on five different terrains with a 2D PD-biped. Compared with MultiTasker, PLAiD scales

better.

Generally, model-free methods can learn a wide range of robotic skills but require a large number of samples to achieve

good performance. Model-based algorithms can provide more efficient learning but are challenging to scale up to high-

capacity models. Md-Mf  uses deep neural network dynamics models to initialize a model-free learner, then uses the

policy trained by a model-based controller as the initial policy for a TRPO (model-free) algorithm. Testing locomotion skills

on a simulated quadrupedal robot, this method surpasses the individual model-free and model-based approach.

Duan et al.  studied Truncated Natural Policy Gradient (TNPG) and compared it with TRPO and DDPG. They also

provided a benchmark of continuous control problems for RL.

Following are some examples of different locomotion skills.

Walking/Running

Xie et al.  demonstrated DRL on a bipedal robot Cassie, developed by Agility Robotics. The framework used PPO and

PD control on a simulated model of Cassie in the MuJoCo  simulation and is robust to disturbances.

Designing agile locomotion for robots usually requires human expertise and manual tuning. Tan et al.  presented a

system to learn quadruped locomotion from scratch or allow users to guide the learning process. In addition, it narrows

the gap between simulation and the real world, successfully developed two gaits, trotting, and galloping.
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Haarnoja et al.  proposed an extension of the soft actor-critic (SAC) algorithm with dynamic temperature, based on

maximum entropy RL. It was applied to a real-world Minitaur robot without any model or simulation. This sample-efficient

and stable algorithm outperforms standard SAC, DDPG, TD3, and PPO.

Özalp et al.  evaluated Double Dueling Q Networks (D3QN)  and DQN  for locomotion using a Robotis-op2

humanoid robot.

Hopping

Peng et al.  introduced a mixture of actor-critic experts (MACE), constructed of multiple actor-critic pairs where each

specializes in particular aspects of the motion. It can work with high-dimensional state descriptions for terrain-adaptive

dynamic locomotion skills. With leaps or steps as output actions, the method was tested on seven classes of terrain and

gives excellent results.

Swimming

Heess et al.  surveyed a hierarchical motor control architecture that encourages the low-level controller to focus on

reactive motor control. The high-level controller directs behavior towards the task goal by transmitting a modulatory signal.

Evaluated on a swimming snake, a quadruped, and a humanoid, this method failed in end-to-end learning but turned out

effective in transferring tasks with sparse reward.

To learn stochastic energy-based policies for continuous states and actions, not only in tabular domains, Haarnoja et al.

 introduced Soft Q-learning, which expresses the optimal policy via a Boltzmann distribution. The simulated swimming

snake and quadrupedal robot results show that the method can effectively capture complex multi-modal behaviors and

learn general-purpose stochastic policies.

To narrow the gap between simulation and the real world and generalize from training to testing, Pinto et al. 

introduced robust adversarial reinforcement learning (RARL). The adversary learns to apply destabilizing forces on

specific points on the system, encouraging the protagonist to retain a strong control policy. This method improves training

stability, and is robust to training/testing conditions, and outperforms the baselines even without an adversary.

Verma et al.  studied that DRL can learn efficient collective swimming in unsteady and vortical flow fields.

Tensegrity

Tensegrity robots are composed of rigid rods connected by elastic cables, which display high tolerance to physical

damage. With their unique properties, tensegrity robots are appealing for planetary exploration rovers. The primary

locomotion of tensegrity robots is rolling.

Zhang et al.  applied an extension of mirror descent guided policy search (MDGPS) to periodic locomotion movements

on a SUPERball tensegrity robot. The learned locomotion policies performed well, are more effective, and can generalize

better than open-loop policies. Luo et al.  showed that MDGPS could efficiently learn even with limited sensory inputs.

2.2.3. Robotics Simulators

Robotics simulators are used to simulate and model the structures or actions of a physical robot without depending on the

real-world machine. The use of simulators to develop robots allows for programs to be written and debugged offline, and

the final versions can then be transferred to the real robot, thus saving cost and time. Table 4 presents the popular

robotics simulators nowadays.

Table 4. Robotics simulators, adapted from Wikipedia (2021) .

2.3. Natural Language Processing

Natural language processing (NLP) focuses on the communication between computers and humans—how to program

computers to understand, analyze, and process natural language, including generation, language grounding, information

extraction, dialogue, etc. Due to the unique features of NLP, DRL has been playing an important role. For more surveys,

see .

2.3.1. Neural Machine Translation

Neural Machine Translation (NMT) refers to using machine learning software to translate content into another language.

RL has been shown as an effective technique for NMT systems recently. Examples of machine translation providers are
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Google Translate, Yandex Translate, Watson Language Translator, etc. Wu et al.  provided a literature review on RL

for NMT, in which they compared several vital factors, including baseline reward and reward shaping, and studied how to

train better NMT systems. They also proposed training with source-side and (or) target-side monolingual data and

succeeded in the Chinese-English translation task.

He et al.  proposed dual-NMT for English-French dual translation. The English-to-French translation (primal) agent and

French-to-English translation (dual) agent can form a closed loop and generate feedback signals to train the models by

teaching each other through the RL process. This system works well on bilingual translation, especially by learning from

monolingual data.

In the traditional NMT setting, the translator has to wait until the user completes the sentence, then translates. Satija and

Pineau  presented an approach to interpret in real-time.

The open-source toolkit OpenNMT was described by Klein et al. , which prioritizes efficiency and modularity; Zhang et

al.  introduced THUMT that supports minimum risk training and semi-supervised training.

For generative adversarial net (GAN) in NMT, BR-CSGAN  leverages the BLEU reinforced GAN to improve the NMT,

and Wu et al.  introduced Adversarial-NMT with a CNN based adversary.

2.3.2. Dialogue

Dialogue systems generally have two categories—task-oriented dialog agents and chatbots. Task-oriented dialog agents

usually have short Q-and-A conversations to help complete specific tasks or provide information, while chatbots are

usually designed human-likely and used for entertainment .

Cuayáhuitl has done significant research on dialogue systems with RL . In 2017, he presented SimpleDS

, as shown in Figure 4. It’s a publicly available dialogue system trained with DQN, which extends the traditional

methods  and avoids manual feature engineering by directly selecting actions from raw text and user responses.

Figure 4. SimpleDS architecture .

Cuayáhuitl et al.  proposed a two-stage method—the first stage reduces the times of weight updates, and the second

uses limited mini-batches sampled from experience replay for accelerating the induction of single or multi-domain

dialogue policies. The training turns out five times faster than a baseline. Furthermore, Cuayáhuitl et al.  described an

ensemble-based approach applied to value-based DRL chatbots. Actions are derived from sentence clustering, the

training datasets are derived from dialogue clustering, and the reward function is derived from human–human dialogues

without manual annotations. The ensemble of DRL agents turns out more promising than a single DRL agent or

SEQ2SEQ model.

Most DRL systems perform poorly in exploring online in the environment or learn effectively from off-policy data. Jaques et

al.  leveraged models pre-trained on data with KL-control to penalize divergence. They used uncertainty estimates

with dropout to lower bound the target Q-values. Tested in the real world with humans, the Way Off-policy algorithm can
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effectively learn from different reward functions from human interaction data and outperforms prior methods in off-policy

batch RL.

Text Generation

Text generation is the basis of dialogue systems. Ranzato et al.  proposed mixed incremental cross-entropy reinforce

(MIXER) with a loss function combining REINFORCE  and cross-entropy. For sequence prediction, Bahdanau et al.

 proposed an actor-critic algorithm, inspired by Ranzato et al. . Yu et al.  introduced sequence generative

adversarial nets with policy gradient (SeqGAN). Li et al.  from Huawei Technologies proposed a new DL framework for

paraphrase generation, consisting of a generator and an evaluator. The generator is modeled as the SEQ2SEQ learning

model for paraphrase generation. As a deep matching model, the evaluator is trained via supervised learning or inverse

RL in different settings for paraphrase identification.

Sentence Simplification

Sentence simplification is also crucial in dialogue systems, which aims to make sentences easier to read and understand

for the agents. Zhang and Lapata  addressed this simplification issue with an encoder-decoder model with a DRL

framework, known as Deep Reinforcement Sentence Simplification (DRESS). Their work succeeded in simplicity,

grammaticality, and semantic fidelity to the input.

Coherent Dialogues

Some neural models of dialogue generation tend to be short-sighted, and modeling the future direction of dialogue is

crucial to generating coherent and exciting conversations. Li et al.  applied DRL with policy search and curriculum

learning on the SEQ2SEQ model , which can generate utterances that optimize future reward.

Goal-Oriented Dialogues

Dhingra et al.  proposed KB-InfoBot, an end-to-end dialogue agent to help people search Knowledge Bases (KBs).

They offered a differentiable probabilistic framework to compute the posterior distribution (a Soft-KB lookup) to avoid

symbolic queries used in previous works.

To evaluate persuasion strategies and negotiation dialogue, Keizer et al.  presented a comparative evaluation of

various negotiation strategies on the game “Settlers of Catan” online. It outperforms the original rule-based strategy and

human players.

Ilievski et al.  presented goal-oriented chatbot dialog management bootstrapping with transfer learning, which helps

users achieve a predefined goal. Due to the domain specificity, the available data is limited to obtain. The transfer learning

method is to boost the performances and mitigate the limitation. They describe that transfer learning improves

performance significantly with a low number of goals or whole target domain data.

For social robot navigation, Ciou et al.  presented composite reinforcement learning (CRL) framework, with which

agents learn social navigation with sensor input and reward update based on human feedback.

2.3.3. Visual Dialogue

Das et al.  introduced a goal-driven training for visual question answering (VQA) and dialogue agents. The experiment

contains two cooperative robots, with one giving descriptions and the other giving answers. The results show that it

outperforms supervised learning agents.

Thanks to the encoder-decoder architectures, End-to-end dialogue systems have developed rapidly. However, there are

some drawbacks in encoder-decoder models when engaging in task-oriented dialogue. Strub et al.  introduced the

DRL method to optimize vision-based task-oriented dialogues with REINFORCE algorithm. It resulted in significant

improvement over a supervised baseline model, which was capable of generating coherent dialogue.

Visual Captioning

Evaluation metrics are created to evaluate image captioning. Standard syntactic evaluation metrics, such as BLEU,

METEOR, and ROUGE, are usually not well correlated. SPICE and CIDEr are better correlated but are hard to optimize.

Liu et al.  used a policy gradient method to optimize a linear combination of SPICE and CIDEr (SPIDEr).

In reference to visual problems, image captioning is challenging due to the complexity of understanding the image content

and describing it in natural language. Xu et al.  introduced an attention-based model for image caption generation.
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Adaptive encoder-decoder attention model  with an LSTM extension as a visual sentinel decides whether to attend to

the image and where to generate information. Ren et al.  introduced a decision-making framework for image

captioning, which has a policy network and a value network. Both networks are learned using an actor-critic approach with

a visual-semantic embedding reward.

Wang et al.  proposed an Adversarial Reward Learning (AREL) framework for visual storytelling. The model learns a

reward function from human demonstrations, then optimizes policy search with the learned reward function.

Video captioning is to generate a description of the actions in the video automatically. Wang et al.  proposed a

hierarchical RL framework for video captioning. A high-level module learns to create sub-goals, and a low-level module

recognizes the actions to fulfill the sub-goal. The HRL model turns out a good performance on MSR-VTT and Charades

Captions datasets. For video captioning, Pasunuru and Bansal  presented a mixed-loss policy gradient approach that

allows for metric-based optimization, then improved with an entailment-corrected CIDEnt reward, successfully achieved

on MSR-VTT.

Visual Relationship and Attribute Detection

Apart from generating labels and captioning, understanding relationships among objects and their attributes in the scene

is challenging for computers. Liang et al.  proposed a deep Variation-structured Reinforcement Learning (VRL)

framework for visual relationship and attribute detection. A directed action graph is built to represent semantic correlations

between object categories, predicates, and attributes. Then based on the state information, a variation-structured

traversal over the chart is used to generate an action set for each step. Predictions are made using DRL and the extracted

phrases in the state vector. This method can significantly achieve better detection results on datasets involving

relationships and attributes.

3. Conclusions

In this paper, we have presented the fundamental concepts of Markov Decision Processes(MDP), Partially Observable

Markov Decision Processes (POMDPs), Reinforcement Learning (RL), and Deep Reinforcement Learning (DRL).

Generally, we have discussed the representative DRL techniques and algorithms. The core elements of an RL algorithm

are value function, policy, reward, model and planning, exploration, and knowledge. In DRL applications that were

discussed, most of the algorithms applied are extensions of the representative algorithms, for example, DQN, DPG, A3C,

etc., with some optimizations, respectively. We then discussed the applications of DRL in some popular domains. As DRL

provides optimal policies and strategies, it has been widely utilized in gaming, including almost all kinds of games. As the

leading entertainment among people, a better gaming experience is always desired. Another popular application of DRL is

in Robotics. We discussed manipulation, locomotion, and other aspects of robotics where DRL can be applied. Robotics

simulators are also discussed, where DRL is used to select the appropriate simulator when needed. Finally, the

application of DRL in natural language processing (NLP) is presented.

As we witnessed, DRL has been developing fast and on enormous scales. Some groups pushed forward the development

of DRL, like OpenAI, DeepMind, AI research office in Alberta, and research center led by Rich Sutton, and more. From the

research, we have acknowledged the algorithms; variations, and the development of all the optimizations. Based on the

review, we are more familiar with the usability of each method. For example, model-free methods work better in scaled-up

tasks. The value function is key to RL, in DQN and its many extensions; policy gradient approaches have also been

utilized in lots of applications, such as robotics, dialogue systems, machine translation, etc. New learning techniques have

also been applied, such as transfer, curriculum learning, adversarial networks, etc. When we select a method or

combinations of methods to apply in our models, the characteristics we need to consider are stability, convergence,

generalizing power, accuracy, efficiency, scalability, robustness, safety, cost, speed, simplicity, etc. For example, in

healthcare, we focus more on stability and security rather than simplicity or cost. This topic, along with applications in

transportation, communications and networking, and industries, will be discussed in a Part 2 follow-up paper.
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