

Potential Usage of Edible Mushrooms

Subjects: **Biology**

Contributor: Natália Cruz-Martins

Currently, the food and agricultural sectors are concerned about environmental problems caused by raw material waste, and they are looking for strategies to reduce the growing amount of waste disposal. Now, approaches are being explored that could increment and provide value-added products from agricultural waste to contribute to the circular economy and environmental protection. Edible mushrooms have been globally appreciated for their medicinal properties and nutritional value, but during the mushroom production process nearly one-fifth of the mushroom gets wasted. Therefore, improper disposal of mushrooms and untreated residues can cause fungal disease. The residues of edible mushrooms, being rich in sterols, vitamin D2, amino acids, and polysaccharides, among others, makes it underutilized waste. Most of the published literature has primarily focused on the isolation of bioactive components of these edible mushrooms; however, utilization of waste or edible mushrooms themselves, for the production of value-added products, has remained an overlooked area. Waste of edible mushrooms also represents a disposal problem, but they are a rich source of important compounds, owing to their nutritional and functional properties. Researchers have started exploiting edible mushroom by-products/waste for value-added goods with applications in diverse fields. Bioactive compounds obtained from edible mushrooms are being used in media production and skincare formulations. Furthermore, diverse applications from edible mushrooms are also being explored, including the synthesis of biosorbent, biochar, edible films/coating, probiotics, nanoparticles and cosmetic products.

edible mushrooms

waste valorization

food products

industrial applications

1. Introduction

Mushrooms have long been stated as a gourmet food, especially for its subtle flavor and taste, and they have been regarded as a culinary wonder by humankind. There are 2000 different mushrooms, out of which 25 are usually consumed as food, and only a few are commercially grown [1]. Mushrooms are also used as nutraceutical foods for their high functional and nutritional value. Moreover, they have gained considerable attention due to their economic importance as well as organoleptic and medicinal properties [2][3]. It is not easy to differentiate between medicinal and edible mushrooms, as few medicinal mushrooms are edible, and many common edible mushrooms have therapeutic potential [4]. The most widely cultivated mushroom is *Agaricus bisporus*, followed by *Flammulina velutipes*, *Lentinus edodes* and *Pleurotus* spp. The crude protein content of edible mushrooms is usually high, but it varies greatly and is affected by factors such as species and stage of development of the mushroom [5]. The free amino acid level of mushrooms is usually low, ranging from 7.14 to 12.3 mg g⁻¹ in dry edible mushrooms, and contributes to the main flavor properties of mushrooms [6]. The essential amino acid profiles of mushrooms reveal that the proteins are deficient in sulfur-containing amino acids, including methionine and cysteine. However, these

edible mushrooms are comparatively rich in threonine and valine. Several vitamins such as folates, niacin and riboflavin are found in abundance in cultivated mushrooms. Mushrooms have a higher vitamin B2 content compared to most vegetables, making them a good vitamin source [7]. The bioavailable form of folate in mushrooms is folic acid [8]. Cultivated mushrooms also comprise vitamin B1 and vitamin C in small quantities and traces of vitamin B12 [7]. Edible mushrooms contain a low amount of total soluble sugars, whereas oligosaccharides are found abundantly [9]. The carbohydrate content of edible mushrooms ranges from 35 to 70% by dry weight and varies from species to species. The fatty acid level ranges from 2 to 8% in mushrooms. Additionally, polyunsaturated fatty acids account for $\geq 75\%$ of total fatty acids, in contrast to saturated fatty acids, and palmitic acid is the major saturated fatty acid [10].

Many by-products (caps, stipes, spent mushroom substrate) are produced during mushroom production, which cause environmental pollution and increase industry management costs [11]. Spent mushroom substrate (SMS) encompasses extracellular enzymes, fungal mycelia and other substances [12]. The circular economy concept of industrial ecology is regarded as the leading principle for developing new products by using waste as a raw material [13]. From economic and environmental perspectives, the waste produced during mushroom production often leads to massive damage to valuable organic constituents and raises severe management complications. Thus, there is a need to exploit mushroom residues to extract valuable compounds that could be used in different industries, such as food, cosmetics, agricultural and textile industries, as depicted in [Figure 1](#). The current review aims to summarize information related to edible mushrooms and discuss the utilization of edible mushrooms and their residues as a valuable good for future industrial applications.

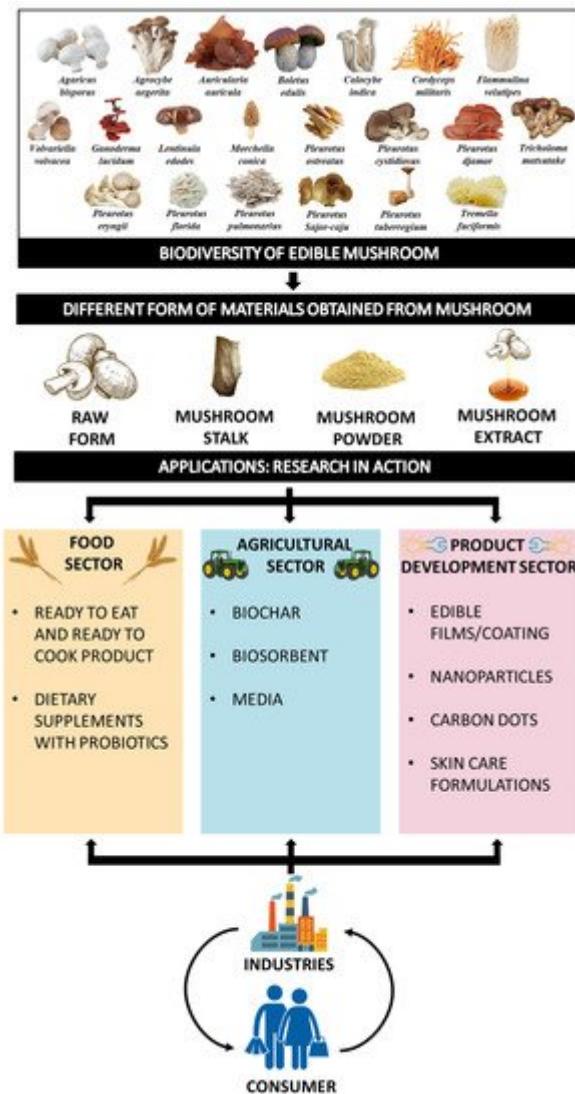


Figure 1. Utilization of edible mushrooms and their residues in novel industrial products.

2. Edible Mushrooms Fortified in Ready-to-Eat and Ready-to-Cook Foods

As the lifestyle of people is changing dramatically (due to liberalization policies, dual incomes, separate living of couples, innovative kitchen applications, media proliferation, etc.), the demand for convenient and health-promoting food is also increasing. Nowadays, people prefer fast and simple cooking methods instead of spending a long time in the kitchen [14]. Mushroom powder can be used in the food industry, especially in preparing baked goods (bread, biscuits and cakes) and breakfast cereals. The supplementation of mushroom powder in bakery products substantially increases crude fibers, minerals (calcium, copper, magnesium, manganese, potassium, phosphorus, iron and zinc), proteins and vitamins [15]. These components impart the abilities to fight tumors, lower blood pressure and blood sugar levels, maintain cholesterol levels and improve the immune system to fight against infection [16]. Rathore et al. [17] prepared cookies fortified with Calocybe indica mushroom, and the results depicted a decrease in starch hydrolysis and glycemic index. Wheatshiitake noodles enhanced the nutritional profile and

reduced the glycemic index of foods [18]. The different food products developed by using mushrooms are listed in [Table 1](#).

Table 1. Mushrooms fortified in ready-to-eat (RTE) and ready-to-cook (RTC) foods.

Edible Mushroom Common Name	Scientific Name	Food Product	Beneficial Effects	Reference
Milky white	<i>Calocybe indica</i>	Cookies	Increase in protein, fiber, minerals and β -glucan, phenolic, flavonoids and antioxidants; decrease in starch, reduction in glycemic index	[17]
Oyster	<i>Pleurotus sajor-caju</i>	Biscuits	Increase in concentration of protein, dietary fiber, ash and reduction in carbohydrate	[19]
Shiitake	<i>Lentinula edodes</i>	Chips	Improvement in quality attributes (color, sensory evaluation)	[20]
Oyster	<i>Pleurotus ostreatus</i>	Biscuits	Enhancement of nutritional quality	[21]
White button	<i>Agaricus bisporus</i>	Ketchup	Increase in ash content, crude fiber, protein, total soluble solids, and reducing sugars; decrease in total sugars	[22]
Oyster	<i>Pleurotus ostreatus</i>	Jam	Increase in total soluble solids, percent acidity and reducing sugar, decrease in pH and non-reducing sugar	[23]
White button	<i>Agaricus bisporus</i>	Mushroom tikki and stuffed mushroom	Increase in protein, dietary fiber, antioxidant and phenolic components	[24]
Oyster	<i>Pleurotus ostreatus</i>	Soup	Increase in nutritional value	[25]
Chestnut	<i>Agrocybe aegerita</i>	Snacks	Manipulation of glycemic response of individuals	[26]
Oyster	<i>Pleurotus sajor-caju</i>	Biscuit	Increase in the mineral content	[27]
Oyster	<i>Pleurotus ostreatus</i>	Vegetable mixture diets	Highly acceptable, nutritious, delicious, ready-to-eat diet	[14]
Oyster	<i>Pleurotus ostreatus</i>	Processed cheese spreads	High moisture, ash and protein content, total viable counts and spore former	[28]

Edible Mushroom Common Name	Scientific Name	Food Product	Beneficial Effects	Reference
			bacteria was lower in processed cheese supplemented with mushrooms	
Oyster	<i>Pleurotus ostreatus</i>	Biscuit	Higher moisture, protein, ash content, higher hardness, darker and redder in color	[29]
Oyster	<i>Pleurotus ostreatus</i>	Spreadable processed cheese	Increase in total solids, protein, fibers and carbohydrates	[30]
Oyster	<i>Pleurotus sajor-caju</i>	chicken patty	Reduction in fat content, no change in protein and β -glucan	[31]
White button	<i>Agaricus bisporus</i>	Pasta	Improved antioxidant activity, increase moisture content, carbohydrates, decreased crude fiber, crude protein, and fat	[32]
Oyster	<i>Pleurotus sajor-caju</i>	Cookies	High protein content, low-fat content, high fiber, minerals and vitamin content	[33]
White button	<i>Agaricus bisporus</i>	Pasta	Decrease in the extent of starch degradation, increase in total phenolic content and antioxidant capacities	[34]
White jelly	<i>Tremella fuciformis</i>	Patty	Oil holding capacity of mushroom has a positive effect on cooking yield of patty as well as senses	[35]
Oyster	<i>Pleurotus ostreatus</i>	Instant noodles	Increase in protein and fiber content	[36]
White button	<i>Agaricus bisporus</i>	Beef burgers	Reduction in the fat content of beef burgers	[37]
Oyster	<i>Pleurotus ostreatus</i>	Instant soup premix	Rich in protein, crude fiber, minerals and low in fat, carbohydrate and energy value	[38]
White button	<i>Agaricus bisporus</i>	Sponge cake	Increase in apparent viscosity, volume, springiness and cohesiveness values	[39]
Oyster	<i>Pleurotus sajor-caju</i>	Biscuit	Reduction in starch pasting viscosities, starch gelatinization enthalpy value, increases in protein, crude fiber and mineral content	[16]

Edible Mushroom Common Name	Scientific Name	Food Product	Beneficial Effects	Reference
Shiitake	<i>Lentinula edodes</i>	Noodles	Improvement in nutritional profile and reduction in the glycemic index of foods	[18]
King tuber	<i>Pleurotus tuber-regium</i>	Cookies	Higher protein, ash, crude fiber, water-soluble vitamins and minerals	[40]
Oyster	<i>Pleurotus ostreatus</i>	Noodles	Lower level of carbohydrate, fat, and sodium	[41]
King trumpet	<i>Pleurotus eryngii</i>	Sponge cake	Increase in ash and protein content	[42]
White button, Shiitake, Porcini	<i>Agaricus bisporus</i> , <i>Lentinula edodes</i> , <i>Boletus edulis</i>	Pasta	High firmness and tensile strength	[43]

4. Guillamon, E.; Garcia-Latuente, A.; Lozano, M.; D'Arrigo, M.; Rostagno, M.A.; Villares, A.; Martínez, J.A. Edible mushrooms: Role in the prevention of cardiovascular diseases. *Fitoterapia* 2010, 81, 715–723.

3. Edible Mushrooms Based Films/Coatings

5. Longvah, T.; Deosthale, Y.G. Composition and nutritional studies on edible wild mushroom from Northeast India. *Food Chem.* 1998, 63, 331–334.

Edible films/coatings are thin layers applied on the food surface to extend their shelf-life and preserve their texture, functionality and properties at a low cost [44]. The mechanical strength and barrier properties of these edible films provide sufficient strength to withstand stress while handling. These films have a promising application in the agricultural, food and pharmaceutical industries. Mushrooms and their residues have many applications in food industries, but significantly fewer studies have been conducted in regards to edible film/coatings. 7. Mattila, P.; Konko, K.; Euvola, M.; Pihlava, J.; Astola, J.; Vahteristo, L. Contents of vitamins, mineral elements and some phenolic compound in cultivated mushrooms. *J. Agric. Food Chem.* 2001, 42, 2449–2453.

Polysaccharides extracted/derived from edible mushrooms are extensively used in functional foods, pharmaceuticals and nutraceuticals [45]. Bello, N. Bioavailability of food folates and evaluation of mushroom matrix effects with a rat bioassay. *J. Nutr.* 1991, 121, 445–453.

9. Bano, Z.; Rajarathnam, S. Pleurotus mushrooms. Part II. Chemical composition, nutritional value, post-harvest physiology, preservation, and role as human food. *Crit. Rev. Food Sci. Nutr.* 1988, 27, 87–158.

growth prevention and firmness during storage. Additionally, Du et al. [46] developed edible films using *Flammulina velutipes* polysaccharides, *Phallus* and *Andreaea* polysaccharides, *Baptisia* and *Valerian* polysaccharides, *Phallus luteus* composition of break value and edible mushroom species: A comparative study. *Microchem. J.* 2009, 83, 29–35.

11. Antunes, F.; Marçal, S.; Taofiq, O.; Morais, A.M.M.B.; Freitas, A.C.; Ferreira, I.C.F.R.; Pintado, M.

Valorization of mushroom by-products as a source of value-added compounds and potential applications. *Molecules* 2020, 25, 2672.

12. Lim, S.-H.; Lee, Y.-H.; Kang, H.-W. Efficient recovery of lignocellulolytic enzymes of spent mushroom compost from oyster mushrooms, *Pleurotus* spp., and potential use in dye decolorization. *Mycobiology* 2013, 41, 214–220.

Edible Mushrooms Common Name	Scientific Name	Product Used	Compounds	Key Findings	References
White button	<i>Agaricus bisporus</i>	Fruit bars	Chitosan	Increased antioxidant capacity, ascorbic acid content, fungal growth prevention and firmness	[45]
White button	<i>Agaricus bisporus</i>	Fresh-cut melons	Chitosan	Enhance fruit firmness, inhibit off-flavors and reduce the microbial counts (up to 4 log CFU g ⁻¹).	[47]
Velvet shank	<i>Flammulina velutipes</i>	ND	Polysaccharide	High tensile strength, barrier property to water vapor and oxygen	[46]
Shiitake, Velvet shank	<i>Lentinula edodes</i> , <i>Flammulina velutipes</i>	ND	Insoluble dietary fibers	Highest tensile strength and an effective barrier to water vapor	[48]
Indian oyster	<i>Pleurotus pulmonarius</i>	ND	Flour	Significant barrier properties and mechanical strength	[49]

19. Prodhan, U.K.; Linkon, K.M.M.R.; Al-Amin, M.F.; Alam, M.J. Development and quality evaluation of mushroom (*Pleurotus sajor-caju*) enriched biscuits. *Emir. J. Food Agric.* 2015, 27, 542–547.

2018 Dong, A.; Pei, P.; Cui, S.; Li, C.; Wang, Y.; Chen, G.; Duan, X. Effect of various pretreatments on quality attributes of vacuum-fried shiitake mushroom chips. *J. Food Qual.* 2018, 2018, 4510126.

4. Mushrooms as a Source of Prebiotics for Food Supplementation

21. Farzana, I.; Mohajan, S. Effect of incorporation of soy flour to wheat flour on nutritional and sensory quality of biscuits fortified with mushroom. *Food Sci. Nutr.* 2015, 3, 363–369.

The consumption of high dietary fiber food has gained considerable interest owing to its ability to reduce triglycerides and blood cholesterol via the gut microbiome. A diet rich in fibers acts as a substrate for microbes and

23. Khan, M.U., Qazi, I.M., Ahmed, I., Ullah, S., Khan, A., Jamal, S. Development and quality evaluation of banana mushroom (Oyster mushroom) juice. *J. Sci. Ind. Res.* 2012; 61(11): 17-18.

small amount of glucans (chitin and galactomannans) and non-starch glucans, favoring the proliferation of *Lactobacilli* [51]. Edible mushrooms are stated to have carbohydrates, which help them to act as prebiotics [52]. The development and evaluation of white button mushroom based snacks. *J. Food Process. Technol.* supplementation of oyster mushroom and probiotics in poultry food has been reported to show beneficial

supplementation of oyster mushroom and probiotics in poultry feed has been reported to show beneficial, 2020, 11, 824, synergistic effects on the immune response, performance and serum lipids in broiler chickens [53]. The blend of

28. Mota and Stroobants. *Effect of the incorporation of soybean defunctional, nutritional, and sensory properties of muffins enriched with a supplemented healthy soupi (Food Sci Nutr).* 2018;ii

26. Brennan, M.A.; Derbyshire, E.; Tiwari, B.K.; Brennan, C.S. Enrichment of extruded snack

products with coproducts from chestnut mushroom (*Agrocybe aegerita*) production: Interactions

immunity and dietary fiber in physicochemical and galactoside characteristics. **Table 3.** Applications of mushrooms as prebiotics. *Food Chemistry* 2012, 130, 1296–1301.

27. Bello, M.; Oluwamukomi, M.O.; Enujiughu, V.N. Nutrient composition and sensory properties of **Table 3.** Applications of mushrooms as prebiotics. biscuit from mushroom-wheat composite flours. *Arch. Curr. Res. Int.* 2017, 9, 1–11.

2	Edible Mushrooms Common Name	Scientific Name	Probiotic Used	Form of Mushroom Used	Applications	References
2	White button	<i>Agaricus bisporus</i>	Probiotics mixture (Protexin 6 × 10 ⁷ CFU gm ⁻¹)	Powder	Lowered total cholesterol, LDL cholesterol, triglyceride concentrations, oxidative stress and dyslipidemia in hypercholesterolemic rats	[50]
3	Wood ear/Jew's ear	<i>Auricularia auricula</i>	Lactobacillus acidophilus La-5, Bifidobacterium bifidum Bb-12	Extract	Enhancement in the survival rate of probiotics to about 0.43 and 0.51 log CFU g ⁻¹ ; improved probiotic protection and functional properties of symbiotic yogurt	[55]
3	White button	<i>Agaricus bisporus</i>	<i>Saccharomyces cerevisiae</i>	Powder	Improvement in the meat quality with the incorporation of mushroom and probiotics in the broiler diet	[56]
3	Oyster	<i>Pleurotus sajor-caju</i>	Lactobacillus fermentum OVL	Powder	Increase in neutrophil count in rats, decrease in lymphocyte count	[57]
3	Oyster	<i>Pleurotus ostreatus</i>	PrimaLac (Lactobacillus acidophilus, Lactobacillus casei, Bifidobacterium bifidum, Enterococcus faecium)	Powder	Decrease in abdominal fat on the carcass, increase in HDL concentration in plasma	[53]
3	Caterpillar	<i>Cordyceps militaris</i>	Lactobacillus plantarum	Spent mushroom substrate	Increase in the specific growth rate, weight gain, final weight in fish fed supplemented diets	[58]
3	Shiitake	<i>Lentinus edodes</i>	1.0 × 10 ⁸ CFU g ⁻¹ (Lactobacillus acidophilus, Lactobacillus casei)	Extract	No weight gain in broiler chickens	[59]

oyster mushroom powder. *Mushroom Res.* 2019, 28, 65–69.

Edible Mushrooms Common Name	Scientific Name	Probiotic Used	Form of Mushroom Used	Applications	References
		Lactobacillus casei, Bifidobacterium bifidum, Enterococcus faecium)			ge cake el dible noodles 37–42.
King oyster	Pleurotus eryngii	Lactobacillus plantarum	Powder	Growth stimulation, immunity and disease resistance	[52] eryngii

mushroom powders. *J. Korean Soc. Food Sci. Nutr.* 2004, **33**, 716–722.

43. Liu, X.; Breynon, M.; Main, S.; Entwistle, J.; Mason, S.; Brogan, C.S. How the inclusion of mushroom powder can affect the physicochemical characteristics of pasta. *Int. J. Food Sci. Technol.* 2016, **51**, 2433–2439.

5. Edible Mushrooms Based Media

44. Kumar, H.; Bhardwaj, K.; Sharma, R.; Nepovimova, E.; Kuča, K.; Dhanjal, D.S.; Kumar, D. Fruit Nowadays, mushroom processing is the primary solid-state fermentation process in fermentation industries [60]. At the commercial level, the processing occurs on a substrate made up of lignocellulose materials (corncobs, sawdust, rye, rice straw and wheat) either alone or in combination with supplements to address nutritional deficiencies [61,62]. For instance, approximately 5 kg of SMS is produced, a by-product of mushroom harvest and cultivation, from 1 kg of mushrooms [63]. The SMS comprises a high amount of residual nutrients, which pollutes the atmosphere if improperly discarded as waste [64,65]. Thus, further treatment and utilization of SMS are 45. Bilbao-Sainz, C.; Chiqui, B.-S.; Punotai, K.; Olson, D.; Williams, T.; Wood, P.; Rodov, V.; Poverenov, E.; McHugh, T. Layer-by-layer alginate and fungal chitosan based edible coatings applied to fruit bars. *J. Food Sci.* 2018, **83**, 1880–1887.

46. Du, H.; Heo, Q.; Yang, W.; Pei, F.; Kimata, B.M.; Ma, Z.; Zhao, L. Development, physicochemical characterization and forming mechanism of *Flammulina velutipes* polysaccharide-based edible films. *Carbohydr. Polym.* 2016, **152**, 214–221.

Table 4. Mushrooms and their residue-based media.

47. Poverenov, E.; Arnon-Rips, H.; Zaitsev, Y.; Bar, V.; Danay, O.; Horev, B.; Rodov, V. Potential of

Edible Mushrooms Common Name	Scientific Name	Media Composition	Purpose/Utilization	References
Velvet shank	<i>Flammulina velutipes</i>	Spent mushroom substrate, perlite, and vermiculite	Growing media for tomato and cucumber seedlings	[66]
White button, Oyster	<i>Agaricus bisporus</i> , <i>Pleurotus ostreatus</i>	Spent mushroom substrate, and Sphagnum peat	Growing media for tomato, courgette and pepper	[67]
Velvet shank	<i>Flammulina velutipes</i>	Spent mushroom substrate, and chicken manure compost	Growing media for honeydew melon	[68]
Velvet shank	<i>Flammulina velutipes</i>	Spent mushroom substrate, calcium	Production media for <i>Bacillus thuringiensis</i>	[69]

5	Edible Mushrooms Common Name	Scientific Name	Media Composition	Purpose/Utilization	References	J. igii: eryngii)
5	Oyster	<i>Pleurotus</i> <i>lorida</i>	Spent mushroom substrate	Production media for lignocellulolytic enzymes	[70]	1427–
5	Oyster	<i>Pleurotus</i> <i>ostreatus</i>	Spent mushroom substrate	Production media for <i>Lactococcus lactis</i>	[71]	JS
5	Oyster	<i>Pleurotus</i> <i>ostreatus</i>	Spent mushroom substrate, paddy straw, and soybean cake	Biopesticide (<i>Trichoderma asperellum</i>) development	[72]	of male
5	ND	ND	Spent mushroom substrate and peat moss	Growing media for Chinese kale	[73]	lucing
5	ND	ND	Spent mushroom substrate, perlite, and vermiculite	Growing media for lettuce seedlings	[74]	cula Bb-12 54–
5	ND	ND	Spent mushroom substrate, polished rice, full-fat soybean, and rice bran	Production media for arachidonic acid by <i>Mortierella</i> sp.	[75]	otics . 2019,
5	ND	ND	Spent mushroom substrate, and poultry cooked bones	Production media for solubilizationphosphate by <i>Bacillus megaterium</i>	[76]	sajor-

caju diets and orogastrically dosed with probiotic *Lactobacillus fermentum* Ovl. Int. J. Probiotics Prebiotics 2007, 2, 39–42.

58 Van Deun, H.; Hoseinifar, S.H.; Dawood, M.A.; Chitmanat, C.; Tayyamath, K. Effects of *Cordyceps militaris* spent mushroom substrate and *Lactobacillus plantarum* on mucosal, serum immunology and growth performance of Nile tilapia (*Oreochromis niloticus*). Fish Shellfish Immunol. 2017, 70, 87–94.

59. Wills, W.L.; Isikhuemhen, O.S.; Ibrahim, S.A. Performance assessment of broiler chickens given mushroom extract alone or in combination with probiotics. Poult Sci. 2007, 86, 1856–1860. This mechanism has gained significant attention among researchers because of its ability to immobilize heavy metals, which can contaminate the water as they are discharged untreated from electroplating, mining industries and metal processing industries. Various processes that explain the mechanism of how these biosorbents function

60. Soccol, C.R.; Vandenberghe, L.P.S. Overview of applied solid-state fermentation in Brazil. Biochem. Eng. J. 2008, 13, 205–218.

61. Zhang, G.H.; Lin, X.J.; Fader, J.G. Oyster mushroom cultivation with rice and wheat straw. Bioresour. Technol. 2002, 82, 207–214.

62. Sanchez, J.E.; Royse, D.J. *Scytalidium thermophilum*- colonized grain, corncobs and chopped edible mushrooms to remove metal ions and dyes from an aqueous solution, as shown in Table 5.

wheat straw substrates for the production of *Agaricus bisporus*. Bioresour. Technol. 2009, 100, 1670–1674.

6. B. Sempere, K. Tom, R. Reid, D. J. Fenton, A. T. R. Thompson, The impact of composting strategies on the treatment of soils contaminated with organic pollutants. Environ. Pollut. 2001, 112, 269–283.

Edible Mushrooms Common Name	Scientific Name	Drying Temperature/Time	Applications	References
Oyster	<i>Pleurotus florida</i>	RT/24 h	Showed 100% removal of Fe^{2+} from the water sample	[79]
White button	<i>Agaricus bisporus</i>	80 °C/24 h	Successfully biosorbed Reactive Blue 49 dye (1.85×10^{-4} mol g^{-1}) from water	[80]
Oyster	<i>Pleurotus ostreatus</i>	40 °C/24 h	Showed greater adsorption against Pb^{2+} (85.91 mg g^{-1}) in water	[81]
Oyster	<i>Pleurotus ostreatus</i>	60 °C/24 h	Biosorbed 3.8 mg g^{-1} of Cd^{2+}	[82]
Oyster, Black morels	<i>Pleurotus ostreatus, Morchella conica</i>	RT/4 days	Adsorbed methylene blue (82.81 mg g^{-1} and 38.47 mg g^{-1}) and for malachite green (64.13 mg g^{-1} and 39.28 mg g^{-1})	[83]
Velvet shank	<i>Flammulina velutipes</i>	60 °C/24 h	Maximum removal capacity against copper ions was 15.56 mg g^{-1}	[84]
Shiitake	<i>Lentinula edodes</i>	Freeze-dried/24 h	Maximum absorption against Congo red was 217.86 mg g^{-1}	[85]
Oyster	<i>Pleurotus ostreatus</i>	78 °C/48 h	Showed maximum biosorption against uranium ion (19.95 mg g^{-1})	[86]
Oyster	<i>Pleurotus ostreatus</i>	80 °C/ND	Showed maximum biosorption against Ni^{2+} (20.71 mg g^{-1})	[87]
King trumpet	<i>Pleurotus eryngii</i>	60 °C/24 h	Showed maximum biosorption against Pb^{2+} (3.30 mg g^{-1})	[88]
Lingzhi	<i>Ganoderma lucidum</i>	60 °C/72 h	Maximum biosorption against malachite green (40.65 mg g^{-1}), safranine T (33.00 mg g^{-1}), and methylene (22.37 mg g^{-1})	[89]

King trumpet *Pleurotus eryngii* 60 °C/24 h Removed 88.38% of NO_3^- [90]
74. Liu, C.-S., Duan, Y.-Z., Shi, Y.-Z., Han, Y.-Y., Mao, S.-H., Pan, S.-X. Spent mushroom substrates as component of growing media for lettuce seedlings. In Proceedings of the 4th International Conference on Agricultural and Biological Sciences, Hangzhou, China, 26–29 June 2018; Volume 185, p. 012016.

RT—room temperature; ND—not defined.

17. Edible Mushrooms Derived Biochar

arachidonic acid of *Mortierella* sp. by solid-state fermentation using combinatorial medium with Biochar as a stable carbon-rich solid prepared by the thermochemical decomposition or pyrolysis of organic material at **spirit mushroom substrate**. *Chem. Pap.* 2018, **72**, 2899–2908.

high temperatures in an anaerobic environment [44]. The highly porous structure permits the extraction of humic acids [76]. Wyciszkiewicz, M.; Saeid, A.; Samoraj, M.; Chojnacka, K. Solid-state solubilization of bones by B. and fluvic-like substances from biochar [91]. Furthermore, its molecular structure demonstrates high microbial and megaterium in spent mushroom substrate as a medium for a phosphate enriched substrate. J. chemical stability [92], and physical and chemical properties depend on several factors such as the feedstock form, Chem. Technol. Biotechnol. 2017, 92, 1397–1405. residence time, pyrolysis and furnace temperature [93–94]. A wide range of common raw materials are used as the

residence time, pyrolysis and furnace temperature . A wide range of common raw materials are used as the

77 Park, Ningwinyi, Sop Park, M. The past, present and future trends of biosequestration. *Biotechnol
Bioinher* 2010; **15**: 86-102 carbon, nitrogen, hydrogen and, to a lesser extent, K, Ca, Na and Mg

^[96] Biochar is a polar or non-polar material with a high specific surface area and good affinity towards inorganic ions such as phosphate, nitrate and heavy metal ions ^{[97][98]}. Different studies have reported on biochar production from a variety of edible mushrooms and their spent substrates ([Table 6](#)).

79. Menaga, D.; Rajakumar, S.; Ayyasamy, P.M. Spent mushroom substrate: A crucial biosorbent for the removal of ferric ions from ground water. *Shahir* 2021, 3, 32.

Edible Mushrooms Common Name	Scientific Name	Process and Conditions Required for Biochar Formation	Applications	References
Oyster, Shiitake	<i>Pleurotus ostreatus, Lentinula edodes</i>	Pyrolysis at 700 °C for 2 h	Adsorbed 326mg g ⁻¹ and 398mg g ⁻¹ of lead Pb(II) from the water	[99]
Lingzhi	<i>Ganoderma lucidum</i>	Pyrolysis at 650 °C for 2 h	Showed maximal adsorption against Pb ²⁺ (262.76 mg g ⁻¹) and Cd ²⁺ (75.82 mg g ⁻¹)	[100]
White button	<i>Agaricus bisporus</i>	Pyrolysis at 750 °C for 3 h	Showed maximal adsorption against Cu ²⁺ (65.2 mg g ⁻¹), Cd ²⁺ (76.3 mg g ⁻¹), and Zn ²⁺ (44.4 mg g ⁻¹) in water	[101]
ND	ND	Pyrolysis at 300 °C for 90 min	Showed maximal adsorption against Pb ²⁺ (21.0 mg g ⁻¹), Cu ²⁺ (18.8 mg g ⁻¹), Cd ²⁺ (11.2 mg g ⁻¹) and Ni ²⁺ (9.8 mg g ⁻¹) in water	[102]
ND	ND	Pyrolysis at 450 °C for 4 h	Showed maximal adsorption against crystal violet (1057mg g ⁻¹) in wastewater	[103]
ND	ND	Pyrolysis at 500 °C for 2 h	Showed maximal adsorption against fluoride (36.5 mg g ⁻¹) in water	[104]

of Ni(II) ions from aqueous solution onto a fungus *Pleurotus ostreatus*. Desalin. Water Treat.

2016, 57, 7209–7218.

ND—not defined.

1.8. Edible Mushrooms Derived Nanoparticles (NPs)

88. Amin, F.; Bouyou, M.; Dabir, S.; Khan, M. A. Removal of trapping of toxic Pb(II) ions from aqueous system on a fixed-bed column of fungal biosorbent. *Geol. Ecol. Landsc.* 2018, **2**, 39–44.

89. Wu, J.; Zhang, T.; Chen, C.; Feng, L.; Su, X.; Zhou, L.; Chen, Y.; Xia, A.; Wang, X. Spent constituents such as enzymes and metabolites secreted by mushroom cells reduce the toxicity of substances [105] [106]. The use of NPs is rising, especially in biomedicine and pharmaceuticals, because of their unique physicochemical properties. In the bottom-up approach, biogenic NPs are synthesized, resulting in 90. Amin, F.; Dabir, S.; Bouyou, M.; Khan, M. A. Statistical methodology for biosorption [44] of nitrate (NO₃⁻) ions from aqueous solution by Pseudosyzygina ginseng biochar. Model. and Simul. Environ. 2017, **3**, 1101–1112.

91. Lin, Y.; Munroe, P.; Joseph, S.; Henderson, R.; Ziolkowski, A. Water extractable organic carbon in **Table 7.** Mushroom-derived nanoparticles and their applications. untreated and chemical treated biochars. *Chemosphere* 2012, **87**, 151–157.

Edible Mushrooms	Scientific Name	Types of Nanoparticles Synthesized	Reaction Temperature/Time	Morphology	Size	Applications	References	Changes in 2008,
White button	Agaricus bisporus	Copper	RT/24 h	Spherical	2–10 nm	Antibacterial activity against Enterobacter aerogenes; Antioxidant activity using DPPH, and ABTS; Anti-cancer activity against cancer cell lines SW620 (colon cancer)	[107]	L.; J. Soil. and. J. Soil. and
Brown oyster	Pleurotus cystidiosus	Gold	29 °C/24 h	ND	ND	Antioxidant activity using DPPH, and ABTS	[108]	soil. har
Oyster	Pleurotus florida	Gold	70 °C/1.5 h	Spherical	2–14 nm	Anti-cancer activity against cancer cell lines A-549 (Human lung carcinoma), K-562 (Human chronic myelogenous leukemia bone marrow), HeLa (Human cervix) and MDA-MB (Human	[109]	old ed

99. Wu, Q.; Xian, Y.; He, Z.; Zhang, Q.; Wu, J.; Ynag, G.; Zhang, X.; Qi, H.; Ma, J.; Xiao, Y.; et al. Adsorption characteristics of Pb(II) using biochar derived from spent mushroom substrate. *Sci. Rep.* 2019, **9**, 15999.

10	Edible Mushrooms	Scientific Common Name	Types of Nanoparticles Synthesized	Reaction Temperature/Time	Morphology	Size	Applications	References
10	Oyster	<i>Pleurotus ostreatus</i>	Gold	29 °C/24 h	Spherical	22.9 nm	adenocarcinoma mammary gland)	Zn(II), n als
10	Oyster	<i>Pleurotus sajor-caju</i>	Gold	RT/12 h	Spherical	16–18 nm	Anti-cancer activity against cancer cell lines HCT-116 (colon cancer)	[108] [110]
10	King tuber	<i>Pleurotus tuber-regium</i>	Selenium	RT/24 h	Spherical	91–102 nm	Anti-cancer activity against gastric adenocarcinoma AGS	[111]
10	Oyster	<i>Pleurotus ostreatus</i>	Silver	25 °C/48 h	Spherical	17.5 nm	Anti-cancer activity against cancer cell lines HepG2 (human liver) and MCF-7 (breast)	[112] A.;
10	Lingzhi	<i>Ganoderma lucidum</i>	Silver	ND/ND	Spherical	15–22 nm	Antioxidant activity using DPPH; Antibacterial activity against Staphylococcus aureus, Enterococcus hirae, <i>Bacillus</i> <i>cereus</i> , <i>Escherichia coli</i> , <i>Pseudomonas</i> <i>aeruginosa</i> , <i>Legionella</i> <i>pneumophila</i> subsp. <i>Pneumophila</i> ; and antifungal activity against <i>Candida albicans</i>	[113] ; of nun. edible Photo-

110. Chaturvedi, V.K.; Yadav, N.; Rai, N.K.; Abd Ellah, N.H.; Bohara, R.A.; Rehan, I.F.; Marraiki, N.; Batiha, G.E.S.; Hetta, H.F.; Singh, M.P. Pleurotus sajor-caju-mediated synthesis of silver and gold nanoparticles active against colon cancer cell lines: A new era of Herbonanoceutics. *Molecules* 2020, 25, 3091.

111. Zeng, D.; Zhao, J.; Luk, K.H.; Cheung, S.T.; Wong, K.H.; Chen, T. Potentiation of in vivo anti-cancer efficacy of selenium nanoparticles by mushroom polysaccharides surface decoration. *J. Agric. Food Chem.* 2019, 67, 2865–2876.

11	Edible Mushrooms Common Name	Scientific Name	Types of Nanoparticles Synthesized	Reaction Temperature/Time	Morphology	Size	Applications	References	hroom
11	Matsutake	<i>Tricholoma matsutake</i>	Silver	RT/30 min	Spherical	10–70 nm	Antibacterial activity against <i>Bacillus cereus</i> , <i>Escherichia coli</i>	[114]	S. J.
11	Milky white, Oyster, White button, Lingzhi	<i>Calocybe indica</i> , <i>Pleurotus ostreatus</i> , <i>Agaricus bisporus</i> , <i>Ganoderma lucidum</i>	Silver	RT/12 h	Spherical	80–100 nm	Antibacterial activity against <i>Staphylococcus aureus</i>	[115]	ver and B.
11									nd
11									, 55–
11									san, A.; extract:
11	Pink oyster	<i>Pleurotus djamor</i>	Titanium oxide	RT/20 min	Spherical	31 nm	Antibacterial activity against <i>Corynebacterium diphtheriae</i> , <i>Pseudomonas fluorescens</i> , and <i>Staphylococcus aureus</i> ; Anti-cancer activity against cancer cell lines A-549 (Human lung carcinoma); larval toxicity against <i>Aedes aegypti</i> , <i>Culex quinquefasciatus</i>	[116]	0, 1–
11									ical vicidal,
11	Pink oyster	<i>Pleurotus djamor</i>	Zinc oxide	RT/24 h	Sphere	74.36 nm	Antioxidant activity using DPPH, ABTS, and H ₂ O ₂ ; larval toxicity against <i>Aedes aegypti</i> , <i>Culex quinquefasciatus</i> ; Antibacterial activity against <i>Corynebacterium diphtheriae</i> , <i>Pseudomonas fluorescens</i> , and	[117]	0–
12									or Cr ⁶⁺
12									ots for
									ots

derived from *Volvariella volvacea* mushroom for a highly sensitive detection of Fe³⁺ and Pb²⁺ ions in aqueous solutions. *Chemosensors* 2020, 8, 47.

122. Yang, Y.; Liu, M.; Wang, Y.; Wang, S.; Miao, H.; Yang, L. Carbon dots derived from fungus for sensing hyaluronic acid and hyaluronidase. *Sens. Actuators B Chem.* 2017, 251, 503–508.

123. Millikan, L.E. Cosmetology, cosmetics, cosmeceuticals: Definitions and regulations. *Clin. Dermatol.* 2001, 19, 371–374.

12	Edible Mushrooms Common Name	Scientific Name	Types of Nanoparticles Synthesized	Reaction Temperature/Time	Morphology	Size	Applications	References
12							Staphylococcus aureus	vers.

126. Camassola, M. Mushrooms-the incredible factory for enzymes and metabolites productions. RT—room temperature; ND—not defined; DPPH-2,2-diphenyl-1-picrylhydrazyl-hydrate; ABTS-2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid). *Ferment. Technol.* 2013, 2.

127. Taofiq, O.; Héleno, S.A.; Calhelha, R.C.; Alves, M.J.; Barros, L.; Barreiro, M.F.; González-

Paramás, A.M.; Ferreira, I.C.F.R. Development of mushroom-based cosmeceutical formulations with anti-inflammatory, anti-tyrosinase, antioxidant, and antibacterial properties. *Molecules* 2016, 21, 1372.

Carbon dots (CDs), photoluminescent substances with a size of less than 10 nm, can be synthesized by top-down and bottom-up approaches [44]. The top-down synthetic route involves a complex and synthetic condition; a broad carbon structure is broken down using electro-oxidation, acid-assisted chemical oxidation, and laser ablation [44].

128. Taofiq, O.; Héleno, S.A.; Calhelha, R.C.; Alves, M.J.; Barros, L.; González-Paramás, A.M.; Ferreira, I.C.F.R. The potential of *Cantharellus lucidus* extracts as bioactive ingredients in topical formulations, beyond its nutritional benefits. *Food Chem. Toxicol.* 2017, 108, 189–197.

However, the bottom-up approach, which relies on plants and their by-products instead of the chemicals, is superior compared to the top-down approach. Proteins, carbohydrates, lipids, lignin and cellulose are all abundant in biological materials. Edible mushrooms are relatively inexpensive and contain various chemical constituents comprising hydroalcoholic extracts of *Pleurotus ostreatus*, *Glycyrrhiza glabra* and *Camellia sinensis*. *UK J. Pharm. Biosci.* 2015, 3, 41.

129. Gupta, N.; Dubey, A.; Prasad, P.; Roy, M. Formulation and evaluation of herbal fairness cream

in biological materials. Edible mushrooms are relatively inexpensive and contain various chemical constituents

comprising hydroalcoholic extracts of *Pleurotus ostreatus*, *Glycyrrhiza glabra* and *Camellia*

such as carbon, oxygen, phosphorus and nitrogen, often depicted as carboxyl and amine groups. The presence of

carbohydrates, amino acids, polysaccharides, citric acid, flavonoids, lipids, vitamins and proteins make them ideal

130. Kapoor, P.; Elva, [18]. CDs have been shown to have a significant antioxidant and tyrosinase inhibitory

system, from gel containing the 70% ethanol *Pleurotus ostreatus* extract, anti-hepatotoxicity and anti-oxidant

detected [110,111]. *Food* 2012, 12, 135 (Table 8).

131. Lourith, N.; Pungprom, S.; Kanlayavattanakul, M. Formulation and efficacy evaluation of the safe and efficient moisturizing snow mushroom hand sanitizer. *J. Cosmet. Dermatol.* 2021, 20, 554–

13	Edible Mushrooms Common Name	Scientific Name	Production Conditions	Applications	References
	Oyster	<i>Pleurotus</i> sp.	Hydrothermal/120 °C/4 h	Selective sensitivity for Pb^{2+} ; Antibacterial activity against <i>Staphylococcus aureus</i> , <i>Klebsiella</i> <i>pneumoniae</i> and <i>Pseudomonas</i> <i>aeruginosa</i> ; Anti-cancer activity against breast cancer cells (MDA-MB-231)	[118]
	Velvet shank	<i>Flammulina</i> <i>velutipes</i>	Hydrothermal/250 °C/4 h	Sensed Cr^{6+} with a limit of detection 0.73 μM and volatile organic compounds	[119]
	Oyster	<i>Pleurotus</i> ssp.	Hydrothermal/200 °C/25 h	Sensed nitroarenes in water samples	[120]
	Paddy straw	<i>Volvariella</i> <i>volvacea</i>	Hydrothermal/200 °C/25 h	Sensed Pb^{2+} with limit of detection 12 nM and for Fe^{3+} 16 nM	[121]

Edible Mushrooms Common Name	Scientific Name	Production Conditions	Applications	References
ND	ND	Hydrothermal/200 °C/6 h	Sensed hyaluronic acid and hyaluronidase	[122]

ND—not defined.

10. Edible Mushrooms Based Skin Care Formulations

Cosmetics are personal care products that are used to cleanse and beautify the skin [123]. The demand for cosmetics containing natural ingredients is increasing due to their organic, healthier and environmentally friendly characteristics [124]. Lentinan, carotenoids, ceramides, schizophyllan and ω -3, ω -6 and ω -9 fatty acids as well as resveratrol obtained from macro fungi, especially mushrooms, are now paving their way into cosmetics [125][126]. These are reported to treat beauty issues such as fine lines, wrinkles, uneven tone and texture due to the antioxidant and anti-inflammatory traits. There are few studies where edible mushrooms are used in skincare formulations, as compiled in [Table 9](#).

Table 9. Mushroom-based skincare formulations.

Edible Mushrooms Common Name	Scientific Name	Product Base	Applications	References
White button, Oyster, Shiitake	Agaricus bisporus, Pleurotus ostreatus, Lentinula edodes	Cream	Anti-inflammatory; anti-tyrosinase; antioxidant and antibacterial activity	[127]
Lingzhi	Ganoderma lucidum	Cream	Anti-tyrosinase; antioxidant and antibacterial activity	[128]
Oyster	Pleurotus ostreatus	Cream	Skin fairness	[129]
Oyster	Pleurotus ostreatus	Gel	Anti-tyrosinase; antioxidant activity	[130]
Snow	Tremella fuciformis	Gel	Hand sanitizer	[131]
White button, Oyster	Agaricus bisporus, Pleurotus ostreatus	Cream	Anti-tyrosinase; antioxidant and antibacterial activity	[132]