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Slurry pipe transport has directed the efforts of researchers for decades, not only for the practical impact of this
problem, but also for the challenges in understanding and modelling the complex phenomena involved. The
increase in computer power and the diffusion of multipurpose codes based on Computational Fluid Dynamics
(CFD) have opened up the opportunity to gather information on slurry pipe flows at the local level, in contrast with

the traditional approaches of simplified theoretical modelling which are mainly based on a macroscopic description

of the flow.
slurry pipe flows computational fluid dynamics Eulerian—Lagrangian model
Eulerian—Eulerian model two-fluid model mixture model slurry erosion

| 1. Introduction
1.1. Engineering Aspects and Physical Features of Slurry Pipe Transport

Hydraulic transport of solid particles in the flow of carrying liquid is of great importance in many industries, including
mining, dredging, oil and gas, chemistry, agriculture or waste treatment LIZIBI4IEI |n those applications, it can pose
a reliable, safe, economic and environmental-friendly alternative to other means of transportation as for instance

trucks.

The broad variety of environments in which the solids hydrotransport is applied produces different solid—liquid
mixtures to be pumped and conveyed primarily through pressurized pipes. Water is typically the carrying liquid but
the carried solids can be very different from very fine to very coarse and from very heavy to very light. The two
phases (liquid and solid) interact with each other while flowing in a conduit and significantly affect the behavior of
the mixture flow. This paper discusses transport in pressurized pipes and focuses on turbulent flows of mixtures
(slurries) composed of Newtonian carrier and particles coarse and/or heavy enough to alter the internal structure of
the flow by causing an asymmetrical distribution of velocity and non-uniform distribution of solids in the cross
section of a pipe. In such flows, called settling slurry flows, the solid particles interact with turbulent eddies of the

flowing carrier and may also interact with each other through interparticle collisions or longer-lasting contacts Ell]
8]

Essentially, there are three basic types of settling slurry flow. At one extreme is the pseudo-homogeneous regime,
typical of flows laden with fine particles (typically fine sand of particle sizes between 60 and 200 microns) flowing at

high velocity. Their submerged weight is carried by fluid support mechanisms associated with flow turbulence. The
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distribution of suspended particles is close to uniform although some gradient usually occurs in the pipe cross
section, see Figure 1a. Viscous friction is responsible for flow energy loss. The other limiting case is represented
by the fully-stratified regime, typical of flow conveying large, rapidly-settling particles at low velocity. Their
submerged weight cannot be carried by flow turbulence and they travel in the lower part of the pipe by saltation, or
as a sliding bed (Figure 1c). Particle contacts with each other and with a pipe wall considerably contribute to the
overall flow friction. The intermediate case, for which both inter-granular contact and fluid support mechanisms are
significant, is called heterogeneous flow (Figure 1b). For relatively large particles, the heterogeneous flow regime
can be more distinctly stratified with a detectable sliding bed and the transported grains can be supported either by
turbulent eddies or by mutual collisions above the sliding bed. Additionally, often encountered in practice is the flow
of broadly graded solids in a Newtonian carrier in which particles of quite different sizes and supported by different
mechanisms interact with each other. Overall, the behavior of the discussed slurry flows is quite complex as it is a
result of the number of different mechanisms governing the flow and being responsible for particle support and

friction.

(a)

(b)

(c)

Figure 1. Different patterns of settling slurry flow in horizontal pipes (a) pseudo-homogeneous flow (b)

heterogeneous flow (c) fully-stratified flow. The colors of the particles identified their basic transport mechanism,
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namely, interaction with the turbulent fluid (grey), quick collision with other particles (green), and long-lasting

contacts with nearby particles (red).

Settling slurries tend to stratify in the pipeline and the degree of stratification affects both the pipeline resistance
and transport safety. Typically, the pipeline resistance is quantified by the frictional pressure drop over the length of
the pipe, whereas the transport safety is evaluated by the flow velocity, which must exceed the minimum safe
velocity at which the system should operate without the danger of accumulation of particles in the form of a deposit
at the bottom of the pipe which may result in pipe blockage. The operating velocity at which first grains stop moving
and start to form the deposit is called the deposition-limit velocity and it is one of the key parameters in a
description of slurry flow for purposes of design or operation of a slurry transport system typically composed of a

pipeline and a pump =29,
1.2. Modeling of Slurry Pipe Flows

Predictive models are essential design tools for slurry transport systems. In this perspective, the prediction of the
pipe characteristic curve is one of the key tasks of slurry flow modelling, and another major task is to predict the
deposition-limit velocity, VdI, which is the value of flow velocity below which solid deposit is observed. A more
detailed prediction of slurry flow includes information on the internal structure of the flow in the form of distributions
of local velocity and concentration (e.g., 1) which helps to understand the friction and to predict other

phenomena, such as the erosive wear of a pipe wall.

There are several sorts of models available for predictions of the slurry flow quantities. It has been shown that
different slurries can form quite different flow types with different flow patterns and it must be emphasized that the
different slurry flows exhibit rather different flow behaviors 22131 An identification of the flow type is essential for
the successful modelling of slurry flows and prediction of their behavior in a pump-pipeline transport system. The
available models rely on different approaches, which have different levels of complexity and refinement, so that, in

principle, simpler approaches are easier to use but provide less refined outputs.

1.3. The Potential of Computational Fluid Dynamics

The complexity of solid-liquid flow as is the flow of settling slurry demands that the flow behavior is best analyzed
on a local level by monitoring distributions of flow quantities throughout the flow domain. This requirement focuses
attention on Computational Fluid Dynamics. Traditionally, CFD simulations for engineering purposes have been
restricted to simpler one-phase flows primarily due to limitations in computer power and the capability of CFD
codes. However, current advancements in this field have enabled to increase the amount of research work on the
numerical simulation of pipe flows of slurry exponentially in few years, opening the way to the use of this approach

for the engineering applications.

| 2. CFD Modelling Approaches
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2.1. Eulerian-Lagrangian Modelling

In the Eulerian—Lagrangian (EL) approach, the carrier liquid is modelled as a continuum, and therefore normally
referred to as the continuous phase in a multiphase flow simulation. For an isothermal flow, the mass and linear

momentum equations must in general be solved:

d,

£+v-p1u=[] (1)
o,
gtu'+?-nuu=v-m+mg @

where m is the density of the liguid, w is the instantaneous velocity vector of the liquid, and g is the gravitational
acceleration vector. Normally, in an isothermal flow, the density of a liguid can be regarded as a constant under
moderate pressures. In such situations, the equations above can be further simplified:

V-u=10 (3)

du
H(E+v'uu)=v'ﬂ1+ﬂg (4)

In Equations (2) and (4) above, o denotes the stress tensor of the liguid phase, which depends on the fluid
rheology. The typical approach is to split @ into the sum of an isotropic part, —py I (where py is the pressure of the
liguid phase), and a deviatoric part, referred to as .. The main interest in this article is on Newtonian carrier fluids,
for which, in the case of incompressible flow, the expression below holds:

o=-pl+n=—ml+mum [?u+{\?u}'] (5)

where gy Is the dynamic viscosity of the liquid phase, and the superscript “+" indicates that the transpose of the
dyadic Vu is taken.

The equations illustrated so far are intended to be the instantaneous ones, valid for both laminar and turbulent
flows. Depending on the Reynolds number, the non-linear term on the LHS of Equation (4) can give rise to a huge
number of degrees of freedom, ie., the flow becomes turbulent. In order to keep the computational burden within
acceptable limits and meet the engineering needs, the modelling of turbulent flows is generally carried out by solving
only for the mean flow or the largest scales of turbulence. Solving for all the time and space scales that arise in a
turbulent flow may be unaffordable in most practical situations, or not even convenient. A usual approach is then to
apply a Reynolds average. Mathematically, it consists in applying the time average to all variables, that is,
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where 9 is the generic volume-averaged variable, and T is a time scale much larger than those of the turbulent
fluctuations and much smaller than the time scale of the macroscopic flow. The trace denotes an average in time. By
applying this operation to Equations (3) and (4), we obtain:

V-u=20 ()

du __ _
m(ﬁ+v'““)=v'm+ng—?-mu’u’ (8)

For the sake of simplicity, from this point onwards, the equations above will be written as:

V.-U=0 (@)

n(%+v'w):v'5‘l+ﬂlg—v-mu’u’ (10)

where u' is the fluctuation velocity, whereas U = a is the average velocity. By summing both, the instantaneous
fluid velocity w is obtained. The last term in Equation (10} is the Reynolds stress tensor. This term must be modeled
so that the set of equations has a solution. Within the Reynolds-average approach (RANS), there are essentially two
options: use the Boussinesq hypothesis. which assumes that the turbulent fluid motion is analogous to the molecular
motion, so that an eddy viscosity concept is proposed; or solve for all the Reynolds stress components. [n the |atter,
by virtue of symmetry of the shear stress tensor, six additional transport equations must be solved, by the differential
Reynolds Stress Model (RSM), or six additional algebraic closures must be used, with the algebraic Reynolds Stress
Model. According to the Boussinesq approach, for incompressible flows

W 2
—pu'u’ = pt (VU + (VO)') — 3k (1)
where ,u,{: is the eddy viscosity of the liquid, and kj is the turbulent kinetic energy per unit mass of the liquid. Thus,
for incompressible RANS models based on the Boussinesq approach, the final set of equations for the fluid can be

written as:

V.-u=0 (12)

I (% +‘?-UU) =-VA+ V. [g"(VU+(VU)'")| + mg 1

where peffl represents the effective viscosity of the liquid, and it is calculated as the sum of the molecular viscosity
pl and the eddy viscosity ptl, and Pl is equal to the time-averaged pressure pl plus 2/3plkl. There are a number of

models for computing the turbulence viscosity, such as k-?, SST k-w, and Spalart—Allmaras. As it is not the
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purpose of this article to discuss these models, the reader is referred to Menter (14, |Launder and Spalding X% for
further information and theoretical background. Equations (12) and (13) or (10), along with the turbulence model

equations, form the basis for the Eulerian fashion as applied to the liquid.

Generally, the fluid flow equations discussed here above are numerically solved using grid-based methods such as
the Finite Volume Method, the Finite Difference Method, or the Lattice—Boltzmann Method 18], Depending on the
ratio of mesh size to particle diameter, Eulerian—Lagrangian models can be classified into point-particle (or
unresolved) methods and fully-resolved methods. If the particle dimensions are negligible as compared to the fluid
cell, then the point-particle approximation can be made, which consists in assuming that the particles are point
sources of momentum with zero dimension (Figure 2a). At the opposite extreme, fully-resolved methods require
the grid size to be much smaller than the particle size and model accurately the flow around the solid particle
(Figure 2b). Such point-particle approximation is generally made in Euler—Lagrange simulations for engineering

purposes, although a fully-resolved treatment is feasible with supercomputing resources.

Ll

p.

o T

(@) (b)

Figure 2. Main modelling approaches in the Eulerian—Lagrangian framework: (a) point-particle approach (b) fully-

resolved approach.

In both approaches, the equation of motion for each particle is based on Newton’s second law. Each particle is
tracked individually throughout the fluid domain. In particular, it is important to solve for the angular momentum in
pipe flows, because collisions with walls are frequent. The trajectory, linear momentum and angular momentum

conservation equations for a rigid, constant-mass particle can be written as:
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In both approaches, the equation of motion for each particle is based on Newton's second law. Each particle is
fracked individually throughout the fluid domain. In particular, it is important to solve for the angular momentum in
pipe flows, because collisions with walls are frequent. The trajectory, linear momentum and angular momentum
conservation equations for a rigid, constant-mass particle can be written as:

dry e
PTG f
dup )
My dt F 1=
dew, )
Ip? = Tp [16)

where rp, ©p, and wyp are the position vector, the velocity vector, and the angular velocity vector of the particle,
respectively, mp is the mass of the particle, IP is the moment of inertia of the particle, and FP and T}, are the forces
and the torque exerted on the particle, respectively.

The evaluation of the fluid—particle forces and torques is carried out differently in fully resolved and point-particle
models. Since, in fully-resolved models, the mesh resolution is much smaller compared to the particle size, the
action from the fluid to a particle can be directly obtained by integrating the pressure and viscous stresses
distributions over the particle surface (Figure 6b). Conversely, in point-particle models, the forces and torques on
the RHS of Equations (15) and (16) cannot be computed directly. Thus, correlations for the external forces and
torques acting on each particle must be obtained from appropriate force models, devised either from experiments

or from surface-resolved Direct Numerical Simulations.

Models for liquid-to-particles surface forces include, among others, drag, shear-induced lift, pressure gradient and

virtual mass. The drag force is often the dominant one in liquid—solid flows, and it is calculated as:

1
Fa=3nm (ﬂ%) Ca |uap — vy (vap — vg) (17)

where d,, is the equivalent diameter of a particle (that is, the diameter of the volume-equivalent sphere), Cy is the
drag coefficient, and wap is the fluid velocity at the particle position, called unhindered fluid velocity. The drag
coefficient can be obtained as a function of the particle Reynolds number based on the particle diameter:

_ Py | e, — vl
i

EReg (18)

As discussed, point-particle methods and fully-resolved methods impose strict constraints on the size of the grid
used for fluid flow calculation, which must be much larger and much smaller compared to the particle diameter,

respectively. In order to translate this concept into practical recommendations, threshold values must be given for
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the ratio of mesh size to particle diameter. It was reported 17 that, in fully-resolved methods, the mesh size should
be at most 1/8 of the particle diameter so that numerical errors can be limited. Increasing the ratio of mesh size to
particle diameter, e.g., bigger than 1/5, can lead to rough representation of particle boundary and thus inaccurate
results. To avoid an undesirable increase in computing power when using a fine mesh throughout the whole
computing area, it is possible to use the local dynamic mesh refinement close to the particle surface 12, However,
still, the fully-resolved method is suitable only for processes where the number of particles is limited (in the order of
hundreds or thousands). As an example of the largest systems studied with this approach, in 18 simulations of
river bed forms were carried out on 24,756 cores, and only 350,000 particles were tracked, which is much less than
the point-particle methods, where the number of particles can reach tens of millions. At the opposite extreme, the
literature showed that not only the basic idea underlining point-particle models, but also the accuracy of widely
used force models are affected by the grid size. Peng et al. 22l recommended that, in order to ensure the accurate
calculation of the relative velocity and the void fraction in different drag force models, the mesh size should be at
least three times larger than the particle diameter. Otherwise, by reducing the ratio of mesh size to particle
diameter to smaller than 3, the drag force model can be inaccurate with a large deviation from experimental results.
Apparently, for the EL modelling of particulate flows, there exists a grey zone, as, if the ratio of mesh size to particle
diameter ranges from 1/8 to 3, both point-particle and fully-resolved modelling are not accurate. There is a clear
gap for the situations with a size ratio ranging from 1/8 to 3. In order to bridge it, several approaches have been
proposed, such as the statistical kernel method, the porous cube method, the big sphere method and the diffusion

approach 29,

2.1.1. One-Way Coupled Slurry Flows

Equations (12)—(16) form the basis of the Eulerian—Lagrangian approach. Particles are directly affected by the fluid
flow, since the forces and torques are partly caused by the fluid. However, this set of equations, as they are herein
presented, do not account for the effect of the particles on the fluid flow. This is the one-way coupling regime, is
valid only in flows with a low particle concentration (Figure 3). Depending on the local particle concentration, the
impact of the particles on the fluid cannot be disregarded. In such cases, the reaction of the particles to the fluid
must be taken into account. Additionally, interparticle collisions may play a role. These will be dealt with in the

following sections.

https://encyclopedia.pub/entry/14095 8/28



CFD Modelling of Slurry Flows | Encyclopedia.pub

& ] H
. S ] nne-wa}' EHLI?I Il'lg
) ‘#g < 510 fluid — p-"ll'tl‘t"].ﬂs /—
z
=
et
& :
5 B 5.10°7 < ¢ < 5. 10 two-way coupling
E - 4 fluid «— particles 3
— —_— "“
o
1 | -
B three-way coupling
= fluid += particles +» particles - —
indirect interactions
four-way coupling
. 1n=4 -1
g STy S fluid « particles «+ particles
1 ':__-‘- direct interactions
o
E
: = collision-dominated ’zl‘ "“!‘,%ﬁp‘. Q
= quick particle-particle collisions T Ay
2 605. 5% %G ea™e
:
b R
& > 10-1 contact-dominated
¥ r 3 enduring intergranular contacts m

Figure 3. Classification of flow particle-laden flows according to the coupling regime and of the key physical
mechanisms driving the flow. The distinction between disperse and dense flows has been proposed by Loth [21],
whereas that between dilute and dense flows, including the limits to the solid volume fraction, is obtained from the
map of Elghobashi [22],

2.1.2. Two and Four-Way Coupled Slurry Flows

In the two-way coupling regime, and under the point-particle approximation, the momentum exchanged between
the particle and the fluid must be added to the RHS of Equation (13):

1 dup Pp
31——WZTTIP E—(l—g)y] {19)

where the summation applies to all parcels contained in volume W. In compliance with Newton'’s Third Law, body
forces should not be considered. In Equation (19), it is assumed that only body forces experienced by the particles
are weight and buoyancy. Another peculiar feature of two-way coupled Eulerian—Lagrangian models resides in the
presence, in the equations of the turbulence model, of source terms associated with the influence of the particles
on the turbulence characteristics of the carrier fluid. This phenomenon is called turbulence modulation, and it is
characteristic of the two-way coupling regime; particularly, the evidence shows that fine particles tend to attenuate

the turbulence in the carrier fluid phase, whereas turbulence enhancement occurs in the case of coarse solids [22]

Particle-to-particle collisions may become important at higher concentrations. Even under “disperse” operating

conditions, in the sense given by Loth [21] (Figure 3), interparticle collisions may be important in redispersing
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particles in pipe flows, acting as a diffusion mechanism, especially in locally concentrated regions. If they are to be
considered, we then have the so-called four-way coupling. There are different possibilities for modelling such
forces: hard-sphere and soft-sphere models exist. In the latter, the mechanical properties of the particle material
must be used to calculate the tiny deformation that occurs during a collision, while the former assumes that
particles are perfectly rigid. The Discrete Element Method (DEM) commonly employs a soft-sphere model, using
one of the several models available for normal contact forces, namely linear spring—dashpot, and non-linear
damped Hertzian spring—dashpot, among others. The soft sphere model requires determining the normal spring
stiffness coefficient of the linear model through the numerical solution for the overlap between particles in non-
linear models. Irrespective of the interparticle collision model, a coarse-graining procedure is needed in accordance

with the parcel concept, except for very dilute systems for which every single particle can be represented.

2.1.3. Boundary Conditions

Regarding boundary conditions for slurry flows in pipes, normally when the interest is in the fully developed flow,
periodic conditions are applied to a pipe length (Figure 4a). A pressure drop or source term forcing a given mass
flow must be prescribed as the driving force. Otherwise, classical inlet and outlet boundaries are used, i.e., the
convective flux of the liquid, along with the turbulence quantities, are prescribed at the inlet boundary, whereas at
the outlet the static pressure is specified and the normal gradient is zero for all liquid variables (Figure 4b). As for
the particles, they are normally injected at the inlet with a given velocity, and are allowed to escape the outlet. It is
worth noting that the applied boundary conditions scheme affects the length of pipe to be simulated to achieve fully
developed flow. In fact, whereas a short pipe length is sufficient in the case of periodic boundary conditions, the
domain must be longer if inlet—outlet conditions are used, since the flow must develop from the state imposed at
the inlet boundary. Assessing the length of the pipe to be simulated is a significant feature of slurry pipe flow

simulations.

outlet ——»

periodic BCs
|IIFR'-\.

wall

(a) (b)

Figure 4. Typical boundary condition schemes in the simulation of slurry pipe flows.

In both schemes, the pipe walls are treated as solid wall boundaries. No-slip conditions are adopted whenever the

mesh resolution is enough to calculate the boundary layer profile. Alternatively, if not enough refinement is
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possible, the wall shear stress according to a given law-of-the-wall, such as Launder and Spalding’s 23, and
different types of constraints on the turbulent variables are applied. As with other wall-bounded flows, the wall
boundary conditions play an important role in pipe flows. This is because upon colliding with a wall, the particle
exchanges linear and angular momentum. This may translate into an increase in the flow pressure drop, especially
for horizontal flows, and more so for rough pipes. After a collision, the particle must be reaccelerated by the fluid. In
order to maintain the mean fluid velocity, this reacceleration comes at the expense of increased inlet pressure. As

demonstrated by Huber and Sommerfeld 241, wall roughness can play a very important role in horizontal pipe flows.

Wall—particle collisions are typically modeled by imposing normal and tangential restitution coefficients, e, and

€t. which relate the normal and tangential components of parcel velocity after and before the impact against the wall,
that is,

e = (20)

where all symbols are indicated in Figure 5a. An important feature that deserves some attention is that, although
the derivation in 22 accounts for the particle finite radius during collisions, most implementations of the Euler—

Lagrange approach are performed under the point-particle approximation and they estimate the collision as if
occurring at the wall (Figure 5b).
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(a) (b)

Figure 5. (a) impact of a particle against a wall; (b) deviation between a trajectory calculate under the point-particle
assumption and the actual particle trajectory in the proximity of a wall.

2.2. Eulerian—-Eulerian Modelling (Two-Fluid Modelling)
2.2.1. Fundamental Conservation Equations

In the Eulerian—Eulerian approach, both phases are interpreted as interpenetrating continua and they are modelled
in the Eulerian, cell-based framework. This is achieved by solving for the fundamental mass and momentum

conservation equations for two media, namely, the carrier liquid and a fictitious fluid representing the fluid dynamic
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behavior of the ensemble of solid particles, called “solid phase”. The instantaneous equations of the two-fluid

model can be derived in different ways, and they typically read as follows:

aala V. GmE=0 1)

ot
B .5 50
u ~ ~ ~ - .
%ﬂ‘: + V- -gpuu=V-. (‘f’lﬂ'l) +¢mg+my + Vo @
&?:rﬂ.pﬂa v I i o~ " - (24\
5 T - Ppsvv =V - (éuﬂa)+¢umg+ﬂh+?'ﬂm f

2.2.2. Constitutive Equations

Equations (23) and (24) must be solved in conjunction with constitutive equations for the stresses tensors of the

two phases, o {k = |,5), and the typical approach is, once again, to split the two tensors into their isotropic and
deviatoric parts, that is

or=—ppl+ T (25)

The modelling of the deviatoric stress tensor of the liguid phase is rather straightforward, since the volume-
averaged analogues of the classical stress—strain relations of single-phase fluid dynamics are employed. For
instance, a typical constitutive equation used for Newtonian carriers is:

—~ - —~ - - ~ 2 ~
oo=-pl+n=—pl+tm [vu + (?u]+] + ()q — Ep]) (V-u)I (26)

where Al is called the second viscosity coefficient. Note that, in principle, the volume-averaged velocity field u™ is
not divergence-free for incompressible carriers. Therefore, the last term in Equation (26) is not identically zero,
even if it is usually neglected in Euler—Euler models, obtaining a formally similar relation as in the classical
Eulerian—Lagrangian approach (Equation (5)). However, the situation becomes more complicated for the solid
phase. Solving Equation (25), in fact, requires facing the non-trivial challenge of how to characterize from a
physical point of view (first) and how to evaluate (afterwards) the pressure and deviatoric stress tensor of the solid

phase. Generally, a solid-phase analogous of Equation (26) is employed, as follows:
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- . ~ . . - 2 -
o, =—pd+T1:=—pT+ ps [?v—l— [vv)'i'] + (-)ta _ E’uﬂ) (v-u]f (27)

The first viscosity coeflicient, g@e, is commonly associated with a kinetic effect, due to the free particle movement,
a collisional effect, due to the particle—particle collisions, and a frictional effect, when the solid volume fraction
approaches the packing value and particle interactions are reduced to frictional contacts. These effects are modeled
separately, by expressing g, as the sum of a kinefic viscosity, ps k. @ collisional viscosity, fs con. @and a frictional
VisCOSIty, Lg . that is:

Hs = e kin + fscoll + Mg (28)

The second viscosity coefficient, Ag. also called bulk viscosity of the solid phase. describes the resistance of the
agglomeration of particles against expansion and compression. As far as the pressure of the solid phase is
concerned, the typical approach is to split the product ¢.p, into three terms, as follows

bBs = PPt + Patin + Pocol (29)

where the sum of the kinetic component, pg kin. @nd of the collisional component, iﬁs,m]L is sometimes referred to as
solid pressure. As their names themselves say, ﬁs,h'n and .ﬁs,m]l are associated to the already mentioned Kinetic

and collisional effects, whilst 5&1_‘1 accounts for a sort of "buoyant” effect, that is, a fluid pressure gradient through a
collective of solids will exert a force on the particles, changing the particle pressure [39].

In most studies concerning the Eulerian—Eulerian modelling of slurry flows in pipes, the constitutive parameters
Hskin: Hscoll. s fr. Ag. ﬁsm, and ;ﬁmu were obtained from the Kinetic Theory of Granular Flow (KTGF), based
on the kinetic theory of gases where a granular temperature, G, is defined starting from the mean square of the
solids velocity fluctuations, such that

6, =—vv {30

In the KTGF, the six variables listed above are algebraic functions of ©s as well as other particle-related
parameters, such as the restitution coefficient of particle—particle collisions, the solid volume fraction at maximum
packing, and the angle of internal friction. The granular temperature, in turn, is obtained from the solution of its own
transport equation. However, other two-fluid models for slurry pipe flow simulation do not rely on the KTGF but use
empirical constitutive equations for ps and p’s. As far as ps is concerned, a possible approach was mentioned in

[39], which consists in estimating us from the viscosity of the mixture pm.

M = HePy + o (31)

2.2.3. Interfacial Momentum Transfer

The terms m'k (k = 1,s), called interfacial momentum transfer terms, account for the exchange of forces between

the two phases through their interface. Following Enwald et al. [39], these parameters can be expressed in terms of
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the interfacially-averaged pressure and deviatoric stress tensor, p”i and 17, as follows:

Ty = Ty, +ﬁ1v$k —Ti- v‘;k (32)

where ﬁi.‘: is referred to as generalized drag, and it is the same as 1 but evaluated in terms of the differences
Pr — P; and T — T;. On the grounds of Equations (25) and (32), the RHS of Equations (23) and (24) become:

-V (5;4?7;:) +V. (tﬁﬁ) + uorg + e + 5 Vh, — T Vo + V-ops (33)

After some mathematical manipulation and taking into account the different contributions of the solid pressure,
Equation (33) can be rewritten as:

—5;,‘?'151 — V (Psin +f*s,m11) +V. (Eﬁ-lﬂ) +
only if k== (34)
+$I=Pkg + ﬁg +(p; —m) vgﬁ —T- v‘;k + Ve ou

where, clearly, the second term is present only in the momentum equation of the solid phase. The last two terms in
Equation (34) are generally ignored in the two-fluid models used for simulating the type of flow considered in this
review, as well as the pseudo-turbulent stresses tensor term, V - Opt k- Therefore, the typical formulation of the
momentum equations of Eulerian—Eulerian models is:

[t ~ ~ . ~ ~ - .
%ﬂt +V-¢puu=—¢Vp, +V- (‘-ﬁlfl) + ¢1mg + *mf (35)

&b;’-'iﬂ +V. gapaﬁ = _gavﬁl -V {ﬁs,ﬁn +ﬁs,m]l:] +V- (gai:a) + gapag + ﬁl‘: (36)

Owing to already mentioned momentum mass and momentum coupling constraints, it immediately follows that
ﬁl.g = —rhf'_ The generalized drag force acting on a suspension of solid particles is typically evaluated by

employing the surface force models already introduced in Section 2.1. The drag force is the dominant term in most
slurry pipe flows; under the assumption of considering only this effect, ﬁfl.g is calculated as:

~d Nd_prlm_NP 1 -~ dg
W W

m = —my 5aCa ?TI) |l — o] (u— i':)] (37)

where Np is the number of particles in the volume W, and f ., is output of the drag force model evaluated with

respect to the volume-averaged velocities @ and . Similarly, C'q means that the single-particle drag coefficient
correlations are employed with the particle Reynolds number evaluated in terms of | — ©|. Considering that:

NP ‘rba

_r _ s (36)
W afym(defy)?
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it is possible to rewrite Equation (37) as

3 ~ ~ _ —

~d ~d - -

m;, =—m; = —¢ mCya|u—v|(u—0v) (39)
i

2.2.4. Modelling of Turbulent Flows

The equations illustrated so far are intended to be the instantaneous ones, valid for both laminar and turbulent
flows. However, to keep the computational burden within acceptable limits and meet the engineering needs, the
modelling of turbulent flows is generally carried out by solving only for the mean flow or the largest scales of
turbulence. However, the Eulerian—Eulerian analogous of the RANS approach for single-phase flow is definitely
complex to derive, as well as to characterize and justify from a physical point of view. In this regard, the double-
average approach provides a strong mathematical ground for the derivation of the two-fluid models for turbulent
flows. Essentially, the idea is to start from the instantaneous, volume-averaged equations and apply a second
averaging operator, obtaining double-averaged equations whose unknowns are the double-average of the fluid
dynamic variables (pressure, velocity, volume fraction, etc.). For the second averaging operator, two main options
have been documented in the literature. The former consists of applying the same time average operator in

Equation (6) to all volume-averaged variables, that is,

ne=[ f’!’ D (1) dr “

The latter option is to use the time average for all variables except for the velocity, to which the Favre operator is

applied

@) (rt) =22 (5) (r,1) = &2 @)

=

B

As illustrated by Burns et al. 28, the fundamental conservation equations assume different forms according to the
second averaging operator applied. This is immediately evident in the mass conservation equations. After time-

averaging, the mass conservation equations become:
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01

5 YV gpm+ V- pda =0 “2)
3"‘;‘”’ +V -3+ V- pd =0 )

L
where tﬁl, qﬁs, u’, v’ stand for the fluctuating component, namely, the difference between the instantaneous variable
and its time-averaged value. Conversely, if the second averaging operator for the velocity is the Favre one, the
double-averaged mass conservation equations read as follows:

O + V- Gy (i) = (44)
at
=B V- Gun(8) =0 )

Comparing the two sets of equations above indicates that, when time-averaging of the volume-averaged mass
conservation equations is performed, two additional terms come up, associated with the double correlations
between the fluctuating velocity vector and the fluctuating volume fraction. These terms require modelling, which is
typically achieved through the gradient diffusion approximation, initially proposed by Spalding 27 pased on an
analogy between the turbulent dispersion of solid particles and the turbulent diffusion of a passive scalar:

b =—1vg g =—"vg, (46)

Whatever the second averaging operator is, double averaging of the momentum conservation equations produces
several terms depending on double and triple correlations between fluctuations, which need to be modelled by
additional closures. Elghobashi and Abou-Arab 28] reported the equations obtained by time-averaging the volume-
averaged equations, and the momentum ones consist of about 15 terms. Most of these terms are simply ignored in
commonly used two-fluid models, either because they are small or difficult to estimate. One might think that
ignoring some terms might deviate the numerical solution from the physical one. However, it should be borne in
mind that closure correlations are never exact, but they rely on approximations and empiricism: therefore, there is
no guarantee that adding more closures results in higher accuracy, unless there is no doubt that such closures are

applicable to the specific case study under investigation.

Given that, the double correlations associated with the convection terms are usually taken into account in slurry

flow simulations. In the case of time-averaging of all variables, they are as follows:
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it = put+ ¢y - WU + ptl - U+ GUT ~ pun+d - U +Hu -u (@7)
— e —m =m ™ oie - —_—— = o= ~t., = .
guv=¢p v+ ¢, v+ 0 v+ o0V =P v+, VY + 0 -0 (48)

whilst, if the volume-average velocity is Favre-averaged, the form of the double-averaged convection terms is:

fﬁ']““ = ‘f’l () () + ¢'1 H,,,,.,,, (49)

.50 = ,(5)(6) + $,0"%" (50)
where @ and @" are the differences behnreen the volume-averaged velocity vectors and the Favre averaged
quantities, that is &' = u — () and T =v— (). The three terms on the right-hand side of Equations (47) and

(48) are as follows the first ones, ¢5]nu and -:;flsw include only the primary unknowns of the CFD simulation; the

second ones, ¢51 - '@ and gfls ] . involve double correlations between the fluctuating velocities; the third ones,

~_ . = ~ _, =
2 -u and ¢,0 -, involve double correlations between the fluctuating velocities and the fluctuating volume
1 g

fractions. The correlations giﬁ' and Eﬁ;ﬁ’ can be modeled through the gradient diffusion approximation (Equation
(46Y)), and this explains why phase diffusion terms are present also in the momentum conservation equations.
Conversely, Equations (49) and (30) include only two terms, the former with the primary unknowns and the latter
consisting of triple correlations.

The modelling of terms al @' and ::ﬁl-t"i"-ﬁ" is typically made as for the Reynolds stresses in single-phase
flows, that is, either by solving for transport equation for each of the six independent terms or by applying a
Boussinesg-like approximation (Equation (11)), which generally has the same form for the two types of averaging
operators:

(52}

|
=
=4
3]
EE
gl
——
2
£l
-+
3
g
=
|
|
oy
oy
S

As in single-phase flows, the last terms of Equations (51) and (52) do not appear explicitly in the momentum
equation of the liquid, as they are usually combined with the pressure gradient one (see Section 2.1). In such eddy
viscosity based models, ptl is obtained from two-phase analogous of the turbulence models for the single-phase
case. A formulation of the two-phase k-¢ turbulence model consistent with the time- and volume-averaged
operators was derived by Elghobashi and Abou-Arab [58], in which the two equations for the turbulent kinetic

energy and the turbulent dissipation rate consist of 38 and 67 terms, respectively. However, much simpler
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formulations are used in engineering computations. For instance, the two-phase k-¢ turbulence model by Spalding

[56] has been frequently used to simulate turbulent slurry flows in pipes, and it reads as follows:

As in single-phase flows, the last terms of Equations (51) and (52) do not appear explicitly in the momentum
equation of the liquid, as they are usually combined with the pressure gradient one (see Section 2.1). In such eddy
viscosity based models, p.f is obtained from two-phase analogous of the turbulence models for the single-phase
case. A formulation of the two-phase k- turbulence model consistent with the time- and volume-averaged operators
was derived by Elghobashi and Abou-Arab [58], in which the two equations for the turbulent kinetic energy and the
turbulent dissipation rate consist of 38 and 67 terms, respectively. However, much simpler formulations are used in
engineering computations. For instance, the two-phase k-e turbulence model by Spalding [56] has been frequently
used to simulate turbulent slurry flows in pipes, and it reads as follows:

i kl - = e 4 - t _
3¢$ +V-¢puky = —V- [¢1 (m + %) Vhk|+ép(Py —a)+V- (%-‘q‘?tﬁl) (53)
Mpe | T = = M = & B o= .
at +V-dypuer=-V- | | m+— | Va| +¢ym—(Crq Py — Coqa) + V- | —aVe (54)
0 k o
klz CCY
= C"IPIE (55)
where Py, is the volumetric production rate of k
F'T 1 = =yt =
P}q=2;-§[?u+(vu) ] :Vu (56)

Mandg et al. (22 identified the main criticism of turbulence modulation models in the fact that, according to their
derivation, they can predict only either turbulence attenuation or turbulence enhancement, as typical of particle-
laden flows with fine and coarse particles, respectively. In order to overcome such limitations, these authors
proposed a comprehensive model which can predict both effects at the same time. Such model, employed for
simulating gas—solid flows using the Eulerian—Lagrangian approach, which was later generalized and applied to the
Eulerian—Eulerian modelling of slurry flows in vertical pipes by Messa and Malavasi 9. However, a key issue is
that all available correlations were developed for dilute flows in the two-way coupling regime, for which the solid
content is much lower compared to the high concentrations encountered in hydro-transport applications. The effect
of turbulence modulation on the behavior of dense slurry flows, and its modelling, is an open problem. Indeed, in
some papers the same expressions of the source term derived for dilute flows have been applied to dense liquid—
solid flows in pipes, using the KTGF and empirical formulas for evaluating the correlations between the fluctuating
velocities (e.g., B1)); however, no discussion was provided around the validity of such approach, nor it was

assessed the actual impact of these terms on the CFD solution.
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A peculiar feature of double-averaged two-fluid models resides in the modelling of the generalized drag terms,
1?11'1 = —ﬁ].sd. If only the contribution of the drag force is considered, which, as already remarked, is usually the
dominant interfacial force in most slurry pipe flows, then ﬁzf' takes the form of Equation (39), but it is convenient to
rewrite the formula as

~ d - — T - -
7} = Gy, (6 — @) = Dyd, (u — ) (&)
where
Ci = Didy = —funCa i — 9
s = s — o @sAld (U — T (53)
4d,
According to Burns et al. (281 a reasonable first approximation is to treat as constant during the averaging

process. Under this assumption, time-averaging of Equation (57) yields:

ﬁ:lii = Did, (i_u? - E) + -Dla‘};: v —u (59)

E=n —_ e o~
Considering that ¢, + ¢, = 1 and that ¢, = —¢,. the last term in Equation (59) is identically zero if the

-d _
gradient-diffusion approximation is made. Therefore, Ty and Ty are obtained by the same expressions of the

instantaneous, volume-average values (Equation (39)), but evaluated in terms of the double-averaged variables 53,

u, v

Conversely, if expressed in terms of the Favre-averaged velocities, Equation (59) becomes:

vy = D, ((8) — (@) + iy -

= td
where the additional term 1 s called turbulent dispersion force and it is given by

(61}

Y A

éa tJf:'l éa

On the grounds of what was stated before, when introducing the gradient-diffusion approximation, the last term

disappears, whilst the first two can be arranged, yielding:
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Ve, Vi - - t (Ve Ve
A (e T8 2 2 S - @ (L T4 @

= td = td —
my, =-—m, =Dyod,— | —= —
A7\ ¢, & 7\ ¢ @

where {5.1} means that the particle Reynolds number used for the evaluation of the drag coefficient is evaluated
with respect to the modulus of the relative Favre-averaged velocity, that is, |(@) — (@}|. The derivation reported
here above suggests that, in two-fluid model for turbulent flows, the turbulent dispersion of solid particles is
accounted for in different ways according to the type of averaging operator considered: if all variables are time-
averaged, this effect is modeled through the phase diffusion terms in all conservation equations; conversely, if
reference is made to the Favre-averaged velocities, a turbulent dispersion force is infroduced as part of the
generalized drag. Note that, in both cases, there appears an empirical coefficient, that is, the turbulent Schmidt
number for volume fractions. o.

The discussion above can be summarized into the typical set of eddy-viscosity based mass and momentum
conservation equations reported hereafter. In these equations, for the sake of simplicity and for easier comparison
between the different models, the capital letters are used to denote any type of double averaged quantities, e.g., ®g

for 55, U for either @ or (@), etc. Note that the same symbols U and Fj are used in Section 2.1 to denote the
fime-averaged velocity vector and pressure of the liguid in one-way coupled Eulerian-Lagrangian models.

t
ot o (63)
—_——
)
t
Oy G G pV-V. ( ﬂw:-ﬁ) —0
no (64)
M
2l | V- &pUU
——&VA+V-& { (i +u) [VU+(VO)'| - 2 (V-U) T - 2opiT |
¢ (85}
+dipg+ ME+ V. (%Uvd:l) + M
‘ )
M
o V- 0,0, VV
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where the phase diffusion terms (1) and the turbulent dispersion force (ll) are mutually exclusive of each other.

2.2.5. Boundary Conditions

Particularly, in the periodic scheme, the fluid dynamic characteristics of both phases are imposed to be the same at
the first and last slabs of cells, and the total mass flow rates of the two phases are specified. Conversely, in the
inlet—outlet scheme, which is the most commonly employed in the two-fluid framework, the conditions are as
follows. The convective flux of each transported variable must be specified in all surface cells of the inlet boundary,
and, practically speaking, this requires imposing the distributions of the locally averaged volume fractions and
velocities of the two phases, in addition to those of the turbulent parameters, such as k and €, and, in the case of
KTGF-based models, also that of the granular temperature, ©@s. At the outlet boundary, the pressure of the liquid

phase is specified and held constant, and the normal gradient of all other variables are zero.

Whatever the boundary conditions scheme is, the pipe walls are treated as solid wall boundaries. The conditions
imposed to the carrier fluid phase are very similar to those of single-phase flow simulations, that is, zero advection
flux from all surface cells, the prescribed value of wall shear stress according to a given law-of-the-wall, such as
Launder and Spalding’s 23, and different types of constraints on the turbulent variables. Conversely, the modelling
of the wall boundary conditions for the solid phase is one of the key issues in the Eulerian—Eulerian modelling of
slurry pipe flows, since this feature has a considerable impact on the prediction of the additional flow resistance
owing to the presence of the particles. Sometimes, a no-slip condition is applied to the wall solid phase velocity,
whereas a more commonly used option in two-fluid models based on the KTGF is the partial slip condition of
Johnson and Jackson 2, Messa and Malavasi 23 developed a solid wall boundary condition for application to
slurry flows in pipeline systems, which is based on a blending between a log-law wall function for small particle

sizes and an empirical, Bagnold-like formula for big particle sizes.

2.2.6. Multi-Fluid Modelling

An extension of the two-fluid model to an arbitrary number of dispersed phases is proposed, which is called a multi-
fluid model. In the simulation of slurry pipe flows, the multi-fluid model could be employed for application to slurries

with broadly graded particle size distribution. This is achieved by dividing the particles into

classes, each characterized by representative particle size, and solving for pairs of mass and momentum
conservation equations for the solid phase, in addition to the corresponding equations for the carrier liquid. Clearly,
the  +1 phases are subjected to mass coupling, meaning that the volume fractions must sum up to a unit value,
and to momentum coupling, through the action—-reaction principle. Particularly challenging is the modelling of the
momentum transfer among the phases, noting that these include both the interactions between the carrier liquid
and each individual solid phase, through the fluid—particle forces, and those between two solid phases, generated
by the collisions and contacts between particles of different sizes. Conversely, the collisions between particles
belonging to the same size class are accounted for through the constitutive equations for the stresses tensor of
that class. In the few applications of the multi-fluid model to slurry pipe flows reported in the literature, two particle

classes are considered, and the closure and constitutive equations were obtained from the KTGF.
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2.3. Mixture Modelling

The mixture model can be regarded as a simplified formulation of the multi-fluid model, which is applicable only
under specific assumptions on the flow. Perhaps the most complete overview of the mixture model was provided by
Manninen et al. B4, who derived the fundamental equations starting from the Eulerian, double-averaged mass and
momentum conservation equations of each phase. For the sake of simplicity, the origin of the mixture model
equations will be explained for a slurry with a narrow particle size distribution, for which a single dispersed phase
can be defined. However, the main strength of the mixture model resides in the fact that it can be easily extended
to an arbitrary number of dispersed phases; this is particularly useful, for instance, to simulate slurry flows with
broadly graded particle size distribution without incurring into the high computational burden and numerical

criticisms of multi-fluid models.

2.3.1. Fundamental Conservation Equations

As its name implies, the primary variables of the mixture model are the properties of the mixture, intended as the
sum of the two phases. The mass conservation equation for the mixture is obtained by summing up the
corresponding equations of the individual phases. If we assume that the double-averaged velocities are the Favre-
averaged ones, so that no phase diffusion terms appear in the continuity equations, by summing up Equations (63)

and (64) we get:
Opm

E+‘F-mem=[] (B7)

where py, and Uy, are the density and the velocity vector of the mixture, defined as:

Pm = 1o + $yp, (68)

1
Uy, = P (U + .0, V) (69)

The momentum equation for the mixture, as presented by Manninen et al. 34, is
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Opm U
p';t + V- pUpUy = —Vpr +V - (1 +78) + V- 7 + g (70)

where Vpy,, V-7, V- T[E, can be regarded as the pressure gradient term of the mixture, the viscous stresses
term of the mixture, and the “"Reynolds"-like stresses term of the mixture, and they are basically associated with the
sum of the terms for the elementary phases. Conversely, V - Tpy IS called diffusion stress term, and it arises when
expressing the convective acceleration term in terms of the density and the velocity of the mixture:

V-1pm = V- (1pUnUn + upUnsUns) 7

In the equation here above, Uy = U — Uy, and U,y = V — Uy, are called diffusion velocities. In principle,
the momentum equation of the mixture shall be obtained by summing up the two momentum equations of the liquid
and solid phases. Nonetheless, it appears to be difficult to derive Equation (70) from the double-averaged eguation
subject of discussion in Section 2.2.4. This suggests that Equation (70) is, in itself, a simplified formulation of the
real momentum equation for the mixture; possible neglected terms might be small for most particle-laden flows of
engineering interest, or they can be accounted for indirectly through appropriate closure equations.

The third equation of the mixture model is the mass conservation equation of an individual phase. If the solid phase
is considered, and the density of the solids is, as usual, assumed constant, the third equation reads as:

In the equation here above, Uy = U — Uy and Uy, = V — Uy, are called diffusion velocities. In principle,
the momentum equation of the mixture shall be obtained by summing up the two momentum equations of the liquid
and solid phases. Nonetheless, it appears to be difficult to derive Equation (70) from the double-averaged equation
subject of discussion in Section 2.2.4. This suggests that Equation (70) is, in itself, a simplified formulation of the
real momentum equation for the mixture; possible neglected terms might be small for most particle-laden flows of
engineering interest, or they can be accounted for indirectly through appropriate closure equations.

The third equation of the mixture model is the mass conservation equation of an individual phase. If the solid
phase is considered, and the density of the solids is. as usual, assumed constant, the third equation reads as:

"5‘;* 4V -0, = V- b,U, @)

Equations (67), (70) and (72) do not constitute a closed system of equations, as they contain a number of

unknowns that is higher than the number of equations. Therefore, additional closures equations are needed, as
discussed in the next section.

2.3.2. Closure Equations
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A first additional equation is needed to evaluate the diffusion velocities of the two phases, namely,
Up=U—-U, and Uy, =V — U, Both quantities appear in the momentum equation of the mixture
(Equation (70)), as part of the diffusion stress term (Equation (71)), whereas Ups alone appears also in the mass
conservation equation of the solid phase (Equation (72)). The two diffusion velocities Uy and Upg are not

independent of each other, as it is evident from the relation between the diffusion velocities and the relative velocity,
Uu-Vv:

Um]=( —%)[U—V} Um=—( —%)[U—V} 73

Therefore, before solving for the momentum equation of the mixture and the mass conservation equation for the
solid phase, an estimate of the relative velocity must be given.

In the general formulation of Manninen et al. 34 the relative velocity is obtained by combining the momentum
equation for the solid phase (Equation (66)) and the momentum equation of the mixture (Equation (70)), applying

several simplifying assumptions. The final, implicit expression for the relative velocity reads as follows:

[ Fl -t [ . [ [ Fl

%W(%)a (s — Pu)

;mw(%)ﬂcd VU

[ﬂr —(Un-V)U, — %] + 2‘“ Vo, (74)

V-U-=

where the drag coefficient is a function of the particle Reynolds number defined with respect to the modulus of the
relative velocity, |V" — U, the particle diameter, dp the density of the carrier liguid, pp. and, in general terms, the
viscosity of the carrier liquid, g (note that specific strategies have been developed to account for concentration
effects on Cyq, as it will be discussed in Section 3.2). The last term in Equation (74) is a correction factor applied to
the relative velocity to account for the effect of the turbulence fluctuations, and, indeed, its analogy with the turbulent
dispersion force introduced in Section 2.2.4 for the Eulerian—Eulerian model is evident. Specifically, the expression
in Equation (74) includes a diffusivity coefficient, Dhs, which needs to the modeled, and the relative gradient of the
solid volume fraction, V&, /®;_ In order to stress this aspect, Manninen et al. [35] introduced the symbol Ulgq to
denote the solution of Equation (74) without the last term. Therefore Equation (74) is sometimes written as:

Uiso = ) [g— (UnV:)Un — %] (75)

Vo, 7e)

Although, strictly speaking, Equation (74) is a closure equation which accounts for the momentum transfer between
the phases, it has sometimes been regarded as the last fundamental balance equation of the mixture model,
alongside the mass conservation equation of the mixture (Equation (67)), the momentum conservation equation for
the mixture (Equation (70)), and the mass conservation equation of the solid phase (Equation (72)). However,

several other closures are required to close the system of the four equations.
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For instance, for the viscous stresses in Equation (70), different modelling options are considered, but the simplest
—yet commonly made—choice is to employ a Newton-like approximation made at the scale of the mixture, as

follows,

Tm = fm [‘E’Um + {?Um}"] + (Am — g,u,m) (V-Un)I (7

Calculating the relative velocity is necessary because this term appears twice in the other conservation equations.
Firstly, it appears as part of the diffusion stress term in the momentum equation of the mixture, V-tDm. After some

rearrangements, Equation (71) can be rewritten as

Calculating the relative velocity is necessary because this term appears twice in the other conservation
equations. Firstly, it appears as part of the diffusion stress term in the momentum equation of the mixture, V - Tpm.
After some rearrangements, Equation (71) can be rewritten as

b p.
P

‘F-mm=—?-[pm (I—T){V—U}{V—m] (78)

so that the dependence upon ¥V — U becomes evident. According to Manninen et al. [35], in the eqguation here
above ¥V — U might be replaced by Ul g, because the diffusion component of the relative velocity is a second-
order term in the momentum equation. However, this component is not neglected in the Ansys Fluent code.
Secondly, ¥ — U appears in the mass conservation equation for the secondary phase, Equations (72) and (73).
However, in this equation, the diffusion component of ¥V — U is not neglected in the two formulations.

The last closure needed in the mixture model is the one for the Reynolds-like stresses term of the mixture,
V - 1L, which appears in the momentum equation for the mixture. As for V - 7. different modelling options are
available, and the simplest one seems to apply a Boussinesq-like relation at the scale of the mixture:

Th =ty [VUL + (VUL)'] - %pmkm-r 79)

2.3.3. Boundary Conditions

To the best of our knowledge, in all studies concerning the application of the mixture model to slurry pipe flows, the
combination of inlet and outlet boundaries was employed (Figure 7b). At the inlet, the distributions of the solid
volume fraction and of the velocity of the mixture are imposed, in addition to those of the turbulent parameters,
such as and . At the outlet, the pressure of the mixture is specified and held constant, and the normal
gradient of all other variables are zero. At the solid walls, the same conditions of single-phase simulations are
applied to the mixture. That is, a no-slip condition, which corresponds to zero advection flux from all surface cells;
mixture-based wall functions to evaluate the mixture wall shear stress; different types of constraints for the

turbulent parameters.
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