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Only four studies have attempted to investigate ISG proteins by proteomic analysis to date. These studies employ
various combinations of density gradient centrifugations, in silico analyses, and immunoprecipitation techniques .
As a result, Li and colleagues identified 81 total ISG proteins from the INS-1 rat beta-cell line, while Schvartz et al.
identified 140 ISG proteins, Hickey et al. identified 51 ISG proteins, and Brunner et al. identified 130 ISG proteins
from the INS-1E rat beta-cell line. Proteomic data obtained from these four studies on ISG proteins from INS-1 or
INS1-E cells produced a total of 5 proteins that were consistently identified. These were: Insulin-1 (Ins1), Insulin-2
(Ins2), Carboxypeptidase E (CPE), Chromogranin-A (CgA) and Prohormone convertase 2 (PC2). Rat beta-cells
synthesize two different forms of insulin encoded by the Insl and Ins2 gene that share 90% homology [66,67],
hence two insulin forms found in these proteomes. Though different isolation techniques would influence the
proteins identified, one would expect that using similar cell lines would result in more than a handful of proteins

consistently identified across all four studies.

insulin secretory granule beta-cells granule protein purification

| 1. Intravesicular Proteins

The most consistently identified intravesicular proteins in the proteomic studies were the previously well-
characterised ISG proteins insulin (Insl and Ins2), CPE, PC2 and CgA RIEEBI4E piscovery of proinsulin
processing of labelled insulin & and CgA [ have allowed subsequent studies to identify localization of PC1/3 [&],
PC2 B and CPE 19 as ISG localized enzymes. While all proteomes identified PC2 and CPE, PC1/3 was
discovered only in two studies 1122 Other intravesicular proteins identified were from the chromogranin-
secretogranin protein family. CgA in particular was identified in all four studies, with full-length CgA believed to be
important for the biogenesis of granules in beta-cells (12, Interestingly, CgA knockout mice display a reduced islet
number, beta-cell to alpha-cell ratio and plasma insulin levels 24l: however, they exhibit normal blood glucose
levels, as a result of compensation from other granin proteins Bl. CgB has been suggested to not be specifically
involved in granule formation but instead is essential in the secretion of insulin and other islet hormones such as
somatostatin and glucagon 22!, However, through pulse-chase labelling of CgB, Bearrows et al. show that in the
absence of CgB, there is a delay in proinsulin trafficking from the TGN followed by a reduction in nascent ISGs at
the plasma membrane 18, CgB was identified in three of the four ISG proteomes (all but Li et al.). Significantly,
aside from the full-length granins, PC1/3 and PC2 also cleave granins to form active peptides ¥, Beta-granin is
an example of a CgA derived peptide identified by Li et al. and is proposed to inhibit insulin secretion through
unknown mechanisms 28], This emphasises technical challenges in peptide identification in proteomics analysis, to

differentiate the presence and eventual function of both granins and their derived peptides in future studies.
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Hydrolases were found in two of the proteomics analyses 1229, Cathepsins B and L were identified by Brunner et
al. and are most intriguing as these proteins have been previously shown by electron microscopy to localise in
immature 1SGs, while cathepsin L alone remains in mature ISGs 2. While some hydrolases have previously been
described within ISGs [22l23], other hydrolases present in proteomic analysis may be appearing due to crinophagy
processes of ISGs with lysosomes 221241 As such, further validation of hydrolase proteins will be essential to help
elucidate their role in ISG biogenesis and processing. Particularly, the validation of cathepsins present in immature
and mature ISGs demonstrates that these enzymes may follow sorting mechanisms out of immature ISGs via the
mannose 6-phosphate receptor 2123l This adds weight to the ‘sorting by retention’ and ‘sorting by exit' hypotheses

in ISGs, in which immature 1ISGs may target proteins either for retention in maturing granules or exit towards the
lysosome [2L1[201[26]

| 2. Membrane Proteins

A substantial proportion of ISG proteins identified by the proteomic analyses were membrane-bound or membrane-
associated proteins. Of this group, the most commonly identified were synaptobrevin proteins (VAMPS), including
Vamp3 L2922 \yamp7 and Vamp8 29, VAMPs interact with their cognate t-SNAREs and other proteins that
mediate the fusion of vesicles to the target membrane (2728 which in turn interact with a variety of presynaptic
proteins and g-SNAREs to form the complete SNARE complex 29BAUBL \vamp2 was first described as an I1SG
localised v-SNARE protein B2 by ¢cDNA cloning and confocal microscopy. Brunner et al. then identified Vamp2 in
their proteomics analysis and following this, Hickey et al. used Vamp2 antibodies to immuno-purify ISGs.
Surprisingly, Hickey et al. and Li et al. do not identify Vamp2 in their proteomes, with Hickey et al. suggesting that it
and many other docking proteins potentially remained on the immunoaffinity beads 19. If these membranal
proteins were left unidentified, this may explain why fewer proteins (51) were identified in comparison to other

proteomes.

Rab proteins were also found to be enriched with ISG fractions. Rab proteins are a family of GTPases from the
Ras superfamily B3 that modulate several stages of vesicle trafficking and fusion of I1SGs with the plasma
membrane [B4I35, Through proteomic analysis and colocalisation imaging, Brunner’s study illustrated that both
VAMPS8 and Rab37 are novel ISG associated proteins that colocalise with ISGs of INS1-E cells 29, Previous to
this, only 30 proteins were described as ISG associated proteins in beta-cells 22 and information surrounding the
trafficking of ISGs was limited. Their proteomic analyses and validation of novel proteins suggested a more
complex trafficking process than previously established in beta-cells. Other SNARE complex proteins present in
the proteomes include syntaxin5 and 12, (Stx5, Stx12) 11 and granuphilin 22, However, these proteins are
believed to be localised to the plasma membrane B8 and not on ISG membranes, suggesting that they were

present in contaminant co-purification with 1ISG fractions.

Many ATPase subunits were commonly identified in the four proteomic analyses, most notably the vacuolar-
H* ATPases (V-type). These V-type ATPases have been previously shown to be localized to I1SGs in beta-cells 37,
and are important in producing and maintaining a proton gradient by acidifying the granule BZIB8I39 Thjs facilitates

the maturation of ISGs “9 as well as maintaining a suitable pH for intravesicular enzymes 124 Many other
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subunits of ATPases identified are lysosomal isoforms and should be validated as to whether they are genuine ISG

proteins or proteins co-purified with ISGs.

| 3. Other Proteins

The remaining proteins identified with non-specific or unknown localization in ISGs are often grouped in these
studies. These include cytoskeletal, cytoplasmic and organelle localized proteins. The cytoplasmic proteins
identified range from mis-folding chaperones 12l and isomerases (PDIA3) 2% to N-ethylmaleimide sensitive fusion
protein 1122 Whether these proteins are genuinely 1SG-associated, or technical contaminants, requires further
validation. Different cytoskeleton-associated proteins are found across all four proteomes. Alpha-centractin 12,
alpha and beta-actin 121 and kinesin subunits 12 are some examples of cytoskeletal associated proteins identified.
ISGs are transported along microtubules by kinesins 42 and cytoskeleton remodelling is critical for ISG trafficking
during glucose-stimulated insulin secretion [43l. The presence of these proteins is therefore unsurprising, though
are likely present due to co-purification of these proteins through the isolation of ISGs. Indeed, the presence of
proteins localized to the ER, Golgi, mitochondria and lysosomes are also commonly observed across all four
studies. Examples include Erp44 (ER), Glgl (Golgi), SHMT (mitochondria) and Lampl (lysosomes) L1212 |t s
difficult to prevent the copurification of these proteins using present isolation techniques and their co-localisations

with ISGs need further validation.

The presence of isomerases and proteins involved in protein folding is quite surprising. Hickey et al. in particular
find a striking number of chaperone proteins (~20% of proteins identified) 12, Recent studies have shown that ER
chaperone proteins are vital in proinsulin handling and insulin-like growth factor folding “4; however, none of these
ER-resident proteins have been shown to be localized in ISGs. Interestingly, Stanniocalcin-1 (STC1) or its
precursors were found in three of the four proteomes (Li, Schvartz, Brunner). STCL1 is found in many tissue types
such as muscle, kidney, adrenal and lung 2. Human STC1 protein is described as an uncoupler of oxidative
phosphorylation in mitochondria 28, and has been implicated in apoptotic mechanisms and carcinogenesis 42, Its
function in beta-cells is not well understood, however; immunocytochemistry, and in situ ligand binding and
hybridization 48 show that STC1 colocalizes with insulin in mouse pancreatic beta-cells. The abundance of these
chaperones, alongside identification of proteins such as STC1, illustrates the importance of ISG proteomics as a
rich source of data to potentially identify novel ISG proteins that may modulate different processes of ISG
biogenesis, trafficking, and secretion. Altogether, these studies highlight the importance of developing improved
purification techniques that restrict isolation of ISGs to granules post-sorting and packaging from the TGN, and

before degradation.
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