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Bile acids (BA) are amphipathic steroid acids synthesized from cholesterol in the liver. They act as detergents to
expedite the digestion and absorption of dietary lipids and lipophilic vitamins. BA are also considered to be
signaling molecules, being ligands of nuclear and cell-surface receptors, including farnesoid X receptor and Takeda
G-protein receptor 5. Moreover, BA also activate ion channels, including the bile acid-sensitive ion channel and
epithelial Na+ channel. BA regulate glucose and lipid metabolism by activating these receptors in peripheral
tissues, such as the liver and brown and white adipose tissue. Recently, 20 different BA have been identified in the
central nervous system. Furthermore, BA affect the function of neurotransmitter receptors, such as the muscarinic
acetylcholine receptor and y-aminobutyric acid receptor. BA are also known to be protective against

neurodegeneration.
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| 1. Introduction

Bile acids (BA) are synthesized from cholesterol in the liver and are a significant component of bile. They are
stored in the gallbladder and released into the small intestine after a meal. BA are amphipathic steroid acids and
are known as indispensable detergents, expediting the digestion and absorption of dietary lipids and lipophilic
vitamins by forming micelles in the small intestine. Recently, they have also been considered to be signaling
molecules. They are now recognized as ligands of farnesoid X receptor (FXR), a nuclear hormone receptor, and
Takeda G-protein receptor 5 (TGR5), a G-protein-coupled receptor (GPCR) that is also known as G protein-
coupled bile acid receptor 1 (GPBAR1) &,

Bile salt composition of a variety of vertebrate species is validated. Bile salts include C,; bile alcohols, C,; bile
acids, and C,4 bile acids. Cy4 bile acids exist in all vertebrates, although C,; bile alcohols and C,; bile acids exist
in fish, amphibians, reptiles, and birds [&. 5a-C,; bile alcohol sulfates are considered as the first ancestral bile
salts. 5a-cyprinol sulfate is 5a-C,- bile alcohol sulfate and activates FXR from the frog and the zebrafish, but not
from the human and the mouse. In contrast, taurochenodeoxycholic acid (TCDCA) and lithocholic acid (LCA)
activate FXR from the human and the mouse, but not from the frog and the zebrafish. Thus, the structure of FXR

may be changed to adapt to bind species-specific bile salts 2.

| 2. Neurological Functions of BA
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Twenty different BA and their receptors have been identified in the brain, implying that BA have physiological and
pathophysiological roles in this tissue (Figure 2), and indeed, many studies of their physiological roles in the brain

have been reported.
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Figure 2. Protective functions of bile acids (BA) against neurodegeneration. BA are known to prevent the
accumulation of amyloid B peptides in Alzheimer’s disease; protect against mitochondrial damage in Parkinson’s
disease; protect against apoptosis, mitochondrial damage, and ubiquitin accumulation in Huntington’s disease; and

protect against apoptosis in amyotrophic lateral sclerosis.

2.1. The Role of BA in the Brain

BA affect the functioning of the receptors for several neurotransmitters, including M, and Mjz muscarinic
acetylcholine receptors, y-aminobutyric acid (GABA) type A (GABA,) receptors, and N-methyl-D-aspartate (NMDA)
receptors. TCA, GDCA, and TDCA activate the M, receptor, while DCA activates the M5 receptor. M, receptors are
distributed throughout the brain and are crucial for cognitive function. However, M3 receptors are localized to
neurons, which project to regions such as the hippocampus and substantia nigra, although they are also expressed
at low levels throughout the brain. Thus, BA may affect cognitive function, memory, and learning . NMDA
receptors are ionotropic glutamate receptors that are activated by the simultaneous binding of both glutamate and
D-serine or glycine Bl Their activation causes CaZ* influx, which can induce long-term potentiation and long-term
depression. Therefore, appropriate NMDA receptor activation is important for learning and memory . In contrast,
the GABA, receptor is an ionotropic GABA receptor that is a ligand-gated chloride ion channel. The activation of
GABA, receptor causes an influx of chloride ions, leading to the hyperpolarization of neurons and the inhibition of
neurotransmission 8. CDCA, DCA, and CA block both GABA, and NMDA receptors [, Histaminergic neurons in
the tuberomammillary nucleus (TMN) of the hypothalamus play an important role in arousal and wakefulness 2
and express GABA, receptors; thus, the suppression of histaminergic neuronal activation in the TMN by GABA
induces sleep 1. Conversely, UDCA increases arousal by blocking GABA, receptors on TMN neurons 2],
Moreover, a recent study has demonstrated that TUDCA can induce neurogenesis in adult rats 13, Adult
neurogenesis is the process of generating new functional neurons that are added to the adult brain and occurs in
two specific regions: The subgranular zone (SGZ) of the dentate gyrus (DG) in the hippocampus and the

subventricular zone (SVZ), located in the walls of the lateral ventricles. Neural stem cells (NSCs) in the SGZ of

https://encyclopedia.pub/entry/13726 2/9



Neurological Functions of Bile Acids | Encyclopedia.pub

adult mammals generate neurons in the DG. NSCs in adult human SVZ may produce functional neurons in the
striatum by migrating there. In contrast, NSCs in adult rodent SVZ may produce functional neurons in the olfactory

bulb 241 |n the rat, TUDCA increases the proliferation and neural differentiation of NSCs in the SVZ, but not in the
DG 23],

2.2. The Role of BA in Neurodegenerative Diseases

Alzheimer’s disease is characterized by memory loss, dementia, and morphological changes in the brain and is a
common progressive neurodegenerative disease. The main pathological feature of the brains of patients with
Alzheimer’s disease is the accumulation of amyloid B peptides and tangles of tau protein 2. The processing of
amyloid precursor protein (APP) by B and y secretases generates amyloid B peptide 2817 and the y secretase
complex includes presenilin 1 (PS1), which is associated with the maturation of V-ATPase, responsible for the
acidification of lysosomes. PS1 dysfunction, thus, leads to an impairment in lysosomal acidification and function 18]
(291 The accumulation of amyloid B peptides is relevant to the dysfunction of both APP and y secretase, and
APP/PS1 double knockout mice, which express both mutated human APP and PS1, are used as a model of
Alzheimer’s disease. Interestingly, TUDCA reduces the accumulation of amyloid 3 peptides in the hippocampus
and frontal cortex and rescues memory deficits in APP/PS1 double knockout mice 221l |n humans, plasma CA
concentrations in patients with Alzheimer’s disease are significantly lower than those in control subjects, and the
TCA concentration in the brain of patients with Alzheimer’s disease is also significantly lower 22, In contrast, the
plasma concentration of LCA, a secondary BA, is significantly higher in patients with Alzheimer’s disease than in
controls 28, Furthermore, it has been shown that the ratio of DCA (secondary BA) to CA (primary BA) in serum is
significantly higher in Alzheimer’s patients 24, These studies indicate the relationship between BA and Alzheimer’s
disease, and the importance of the brain-gut-microbiome axis. However, morphological and functional
abnormalities in mitochondria have also been identified in patients with Alzheimer’s disease 22128 |n fibroblasts
from Alzheimer’'s disease patients, the mitochondrial membrane potential (MMP) is lower, and there is
mitochondrial elongation. Dynamin-related protein 1 (DRP1) plays an important role in mitochondrial fission and is
essential for mitochondrial quality control [ZZ. Although the expression of DRP1 is lower in fibroblasts from

Alzheimer’s disease patients, UDCA increases its expression 28],

Parkinson’s disease is another common progressive neurodegenerative disease that is characterized by tremors,
muscle stiffness, loss or impairment of voluntary movements, slowness of movement, and postural instability 22,
Mutations in phosphatase and tensin homolog-induced putative kinase 1 (PINK1) and parkin are found in early-
onset Parkinson’s disease and are important in the progression of Parkinsonism BB pINK1 and parkin
initiate mitophagy and nuclear dot protein 52 kDa (NDP52), and optineurin are essential for this process 24131, 1-
Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and rotenone treatment have been widely used in the creation
of a model of Parkinson’s disease. Both toxins inhibit complex | in mitochondria, leading to neuronal mitochondrial
damage and Parkinsonism [B8lE7. However, TUDCA protects neurons from MPTP-induced oxidative stress and
neurotoxicity in the midbrain and striatum of mice 28, TUDCA induces nuclear factor erythroid 2-related factor 2
(Nrf2) expression and reduces the generation of reactive oxygen species, and indeed, this anti-oxidant effect of

TUDCA may be Nrf2-dependent B2, Moreover, TUDCA ameliorates clinical signs induced by MPTP, such as the
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increase in swimming latency, foot-dragging, and tremors. In addition, TUDCA inhibits the loss of dopaminergic
neurons and reduces the loss of MMP and mitochondrial mass elicited by MPTP 49 Furthermore, TUDCA
increases the expression of PINK1, parkin, and the ratio of LC3-1l/IC3-I, implying that TUDCA induces mitophagy
(41l |n addition, in the rotenone-induced rat model of Parkinson’s disease, UDCA ameliorates abnormalities in the

mitochondria of striatal neurons, such as irregular swelling and loss of cristae 42,

Huntington’s disease is an autosomal dominant inherited neurodegenerative disease caused by a CAG
trinucleotide expansion encoding polyglutamine (polyQ) at the N-terminus of Huntingtin (HTT). Huntington’s
disease is characterized by motor dysfunction, cognitive decline, and psychiatric disturbances 4344l Chemical and
genetic models of Huntington’s disease have been studied 4248l Firstly, 3-nitropropionic acid (3-NP) is an inhibitor
of succinate dehydrogenase (complex Il) in mitochondria and induces degeneration of the caudate-putamen, which
is also present in Huntington’s disease 3. 3-NP treatment is associated with swelling of striatal mitochondria,
abnormal mitochondrial membrane structure, and apoptosis. However, TUDCA prevents mitochondrial damage
and apoptosis and ameliorates the sensorimotor deficits induced by 3-NP 7. Secondly, R6/2 transgenic mice
possess a genomic fragment containing exon 1 of the human Huntingtin gene, which carries 144 CAG repeats, and
are the most widely used model of Huntington’s disease 848l |n these mice, TUDCA prevents the striatal
apoptosis and cerebral and striatal atrophy 9. The accumulation of HTT and ubiquitin are also symptoms of
Huntington’s disease, and ubiquitin is recruited to polyglutamine-expanded HTT fragments B9, TUDCA reduces the

accumulation of ubiquitin in the striatum of R6/2 transgenic mice and ameliorates their sensorimotor deficits 42,

Amyotrophic lateral sclerosis (ALS) is a progressive and ultimately fatal disease that is characterized by the
degeneration of both upper and lower motor neurons, leading to muscle weakness, atrophy, and paralysis B,
Impairments in superoxide dismutase 1 (SOD1), C9ORF72, TAR DNA-binding protein of 43 kDa (TDP-43), and
fused in sarcoma (FUS) are molecular features of this disease 2. Transgenic mice that carry the glycine 93 to
alanine mutation of human SOD1 (hSOD1%9A) are the most studied model of ALS B2 NSC-34 cells carrying
hSOD1593A also represent a useful model of ALS-affected motor neurons B4, Glycoursodeoxycholic acid (GUDCA)
prevents the apoptosis of NSC-34 cells carrying hSOD1G93A 38l and clinical trials of the use of TUDCA in patients

with ALS have shown an improvement in muscle function and survival time, without adverse effects 281,
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