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Cholesterol-dependent cytolysins (CDCs) are key virulence factors involved in many lethal bacterial infections,

including pneumonia, necrotizing soft tissue infections, bacterial meningitis, and miscarriage. Host responses to

these diseases involve myeloid cells, especially macrophages. Macrophages use several systems to detect and

respond to cholesterol-dependent cytolysins, including membrane repair, mitogen-activated protein (MAP) kinase

signaling, phagocytosis, cytokine production, and activation of the adaptive immune system. However, CDCs also

promote immune evasion by silencing and/or destroying myeloid cells. While there are many common themes

between the various CDCs, each CDC also possesses specific features to optimally benefit the pathogen

producing it.

pore-forming toxin  streptolysin  perfringolysin

1. Introduction

Cholesterol-dependent cytolysins (CDCs) are a subset of pore-forming toxins that serve as key virulence factors for

a wide range of lethal and opportunistic Gram-positive bacterial pathogens that collectively infect or invade nearly

all parts of the human body. Consequently, hosts attempt to eliminate these pathogens with both general and

tissue-specific approaches. One common approach that has tissue-specific flexibility is activation and polarization

of macrophages. Macrophages coordinate the local tissue response with cytokines and can directly eliminate

bacteria through phagocytosis and secretion of reactive oxygen/nitrogen species. They further promote wound

repair and restore the tissue to homeostasis. As a result, pathogenic bacteria target macrophages for elimination,

reprogramming, or shelter. CDCs figure prominently in many of these attempts. This review explores both general

and specific molecular mechanisms used by CDCs to kill, control, or evade macrophages.

2. CDC Interactions with Macrophages

2.1. Cytokine Production in Response to CDCs

One key consequence of activating the signaling pathways, especially the p38 pathway, is production of pro-

inflammatory cytokines. The major pro-inflammatory cytokines induced by CDC challenge are Tumor Necrosis

Factor α (TNFα,) Interleukin (IL)-1β, IL-6, and IL-8, though other cytokines and chemokines are also CDC-

dependent. However, one challenge with CDC-dependent cytokine production is ascertaining if the cytokine is

produced by signaling pathways directly stimulated by the CDC or indirectly by other danger- or pathogen-
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associated molecular patterns (DAMPs and PAMPs). Many studies attributing cytokine production to CDCs used

bacteria with and without deletion of the CDC. Since CDCs are often key to bacterial virulence, it is difficult to

discern if changes in pro-inflammatory cytokine production are due to overall reduced virulence or directly due to

the toxin. Pure CDCs may contain contaminants, such as toll-like receptor (TLR) ligands, which complicate

interpretation of data. Often studies do not include inactive toxins to control for the presence of any contaminants in

purified toxins. Cellular damage by CDCs further releases several DAMPs, including IL-1α, ATP, and high mobility

group box 1 protein (HMGB1) , which may exert autocrine and paracrine effects on cells, including TLR

engagement and pro-inflammatory cytokine production. These effects may be especially apparent when longer

(12+ h) time points are used. Finally, signaling pathways can be activated independently of plasma membrane

receptors by the Ca  fluctuations that occur during membrane damage and repair . Thus, extreme care should

be taken in interpreting pro-inflammatory cytokine production in response to CDCs.

Direct cytokine production in response to CDCs is triggered by inflammasome (see Section 2.2), p38, and Ca

dependent pathways. Activation of p38 by SLO, PLY, ALO, and VLY leads to IL-8 production . Activation of

p38 also induces secretion of macrophage migration inhibitory factor (MIF) by PLY, which helps reduce the

bacterial load . Finally, p38 also stimulates TNFα production after SLO challenge . TNFα is critical for

recruiting macrophages during a subcutaneous S. pyogenes infection, which limits bacterial dissemination .

CDCs also stimulate IL-6 production. LLO, PLY, and SLY stimulate IL-6, which is Ca  dependent for LLO and PLY

. Similarly, LLO and PLY trigger IL-1α release and calpain activation in a Ca  dependent fashion .

Overall, CDCs can activate pro-inflammatory cytokine signaling.

The ability of CDCs to directly stimulate TLR signaling pathways remains controversial. While some studies

suggest that PLY , ALO, LLO, SLO, and PFO  all trigger TLR4, other studies have not observed TLR4-

dependent responses . Similarly, NF-ΚB activation, which is downstream of TLRs, is variably reported for

CDCs. Some studies observe NF-ΚB activation by CDCs , while another did not . One potential

explanation for the discrepancy is the autocrine and the paracrine effects involving TLRs and/or IL-1 receptor (IL-

1R), which also signals through MyD88. LLO-induced NF-ΚB is IL-1R dependent . PLY-induced TNFα

production and TLR4 activation were measured at 24 h , thus TLR4 activation could occur secondary to

DAMP release. There are also cell type differences in cytokine production in response to CDCs. For example, PLY

induces opposite effects for TNFα production in dendritic cells and macrophages . Overall, TLR activation may

be secondary to other effects of CDCs.

2.2. CDCs Activate the Inflammasome

Along with the previously discussed cytokines, CDCs promote IL-1 secretion . IL-1β is usually secreted

following activation of the inflammasome. The inflammasome is a multiprotein complex comprising a cytoplasmic

sensory pattern-recognition receptor, the scaffolding protein apoptosis-associated speck-like protein containing a

CARD (ASC)/Pycard and an inflammatory caspase (caspase-1 or caspase-11 in mouse, caspases-1,4 or 5 in

human) that promotes the inflammatory cell death process pyroptosis and the activation/release of pro-

inflammatory cytokines IL-1β and IL-18 (reviewed in ) (Figure 1). Sensory pattern-recognition receptors that
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activate the inflammasome include proteins in both the Pyhin-family and the nod-like receptors (NLRs). They sense

various pathogen-associated molecular patterns and danger-associated molecular patterns, including membrane

perforation by CDCs . Membrane perforation is sensed by nucleotide-binding oligomerization domain-like

receptor family, pyrin domain-containing 3 (NLRP3), presumably indirectly via loss of K  , while cytoplasmic

bacterial or mitochondrial DNA is sensed by absent in melanoma 2 (AIM2)  (Figure 1). After activation, NLRP3

or AIM2 oligomerize ASC, which recruits and activates caspase-1. Activated caspase-1 then cleaves the pore-

forming toxin gasdermin D to promote pyroptosis (Figure 1). Pyroptosis prevents intracellular pathogens from

sheltering in the cell and releases pro-inflammatory mediators, including HMGB1, IL-1β, and IL-18 . The

inflammasome promotes anti-pathogen responses after sensing the CDC challenge.

CDCs activate two inflammasomes. CDCs directly activate the NLRP3 inflammasome via membrane perforation

and K  efflux, and some also indirectly activate AIM2 by facilitating the entry of mitochondrial or bacterial DNA into

the cytosol. PFO , SLO , TLO , PLY , LLO , and SLY  all activate the NLRP3

inflammasome. LLO-mediated phagosomal rupture and lysosomal permeabilization further activate NLRP3 .

Bacteria deficient in LLO , PLY , PFO , and SLO  fail to stimulate IL-1β production. Other toxins,

including streptolysin S  and C. perfringens α-toxin , fail to activate the inflammasome. Thus, CDCs are

necessary for pathogen sensing by the NLRP3 inflammasome.

Figure 1. Inflammasome activation by CDCs. Macrophages and other myeloid cells primed by toll-like-receptor

(TLR) ligation upregulate pro-IL-1β and NLRP3. When primed macrophages are perforated by CDCs, K  efflux

activates the NLRP3 inflammasome. CDCs may also activate the AIM2 inflammasome either via import of bacterial

DNA or destabilization of the mitochondria to release mitochondrial DNA (mtDNA). When activated, NLRP3 or

AIM2 oligomerize and recruit ASC. ASC recruits pro-caspase-1, which autoactivates. Once active, caspase-1

cleaves pro-IL-1β, pro-IL-18, and gasdermin D (GSDMD). The N-terminus of GSDMD forms pores in the

membrane, enabling cytokine release and pyroptosis. Figure from Thapa et al Toxins (Basel). 2020 Aug

19;12(9):E531.
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AIM2 activation has functional redundancy with NLRP3 in responding to CDCs. AIM2 can be activated by either

bacterial DNA or mitochondrial DNA following L. monocytogenes infection or PLY intoxication . AIM2

is also activated by mitochondrial DNA released into the cytosol after cholesterol perturbations . Upregulation of

the enzyme cholesterol-25-hydroxylase (Ch25h) by type I or type II interferons (IFNs) produces the regulatory

oxysterol, 25-hydroxy-cholesterol . The 25-hydroxy-cholesterol regulates cholesterol biosynthesis, flux, and

storage . Deletion of Ch25h from macrophages leads to increased IL-1β production in response to LPS-

mediated type I interferon (IFN) induction . When IFNs are unable to induce Ch25h, macrophages undergo

cholesterol overload and switch to aerobic glycolysis with mitochondrial damage . Mitochondrial damage permits

the escape of mitochondrial DNA into the cytosol, activating the AIM2 inflammasome to overproduce IL-1β .

Consequently, Ch25h deletion confers AIM2-dependent protection from L. monocytogenes infection on

macrophages .

2.3. CDCs Damage Phagosomes and Permit Phagolysosomal Escape

Phagocytosis is the cellular engulfment process of large particles (>0.5 µm in diameter). It is used by innate

immune cells such as macrophages, dendritic cells, and neutrophils to internalize and kill extracellular pathogens

. Intracellular pathogens typically hijack phagocytosis to prevent phagosome fusion with the lysosome and may

escape into the cytosol. Indeed, L. monocytogenes requires LLO for phagosomal escape and for preventing fusion

with lysosomes . While it is known that transgenic expression of other CDCs such as PFO can promote

the escape of L. monocytogenes  or Bacillus subtilis , it is now appreciated that other traditionally

extracellular bacteria such as S. pyogenes and C. perfringens rely on CDC-dependent phagosome interference to

promote infection . However, phagosomal escape is not perfect , thus it is not an all-or-none process.

Interestingly, CDCs variably stimulate or impair phagocytosis. LLO stimulates ion flux, which promotes the

internalization of L. monocytogenes . Conversely, SLO interferes with phagocytosis . However, after

membrane damage and repair, compensatory endocytosis is activated to restore homeostasis . Before

phagosomal escape, LLO, PFO, and PLY may also interfere with acidification in non-macrophages . However,

lysosomal membrane permeability stimulates inflammasome activation in macrophages . Consequently,

when PLY interferes with lysosomal acidification in macrophages, it also drives cell death . Interestingly, these

events appear to occur independently of phagosome escape. Importantly, in macrophages, LLO permeabilizes

phagosomes to small molecules prior to large ones, which led the authors to conclude that LLO forms pores of

different sizes, possibly due to insertion of incomplete pores . However, ESCRT-III mediates phagosomal

membrane repair , thus an alternative explanation is that repair mechanisms limit the extent of damage caused

by LLO, preventing the loss of larger molecules. While the structure of LLO is optimized for activity at low pH ,

the host protein gamma-interferon inducible lysosomal thiolreductase (GILT) further activates LLO by reducing the

single cysteine in the protein . Thus, CDCs extensively target phagocytosis to evade cell death and promote

escape and immune evasion.

2.4. CDC-Mediated Innate Immune Evasion
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While CDCs activate several cell defense mechanisms, they also contribute to evading immune activation. Immune

evasion is best described for SLO and PLY. CDCs interfere with phagocytosis and inhibit cytokine production. SLO

reduces phagocytosis and S. pyogenes killing by neutrophils . Similarly, PLY-stimulated pyroptosis of neutrophils

lead to elastase release, which blocks phagocytosis of S. pneumoniae in the inflammasome-defective macrophage

cell line Raw264.7 . SLO may stimulate the ubiquitination and the degradation of IL-1β . Similarly, PLY

expression reduces maturation of human DCs and pro-IL-1β, IL-8, and IL-12p70 production in response to S.

pneumoniae . Finally, PLY, PFO, and SLO can block TNFα production . Thus, CDCs promote immune

evasion.

2.5. CDCs as an Adaptive Immune Target

While CDCs try to impair macrophages, CDCs are popular targets for antigen presentation by macrophages and

other APCs to the adaptive immune system. Bacteriocidal T and B cell responses to LLO are mounted against L.

monocytogenes , LLO-expressing Escherichia coli , or B. subtilis . Memory CD4  T cells respond to PLY

 and are associated with an absence of S. pneumoniae carriage . Antibodies to ALO , PFO , or SLY 

protect mice from lethal infections. Antibodies to CDCs are readily produced . Anti-SLO and anti-

PLY titers can be detected in human serum , indicating CDCs are robustly antigenic in humans. Importantly,

anti-CDC T and B cell responses do not depend on hemolytic activity , which suggests that non-hemolytic

CDC toxoids may serve as useful vaccine targets.

This excerpt is from Thapa et al Toxins (Basel). 2020 Aug 19;12(9):E531. Refer to the article for reference numbers

and more information.
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