

# Honey Sensory and Compositional Properties

Subjects: **Food Science & Technology**

Contributor: Maddison Hunter , Jane Kellett

The basis of honey sensory evaluation is the description and quantification of a variety of factors relating to the perception of visual, olfactory, gustatory, and tactile characteristics. It is an essential process in improving the understanding of consumer requirements, preferences, or aversions for the evaluated honey products. This research evaluates the relationships between the sensory and compositional characteristics of a range of commercially available honeys.

commercially available honey

sensory analysis

antioxidant

physicochemical

likeability

## 1. Overview

Honey's composition and appearance are largely influenced by floral and geographic origins. Australian honeys are frequently sourced from supermarkets; however, properties associated with consumer preference and likeability remain relatively unknown. This study aimed to complete sensory and compositional analyses on a selection of commercially available Australian honeys. Samples ( $n = 32$ ) were analysed for visual, olfactory and taste characteristics, with overall likeability assessed by a trained sensory panel ( $n = 24$ ;  $M = 12$ ). Compositional analysis included colour intensity (mAU); phenolic content; antioxidant characteristics (DPPH, CUPRAC); and physicochemical properties (pH, viscosity, total soluble solids). The likeability of honey was positively associated with perceived sweetness ( $p < 0.01$ ), and it was negatively associated with crystallisation; odour intensity; waxy, chemical, and fermented smell; mouthfeel; aftertaste; sourness; bitterness and pH (All  $p$ 's  $< 0.05$ ). The price (AUD/100 g) was not associated with likeability ( $p = 0.143$ ), suggesting price value potentially does not influence consumer preferences. Conclusively, differences in likeability between honey samples demonstrate that consumer perception of sampled honeys is diverse. Honey preference is primarily driven by the organoleptic properties, particularly perceived negative tastes, rather than their antioxidant capacity or phenolic content.

## 2. Honey Sensory Evaluation

Honey is a naturally produced product made from a combination of the nectar of plants and bees own secretions, which is deposited into honeycomb for maturation [1]. It is primarily composed of sugars, predominantly fructose (~36%) and glucose (~30%) [2], in addition to over 200 different nutritionally relevant compounds [3]. Among these other constituents, honey includes several enzymes, vitamins, minerals, organic acids, and a range of phytochemical compounds, such as polyphenols and carotenoids [3]. The composition of honey is largely influenced by several factors, such as its botanical origins and geographic location, as well as climate and storage conditions [2].

A variety of health benefits of honey have been identified relating to honey's antioxidant characteristics, antibacterial properties, and anti-inflammatory effects. Honey consumption was shown to increase plasma antioxidant levels in healthy humans [4][5], and to reduce the circulating reactive oxygen species (ROS) by-products of oxidative stress in both animal [6] and human models [4]. These antioxidant characteristics of honey can be attributed to its composition, predominately its bioactive compounds, such as phenolic acids. The antibacterial effects of honey are ascribed to its physicochemical properties (including pH and viscosity), which have the ability to prevent the growth of bacterial species [7], and the production of hydrogen peroxide as a by-product of the breakdown of glucose caused by glucose oxidase [8]. The combined effects of the antioxidant and antibacterial properties can further lead to their synergistic anti-inflammatory effects [9][10].

The global production of honey is approximately 1.2 million tons, with the average annual consumption of honey in Australia per capita averaging 0.6–0.8 kg/year [11]. Furthermore, supermarket purchases represent 70% of honey retail in Australia [12], highlighting the acceptance of commercially available honey. The majority of commercially available honeys are exposed to a variety of different treatments and processing techniques. These include straining and filtering of the honey (to remove pollen and other plant constituents), heating (liquefaction to prevent crystallisation), and pasteurisation (to destroy potential pathogens) [13]. These processes commonly include heating honey to 45 °C for 8 h, followed by filtration (100 µm) [14] in order to maintain the quality and consistency of the products and for adherence to consumer expectations of the overall product [13].

The sensory evaluation of food products traditionally involves human panellists characterising, quantifying, and interpreting the properties of a particular food product [15]. Although some laboratory analysis can quantify many characteristics of a food product, sensory evaluation is often completed when a new food product is developed or evaluated. While the sweetness of honey was positively associated with the likeability of a greater range of visual, olfactory, and taste attributes, in addition to honey's pH, were identified to be inversely correlated, which could potentially drive consumer purchasing decisions. The dislike of crystallisation could inform retailers that their honey may not be selected for purchase in comparison to non-crystallised types. These negative associations could potentially drive consumer purchasing decisions in opposition of the selection of these honeys in comparison to the likeability of the sweetness encouraging honey selection. Interestingly, the antioxidant profile had no influence on the consumer perception of the honey samples, which could be due to the blinded nature of the study design and should be investigated further. There should be a focus in future research on investigating further influences on consumer honey selection, including the influence of packaging and product origin [16]. Consumer understanding of the potential medicinal benefits of honey should also be examined, and if this knowledge would influence honey purchasing decisions. Characteristics responsible for the overall consumer preference in the selection of honey include flavour, appearance, price/value, local origin, and convenient environmentally friendly packaging [18][19][20][21]. However, whether the composition and physical properties of honey influence consumer preference is still relatively unexplored. This could occur by multiple mechanisms, including the presence of phenolic compounds that are known to produce a bitter taste sensation [22] or levels of sugar associated with the onset of crystallisation [23]. The present study performed a sensory analysis of a range of commercially available Australian honeys to determine the likeability and the factors that contribute to this, considering both organoleptic and compositional attributes.

## References

1. Revised Codex Standard for Honey. Codex Alimentarius Commission. Retrieved 2021-8-24

## 2.3. Associations between honey composition, sensory properties, and likeability

Yi Li, Shengli Li, and Caihong Li. Honey Composition, Sensory Properties, and Likeability: Evaluation

of Properties of Honey and Likeability based on the general physicochemical pattern, major sugar composition and  $\delta^{13}\text{C}$  signature. *Food Control* **2019**, *109*, 106919, 10.1016/j.foodcont.201

### 3.1. Honey Samples

Priscila Missio da Silya; Luciano Valdemiro Gonzaga; Mônica Strelmel de Azevedo; Fabíola Carina Bilucca; Mayara Schulz; Ana Carolina Oliveira Costa; Roseane Fett; Stability of volatile compounds of honey during prolonged storage. *Journal of Food Science and Technology* **2019**, *57*, 1167-1182, 10.1007/s13197-019-04163-0.

Nur Syamsina Ainihad; Azlina Abdul Aziz; Kin Weng Kong; Mohamad Shariff A. Hamid; Jadeera Phaik Geok Cheong; Sareena Hanim Hamzah; Dose-Response Effect of Tualang Honey on

### 3.2. Honey Sensory Analysis

Postprandial Antioxidant Activity and Oxidative Stress in Female Athletes: A Pilot Study. *The Journal of Alternative and Complementary Medicine* **2017**, *23*, 989-995, 10.1089/acm.2017.0129.

#### 3.2.1. Visual, Olfactory, and Taste Characteristics of Selected Honeys

Derek D. Schramm; Malina Karim; Heather R. Schrader; Roberta R. Holt; Marcia Cardetti; Carl L. Keen; Honey with High Levels of Antioxidants Can Provide Protection to Healthy Human characteristics of colour intensity, texture, and the presence of crystallisation. *Journal of Agricultural and Food Chemistry* **2003**, *51*, 1732-1735, 10.1021/jf025928k.

Trained panellists were provided with a de-identified honey sample in closed glass jar to determine the visual characteristics of colour intensity, texture, and the presence of crystallisation. Additionally, olfactory

characteristics, including odour intensity and odour attributes (OA) (flowery, fruity, waxy, caramelised, acidic,

Redouan El Haskouri; Noori Al-Weili; Zineb Kamoun; Mohamed Mekni; Lamza Al-Weili; Badiaa

Chemical, and Fermentation), were evaluated immediately after opening the sample jars. The taste characteristics of

Lyoussi; Antioxidant Activity and Protective Effect of Carob Honey in CCK4-induced Kidney and

asthma. *Archives of Medical Research* **2018**, *49*, 306-313, 10.1016/j.arcmed.2018.09.011.

Finally, panellists were asked to provide the overall acceptability and likeability, or preference, of each honey based on the olfactory, visual, and taste characteristics to assess consumer acceptability of the commercially available samples.

Patricia Combarros-Fuertes; José M. Fresno; María Manuela Esteivino; Mario Sousa-Pimenta; M. Eugenia Torrealdo; Leticia M. Esteivino; Honey: Another Alternative in the Fight against

Antibiotic-Resistant Bacteria?. *Antibiotics* **2020**, *9*, 774, 10.3390/antibiotics9110774.

### 3.3. Antioxidant and Physicochemical Characteristics of Selected Honeys

Katrina Brudzynski; A current perspective on hydrogen peroxide production in honey. A review.

#### 3.3.1. Antioxidant and Total Phenolic Composition

*Food Chemistry* **2020**, *362*, 127229, 10.1016/j.foodchem.2020.127229.

Manjunatha Devagondanahalli Hadagali; Lee Suan Chua; The anti-inflammatory and DPPH assay capacity was determined using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay according to Marpuri et al. *European Food Research and Technology* **2014**, *239*, 1003-1014, 10,

1007/1002/2013/014-2207-6. The results were expressed as millimoles of Trolox equivalents (TE) per gram of honey (mmol TE/g).

The cupric ion reducing capacity (CUPRAC) was determined according to Apak et al. *Food Chemistry* **2010**, *120*, 1003-1014, 10, 1007/1002/2013/014-2207-6. The absorbance was measured at 450 nm (Multiskan Go, Thermo Scientific, USA) and expressed as millimoles of

Naumovski; The Effect of Honey as a Treatment for Oral Ulcerative Lesions: A Systematic Review. *Exploratory Research and Hypothesis in Medicine* **2020**, *5*, 27-37, 10.14218/erm.2019.00029.

The total phenolic content (TPC) was determined using the Folin-Ciocalteu method. The absorbance was measured at 765 nm (Multiskan Go, Thermo Scientific, USA),

and the results were expressed as milligram Gallic Acid equivalents (GAE) per gram of the sample (mg GAE/g). All assays were completed in triplicate.

Stefan Bogdanov; Tomislav Jurendic; Robert Sieber; Peter Gallmann; Honey for Nutrition and

Health: A Review. *Journal of the American College of Nutrition* **2008**, *27*, 677-689, 10.1080/07315

#### 3.3.2. Colour Analysis

Peter J. Batt; Aijun Liu; Consumer behaviour towards honey products in Western Australia. *British*

The International Commission on Illumination (CIE)  $L^*$ ,  $a^*$ ,  $b^*$  colour measurements (Color Reader CR-20, Konica Minolta, Tokyo, Japan) provide information regarding the honey's lightness ( $L^*$ ; 99 = white, 0 = black), redness

### 3.3.3. Physicochemical Properties

Frontiers in Microbiology 2012, 3, 265, 10.3389/fmicb.2012.00265.

The pH of the undiluted honey samples was determined using a pH meter (Mettler Toledo, Port Melbourne, Australia) [29]. The total soluble solids (TSS), expressed as °Brix, was determined in 50% honey dilutions using a handheld digital refractometer (Opti-Brix 54, Bellingham + Stanley, Kent, UK) [30]. The viscosity of the undiluted honey samples was expressed in pascal seconds (Pa s) and was determined using a viscometer (Smart Series, PungLab, Barcelona, Spain) at 5, 10, or 20 rpm depending on the percentage torque of the sample [31]. All samples were analysed in triplicate.

### 3.4. Relationships Between Sensory and Compositional Characteristics

17. Maria Lucia Plana, Ema Persano Oddo, Antonio Bentabol, Etienne Bruneau, Stefan Bogdanov; Christine Guyot Declerck; Sensory analysis applied to honey: state of the art. *Apidologie* **2004**, To determine relationships between compositional and sensory characteristics, including the likability (Table 1), a 35, S26-S37. 10.1051/apido:2004048.

Kendall's Tau correlation was completed (IBM SPSS Statistics version 25; IBM Corp:Armonk, NY, USA; the level of 18. Marta Cosmina, Giardino Galli); Tharibebity Mafangoy; Stefano Vassiany; Repetition of Attitudes towards honey among Italian consumers. *Food Quality and Preference* **2016**, 101, (τ = -0.210, 116, 0105) 1016 (japets 2016:08:0057,  $p < 0.05$ ), the odour attributes of waxy ( $\tau = -0.255$ ,  $p < 0.05$ ), chemical ( $\tau = -0.374$ ,  $p < 0.01$ ), fermented ( $\tau = -0.324$ ,  $p < 0.01$ ), mouthfeel ( $\tau = -0.288$ ,  $p < 0.05$ ), aftertaste ( $\tau = 19. Amos Gyau; Claude Akalakou; Ann Degrande; Apollinaire Bioso; Determinants of Consumer -0.435$ ,  $p < 0.01$ ), the taste attributes of sourness ( $\tau = -0.277$ ,  $p < 0.05$ ) and bitterness ( $\tau = -0.252$ ,  $p < 0.05$ ), and Preferences for Honey in the Democratic Republic of Congo. *Journal of Food Products Marketing pH ( $\tau = -0.437$ ,  $p < 0.01$ ). In a relatively recent study by Cosmina et al. [18], the presence of crystals in honey were 20. Maria-Konstantiiniemi; Sirli Rosenvald; Oskar Laaksonen; Anita Vanaja; Taria Olliukka; Kristel Vene; found to be disliked by Italian consumers. In addition, a preference for honeys that are more liquid in texture has been reported [18,20], supporting the data collected in this analysis. However, preference for the mouthfeel of honey 21. M. Murphy; C. Cowan; Maeve Henchion; S. O'Reilly; Irish consumer preferences for honey: a is conflicting in the literature, as a study by Murphy et al. [21] reported a preference for thicker honey. Furthermore, there were no associations between the perceived likability and the compositional data, except for pH. This suggests that these potential health properties did not influence the sensory characteristics of the honeys reported by 22. M. Murphy; C. Cowan; Maeve Henchion; S. O'Reilly; Irish consumer preferences for honey: a panellists in this study. co-inert approach. *British Food Journal* **2000**, 102, 585-598. 10.1108/00070700010348424.*

22. Antonella Di Pizio; Yaron Ben Shoshan; Galczki; John Hayes; Masha Y Niv; Bitter and sweet. The perceived sweetness, which was associated with likeability, was inversely related to the bitter ( $\tau = -0.271, p < 0.05$ ) and sour ( $\tau = -0.385, p < 0.01$ ) tastes and a honey's aftertaste ( $\tau = -0.265, p = 0.05$ ), which were all also negatively associated with the likeability, highlighting how important the panellists considered this taste characteristic to be. A sweet taste in food is commonly associated with its sugar content, with soluble solids also generally being correlated with sugar [2] and soluble solids comprising 80% of the sugar content [32]. Despite this, the perceived sweet taste of the samples in this study was inversely associated with the TSS ( $\tau = -0.315; p < 0.05$ ).

23. Olga Escuredo; Inna Dobré; María Fernández González; M. Camilo Seijo; Contribution of botanical origin and sugar composition of honeys on the crystallization phenomenon. *Food Chemistry* 2014, 149, 84–90; 10.1016/j.foodchem.2013.10.097.

24. Giangiacomo Beretta; Paola Granata; Maria Ferrero; Marica Orioli; Roberto Maffei Facino;

**Table 1.** Kendall tau correlations between a selection of the sensory attributes, antioxidant characteristics, and physicochemical properties of a range of commercially available Australian honeys.

|   | Crystallisation     | Odour Intensity | Mouthfeel | Aftertaste | Sweetness | Bitterness | Likeability | DPPH Inhibition (%) | CUPRAC  | TPC     | ABS <sub>450</sub> | pH    | 33,                           |
|---|---------------------|-----------------|-----------|------------|-----------|------------|-------------|---------------------|---------|---------|--------------------|-------|-------------------------------|
| 2 | Crystallisation     | 1               |           |            |           |            |             |                     |         |         |                    |       | Winkins<br>activity<br>.1016/ |
| 2 | Odour Intensity     | 0.135           | 1         |            |           |            |             |                     |         |         |                    |       | int<br>icing<br>ood           |
| 2 | Mouthfeel           | 0.550**         | 0.148     | 1          |           |            |             |                     |         |         |                    |       | ti S.<br>unds.                |
| 2 | Aftertaste          | -0.039          | 0.256*    | -0.004     | 1         |            |             |                     |         |         |                    |       | tion of                       |
| 2 | Sweetness           | -0.176          | -0.218    | -0.104     | -0.260*   | 1          |             |                     |         |         |                    |       |                               |
| 2 | Bitterness          | 0.289*          | 0.262*    | 0.221      | 0.203     | -0.271*    | 1           |                     |         |         |                    |       |                               |
| 2 | Likeability         | -0.260*         | -0.297*   | -0.288*    | -0.435**  | 0.353**    | -0.252*     | 1                   |         |         |                    |       |                               |
| 2 | DPPH Inhibition (%) | -0.162          | 0.059     | -0.077     | 0.379*    | -0.059     | 0.028       | -0.202              | 1       |         |                    |       |                               |
| 2 | CUPRAC              | -0.125          | 0.276*    | -0.089     | 0.315*    | -0.131     | 0.118       | -0.177              | 0.476** | 1       |                    |       | rich;                         |
| 2 | TPC                 | -0.141          | 0.147     | -0.077     | 0.234     | -0.042     | 0.057       | -0.105              | 0.468** | 0.677** | 1                  |       |                               |
| 2 | ABS <sub>450</sub>  | -0.113          | 0.139     | -0.012     | 0.290*    | 0.006      | 0.061       | -0.097              | 0.500** | 0.556** | 0.573**            | 1     | j.bcab.                       |
| 2 | pH                  | 0.181           | 0.415**   | 0.165      | 0.311*    | -0.224     | 0.149       | -0.437**            | 0.169   | 0.339** | 0.270*             | 0.209 | 1                             |

Properties, Antioxidant Content and Anti-Oxidative Activities of Malaysian Stingless Kelulut (Trigona spp.) Honey. *Journal of Agricultural Science* **2017**, *9*, 32-40, 10.5539/jas.v9n13p32.

31. Yasin Yücel; Pınar Sultanoglu; Characterization of honeys from Hatay Region by their physicochemical properties combined with chemometrics. *Food Bioscience* **2013**, *1*, 16-25, 10.1016/j.fbio.2013.02.001.

32. I. Rodríguez; F. Cámara-Martos; J.M. Flores; S. Serrano; Spanish avocado (Persea americana Mill.) honey: Authentication based on its composition criteria, mineral content and sensory attributes. *LWT - Food Science and Technology* **2019**, *111*, 561-572, 10.1016/j.lwt.2019.05.068.

Retrieved from <https://encyclopedia.pub/entry/history/show/32640>

Note\*\* Correlation is significant at the 0.01 level; \* Correlation is significant at the 0.05 level.