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Recently, perovskite-based nanomaterials are utilized in diverse sustainable applications. Their unique structural
characteristics allow researchers to explore functionalities towards diverse directions, such as solar cells, light
emitting devices, transistors, sensors, etc. Many perovskite nanomaterial-based devices have been demonstrated
with extraordinary sensing performance to various chemical and biological species in both solid and solution states.
In particular, perovskite nanomaterials are capable of detecting small molecules such as O,, NO,, CO,, etc. This
review elaborates the sensing applications of those perovskite materials with diverse cations, dopants and
composites. Moreover, the underlying mechanisms and electron transport properties, which are important for
understanding those sensor performances, will be discussed. Their synthetic tactics, structural information,
modifications and real time sensing applications are provided to promote such perovskite nanomaterials-based
molecular designs. Lastly, we summarize the perspectives and provide feasible guidelines for future developing of

novel perovskite nanostructure-based chemo- and biosensors with real time demonstration.

perovskite nanomaterials hybrid materials chemosensory bioanalyte detection

transistors electron transport nanocomposites real time application

| 1. Definition

Perovskite is a kind of calcium titanium oxide mineral mainly composed of calcium titanate (CaTiO3). Many

different cations can be embedded in this structure, so a variety of engineering materials can be developed.

| 2. Introduction

Development of nanomaterials for diverse analyte detection with respect to environmental and biosafety measures
are becoming essential W&l Wherein, the species recognition can be identified by miscellaneous responses like
colorimetric, spectrometry, voltammetry and morphological changes HIRIBI7IE Among the reported nanomaterials,
perovskites are exceptional hybrid materials with variety of applications, such as solar cells, light emitting devices,
transistors, sensors, etc. RILAMLIZASII4] The compounds that have the ABX; formula type with differently sized ‘A’
and ‘B’ cations bind to anion X are known as perovskite [12l. These perovskites are classified in three categories:
inorganic oxide perovskites, alkaline metal halide perovskites and organic metal halide perovskites with oxide or
halide anions 18171 Moreover, they can be synthesized from zero to three dimensional nanostructures and
consumed in many sustainable applications 2819201 Among these applications, sensory utilities using perovskite

nanomaterials to attain the signals to specific analyte in solid or solution states have attracted most attention [21122],
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can be further utilized as sensors B, For example, Cho and coworkers recently demonstrated the humidity
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research, such as solar cells, light emitting devices, transistors and sensors.

In this review, valuable information on sensory applications of perovskite nanomaterials (Figure 1) is provided. The
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Figure 15. (A) Fluorescence response of dual ligand capped perovskite quantum dots (DL-PQDs) to different
anions and F~ (90 uM for F~ and 450 uM for other anions). (B) Interference studies of the novel nanosensor toward
F~. The black bars represent the fluorescence response of DL-PQDs to F~ and other anions (90 uM for F~, 450 uM
for other anions). The red bars represent the change of emission occurred after the subsequent addition of 90 yM

of F~ to the above solutions (reproduced with the permission from reference 1311y,
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which require further improvement in perovskite-based sensing of VOCs.

b8 Structare; Stabilityend-Properties of Peérovskitess dscriminaton
Methylammonium lead tri-iodide (MAPDbI3) hybrid perovskites display its high sensitivity to ammonia (NH3) gas
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temperature, water and the environment as described subsequently.
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Figure 16. MAPDbBr;-TBA-based gas sensor. (a) The PL quenching toward different concentration of gaseous NH3
(0-100 ppm) and klyute2plohaisiktéatensity stasusconpentaiaeoiiilgdrepstoeadiaiByhe permission from
reference [169)),

Since annealing is an important step in the fabrication processes of metal halide perovskites for sustainable
Mapinsitiesisred iorganesietsl taliderngyonskitsroniive alseratiirekinpbaidevicetanes ansaynakidiig WrRicess, Hhd
HSjee6e RidtarThindépemadeitet Gightt et 66 Mhase traMsisihk, ForXEaSrwiand @rhbitatne rahgeeast
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BSBILCHACTn Merenyeiitici: MRIKRINAL (FGHNralsy Wisplayad s ssapringaiitaticyrrsgunisdeyone Wiloask@R of
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frAoeoMit). 16C800s RO I£3EEHLEABIAC RIB)vBasn CtistallibenRerp viskite shp papded anditp i\t erheseth asiactiendyd
Nsdo@adtby Eealsnihcasekeieilfiadishovends figierditr& MEHREIglevices in the self- and externally-powered
mode were able to detect NO, gas at room temperature with an estimated LOD of 0.2 ppm. This material is a

lihi stabiisytorespysidte iisl Do slivcafiaiatatbhyimeie p ek afceasseding lisgpiicdegraratiea wienaiefjalssduiing

tfel fabpisation process. In the case of metal oxide perovskites, they tend to form hydroxyl ions (OH*) over their

surface with water, which is currently applied in the water splitting application B2, On the other hand, in the
presence of water, the metal halide perovskites may degrade due to the distortion of their lattice sites. Likewise,
organic—inorganic hybrid metal halide perovskites were also affected by the existence of water molecules. For
example, the CH3NH3Pbl; decomposed into CH3NH; | and Pbl, when encountered with the water molecules B2,

However, such degradation was also extensive in supportive environment.

Moisture environment or organic solvents in their gaseous state also significantly affect the stability of perovskite
materials 2253, The stability of perovskite materials was considerably disturbed when exposed in a gaseous
environment, such as NO,, CH,, NH3, C,HsOH, acetone, etc. (28 as a result, they can be used as sensors for
those gaseous species. The abrupt changes in these perovskite materials can be recorded through chemiresistive
I-V, phosphorescence and fluorescence responses. Nevertheless, the opto-electronic properties of perovskites
play a vital role in these sensing studies.

Perovskite oxides are well known candidates with exceptional properties, such as electrical conductivity,

ferroelectricity, superconductivity, catalytic activity, etc. For example, the studies on the ferroelectricity of BaTiO3
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expansion. Similarly, ferroelectric properties of halide perovskites have been investigated in many reports 63,
Erigatiee b nRipophitoveteatlptopaeipisc Ay rarnisef déroe| EdRIBnat i etsidiutbs inaliAREI, avderdalaeivated
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theriarky hAGiBdBssensonaasponse vy e fheietspioaltheoNerieoaccntalish; (c) in the self-powered mode and (d) at

the 1 V external bias; the inset in (d) is the enlarged part of the red dashed region. The sensor response of the

EEAETOrE AFFECHAG SeRSOT INEFOGAtIGHS b PEroVsKIfE o=

h&rﬁhﬁm&f@ﬁlﬁqgents were conducted at room temperature (30 °C) under simulated air (Vyo/Voo = 4)

with a constant total gas flow of 0.5 L min~! (reproduced with the permission from reference [168)),

Sensory utilities of perovskite nanomaterials can be affected by the following factors, hence the design of suitable
QAABLRISIRL elils, AEIoRELaNRHIFS lSTe ERFBRSELIR E0RRLIEDNE o 3o oFiFeLle BRERES well as photo
sensors 1671681691701 through conductivity responses. For example, Stoeckel et al. used the CH3NH3Pblg
NaBRRAMSIEIHRR ISR SEUASIBIERIGR S RRRABHATGT diastReI@RSRANLMRCRA sSSP dBRIARHAE jtererR dPutiliyad
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GrdpiHpRRlvsiiHe IARUATHEIAGICR) MIRAPYEPGRETYESOT Thyediihatlisit ARG CinitaprisatiensaRtESIHRVeYshhe

responses of this sensor material in the presence of both gases (O3 and H,) need to be established for validation.
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axpligithudo cetnscin@eematvingths from 375 to 800 nm at 5 V bias 179, This material also exhibited a power

conversion efficiency (PCE) of 10.6% and became a potential candidate in photonics research.
Stability: perovskite nanomaterials has the major issue of stability, which might influence many sensor responses.
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nanocomposite like structure with a combination of ZnO nanosheet arrays and polystyrene (or CH3zNH3Pbls
(oneibsnvismentat afarsaailictf-asthriisatithe reapeetiedicarist atp oo vskiteranomagrigls4efysigasion ol
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biocompatibility of those materials to be consumed in healthcare products. However, majority of halide perovskites

[rei‘.kﬁlf"é’rbé\‘i’ﬁkl es Incorporated Nanocomposites as sensors ~ ~
nd 1) are well known candidates with good emissive nature but should be avoided to use in biosamples.
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RiGHGRLR Rl hasauulgessviaisuitably RAHERHONSIIB FBRIPIBIR SEARNAAIHHRES ] and o-Fe20,/LaFe0,
composite nanomaterial 22! delivered their sensitivity to 100 ppm ethanol at high operating temperatures 260 and

uantum yield éqbg: consufmzotion é)f | minescentgerovskite nanomaterials-based an%lyigla detection is_becoming th
40 °C with responses of 20 and 10, respectively. In contrast, Chen et al. reported the Ag/Zn—-LaFeO5; (AZEFO

modern research topic. Howeyer, developi uch luminescent materials with analyte specificity is still a challenge,
nanocomposite- asgc? ethano dretectlon,pw |<§1 showed a response o? 64.2-100 p)ém aPna(iyte gnd a detection |I%'1It

ince luminesc rogert%/ ma%_var at diverse precursor dilution [Z2] it is ver Fss.enti%l to develop materials with
own to 5 ppm Note that this sensor can operate from 55 to 245 °C. By following the reaction steps shown In

high quant ield (®) values. For example, Zhu et al. publicized the CsPbBr; perovskite nanocrystals with 87%
Egua%ons ?3T—¥5‘§, et(heeno?sensmg canabeloach%aved‘a neareoom temperature. 3P y °

quantum yield towards colorimetric sensing of peroxide number in edible oils 2. Therefore, the development of

Bﬂ85§f@t@§'{8ﬁ§)§i}e—> r@gor@aﬂ@gﬁls with high Eﬁiantum yield is expected for sensor studies.

F-5:0Sensiiig Utilities of Métal Oxide Perovskite Nanomaterials
%t R\ (ﬂﬁlhv ésé?ni_cﬁhd&,@rag*pféﬂe@sltit%%_hav@een reported in a variety of gas sensing studies, which can be

applied in environmental, fire and vehicle monitoring 4. This might be attributed to the interaction of analyte gases
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sensory studies were mostly focused in this field.

Sensing responses of metal oxide perovskites are majorly attributed to the doping of ions or the composite mixture.
Cao and coworkers reported the chlorine-doped nanocrystalline LaFeO3 powders towards ethanol gas sensing via
resistance change 1. They employed the citric sol-gel method to vary the chlorine doping in LaFeOs, which

enhanced the sensing performance via improved grain size and reduced intrinsic resistance. At 136 °C, LaFeOs.
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was impressive, but the operation temperature still required to be reduced. Recently, Cao and coworkers proposed
Figure 18. Schematic illustration of the sensing mechanism of the AZLFO-based sensors to ethanol: (a) exposed

using the Au and Cl co-modified LaFeO nﬂnopa,rticles gsize = 29.5 nanometer (nm)) for the detection of ethanol
to ethanol; (b) exposed to air and (¢) Zn oping in the lattice of LFO (reproduced with the permission from

gas (100 AP Ry/Ra = 220.7) at 120 °C 9] Auand CI co-modified LaFeO3; was synthesized by the sol-gel
reference ).

method and the sensor signal was attained via resistance change. They improved the ethanol sensing

@%W%eé'@ﬁ%%gftg Ié%?&ré%fsoﬁé%% bé’ptﬂFeH“fH"‘?IiPen Qéﬁgﬁﬁ‘uoﬁa@g%eous acetone X7 Three dimensional (3D)

LaFeO3/a-Fe,O3 nano-octahedrons were synthesized by the one-step solvothermal method, which were then
Growth of miscellaneous nanostructured metal oxide semiconducting perovskites to detect assorted gaseous
combined with a metal-organic framework. The nano-octahedrons constructed heterostructures detect the ‘acetone
species has recently attracted much attention. For instance, MA et al. synthesized the p-type PrFeO;
and obtain the sensor response (R /Ry = 21) by means of changes in conductivity.” The sensor can defect 100 ppm
(praseodymium ferrite) mesoporous Igmollo,vv nanofibers thr_ough electrospinning and calcination procedures and
of acetone at 230 °C, thereby further optimization is required to reduce the working temperature. Porous SnO,
employed in gaseous acetone discrimination 98] When eéposed to 200 ppm of various gases at 180 °C, PrFeO;
fiber-in-tubes™(FITs) were functionalized with Lag 75Srg 25Crg sMng 503 (FI)_SCM) nanoparticles (215.7 nm in size;
nanofibers showed exceptional selectivity to acetone, (Ig{ 7_R 14%.3) with long term stabili(tj:y as shown in J,g re 3.
synthesized from the combustion method using citric a(izldﬁ1 and employed in formaldehyde recognition . The
Oxygen in air was adsorbed on the surface of PeFeO3 to capture the electrons of materials and increased the hole
material (LSCM@SnO, FITs) showed a high response to formaldehyde (R,/Ry = 26.50 at 5 ppm, 400 °C) with a
concentration, hence the resistance decreased. However, when the acetone gas entered, it interacted with
LOD of 80 ppb. The above report is impressive work but the operation temperature must be reduced for practical
chemisarbed oxygen and released the electrons to recombine with holes, which resulted in increased resistance
aﬁpllcatlons. Later, hydrothermally synthesized nanoflowers like the ZnSnO3/Zn,SnO, composite hybrid has been
(this mechanism is applicable to the majority of V0|atl|% Qoanic compounas VOCSs)). Moreover, PrFeO3 hollow
reported for phenylamine sensing by Du and coworkers 227 The ZnSn0O3/Zn,Sn0, sénsor exhibited the résponse
nanofibers also displayed linear resistance change from 10 to SOOchm acetone gas. Therefore, one can certainly
of 12.1-20 ppm phenylamine (at 260 °C) with a LOD of 50 ppb and response/recovery time of 1 s/20 s. Due to its
endorse the potential acetone sensing ability of PrEeO5 hollow nanafibers. ) )

anti-humid property, these materials can be ’employed in the determination of toxic phenylamine.

Investigation on SmFeO5-modified MoS, (SmFeO;@Mo0S,) nanocomposites towards humidity sensing has been
conducted by the Zhang research group 189 The material, synthesized by electrospinning combined with the
hydrothermal technique, operates from 11 to 95% RH with a recovery/response time of 1.5 s/29.8 s, thus it can be
considered as an effective candidate. Other than the VOCs and humidity sensors, perovskite enabled composites
were utilized in toxic gas quantitation. For example, Lag gSrg ,FeO3 (LSFO) nanoparticles (with a size of 100-300

nm) decorated Ga,O3 nanorod arrays have been employed in the recognition of carbon monoxide (CO) via
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report. Recently, Lag gSrg,Co03; (LSCO) nanoparticles decorated -Ga,O3 nanorod arrays were consumed in the
deteFiginedian (@) e Ehopae stBaNfEE by gasasd fe2Go. (R, Jihis ds° @ radkdd) ehe dokgvitcestabilipg Goemanee in
sensitivity (8difirspin?d) pprigledemperalde °Si(rélarotiutiee withdiheterenased froralytdedisereyvEs). composites
with perovskites were also employed in electrochemical sensors. Sr,PdO5; nanoperovskite mixed with carbon
A&RENNBYIE RTBT NG &2 USP AR AVERA Y A8rienclion] Eedtrue idsfAch pCES NTEIBEPEEs, Vit §Qlyethrima
tactigd Fenfitdhei & &hiRiemic srtigoBlidenitke EBSiBardRSRARTH 62 AR LEB128thiC sterivs $pdiRetinehaiom
8oz AR ARMNEERE LOPOTanenbAD384tnembiaher iggPansenaviyristine nNQamasiathieredeysinade
funtianalize@Aeaternanfcures i0.aeetonadias Senwing.odhiserk 16 ar dpecaseiye PNeds fiaatRilileVdeirsdan
e SetuesaRfIRIIaMaBIP aalbaeeglil d6d Uees RN e srelbviration . ahfitpie Fdha &olserbimathast, trRSanERBAE]
tahivaied iRecBgammgdnoenoeMeiRalsering i3 mie Hike NRBfsRdGH RGO uAsHBNbsad O MNSar growtA
anB ATI0), RARPPRO oem taratdarasaioBe lan e testion /& iinen teughipethavatesinl o Rrmrnsatask axtaistee

TRARONGAE. cAIe RRIBHRItHEMPRIBIUARSIE28ErodskaBd- ¥ d Chpilbdiredate AR &xeEpREnalocaRgiddfeaHORtAE
gadinyalbeedrdadium-doped ZnSnOgz nanofibers were fabricated via electrospinning technique (2001 \yhich

displayed sensitivity to 50 ppm acetone at 200 °C with a fast response/recovery time (10 s/13 s). As shown in
Figtgenicibrgprisenetabhaliderpenotskites2dare/ msniBnayed indreahyacertpesiereastorsehestappliaatidnsnésh
Séesoicediypsyrsibesizhid analtdigaing staibipredcdsetig €daksy( GR BQto R LQYI i+ B850 @5 Ghpsudatagb ot mobtileyhiyl
methdoytairidRSNNEA D NRithesemhibitie { GPBRBYRpPIAIRMIENEe the electrospinning method were used in the
sensing of trypsin, Cu?* and pH 229 As illustrated in Figure 19, the CPBQD/PMMA FM detects trypsin through the
cleavage of peptide CF6 (Cys—Pro—Arg—Gly—R6G) followed by a Fluorescence Resonance Energy Transfer
(FRET) between the fiber and cyclam—Cu?*, which leads to Cu?* recognition. Finally, 10 ppb hydrazide R6G (in
ethanol) plays a vital role in pH sensors. LODs of trypsin of 0.1 ug mL™! and Cu?* quantitation of 107> M were
reported. CH3NH3;PbBr; QDs were incorporated in metal-organic framework (MOF-5) microcrystals and applied in
temperature and heavy metal ions detection 192, The CH3NH3PbBr3@MOF-5 composites possess a wide range
of pH adaptability and display its sensitivity to temperature from 30 to 230 °C. However, this probe showed sensor

responses to many metal ions, thereby more work is required to achieved specificity.
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a In air b In acetone

. [ e

_ sl st B
Figure 19. Schemati¢ “Mustation of (a) trypsin, (b) Cu?* and (cg pH fluorescence detection, based on the

CPBQD/PMMA FM (reproduced with thre-permissibn from reference 199 B
.‘_

A porous halide peroyskite—palymig.@aocomposite (MAPBBr3gPVDF) has bﬁg&&&?‘c&pggtmﬂﬂuorescent—based

sensing of nitro explosives (TNT, RDX or TNG) via a trapphag—meehanism (1921 p| of the pEQbe was quenched in
© scetone molecules . . s .

the presence of the above analytes, but specificity of the prob@v iStIl not clarified. Toxic NO, and NH; gas

detection at room tentP@™MIFE®* has been explored by the @Fai nanolavers decgrated CH3;NH;PbBrj

nanocrystals 193] ETRISESEMP odieromimistivaisexhibited diverse.me€h. sito..NQ,.and..NHzegases based on hole

concentrations. E|siammsieme tiesstwitihetaving from NH3/NO, gaae's.iﬂreduce/increase ”1;‘2 hole concentrations

and leads to diverse resistance responses. Such a unique approac.h_fo*‘ myytiple gas sensing is much anticipated.

By combining the solution, immersion and calcination tactics, HC(NH,),Snl3/SnO,/Pt-NPs nanocomposite was
Figaleped(ar¢) Suplyatciilusratideiite sEssidigonethatism af 625 Gu/kE4iopbd HSHDL3sPsh Se@eRiriRg
némo denenbsite ati sglegteoh theneesponse toé @ieSendCe pbrcdétomaldepratiu@d80itiGheviibraidstib fodnésefgubnead
response/recovery time of 40 s/37 s. With respect to tH&%¥eported operating temperature and LOD, this study can

be attested as a suitable one.
Subsequently, with the concern in volatile organic compounds (VOC) sensing, an xylene gas sensor was reported

Besection Ahpesfieide s arsspalsicderithstratedD hynm)eiah thakize ferovs kite donimilkat biateoprapasises-§&Hpecdss
Fbarhis groyne seliisal GsPopesa@id It PEbratacyand hmoletittaatydifopgrttadh sohfitiey SNMERS), itandtbitspa$itgh
(MHps@e (RgBr;16@Bsio Homppthef xgiteetigas vath péasicidsponsmatithadeovEDMBEB saml 3pha)xinhis iShane 8f
Hreihestopyitke toovysibng | ¢AP TES )deppioh GsReBN3 Qf0kererectisenh dgnténgp detatorSohitanéthtretec thfien gk o
BAkriylatrandfeowerkieasi gre se rRédq petypleinsp A2 UTnddmitar (Brapeds) okodfibersmsdveandsOefte 40 ndéteictivith af
ePevfel@\R olghd pi@n It aiheerteatihrph&imMhdisesponstore ache dit8ided IH0 ippoivetmdaheiyNeablenit g HBy
tiggtbo s )i rehuype sa (@ RZED ST Yo venianies the dP fugihen dhives Hgatiavio fEaward shy @Ee disob Wiips Vimsealab
oecepdyatiestriltieos éhef mamapgnoited zigmessNilessapabked mtfFguzEn 30 Oshediresrhergsonsth afggroximately
By achbatdieencieamiel@datybylcojtte cipi@boof B od/A%]. Bokh sepods delieraddatiye adiligspbhiE s@206PEBiR
Qs bombsiteslitopes ety olise | (Rpdrigreatheehll fnTez Fipgons!. n-propanol and the estimated LOD was 500
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ppb (Ry/Ra = 1.7). The above material can be consumed towards the discrimination of n-propanol in the presence

of other analytes, such as acetone, xylene, ammonia, methane and hydrogen.

— 1200 . — 1200 —

Formaldehyd g 1000 ™ 1000 . — 'S recognition
—m = —n

by the followi Z g0 s 800 -

= . Z /\ _—

= 600 M\ —a E 600 A —=

HCHO + 2 O%(ads) 4 CO, + H,O + 4 e (1)
= n_]__.‘" “%’ — 14w | E ﬁ-l—-" ——— e 14D |
460 480 500 520 540 560 580 600 620 460 480 500 520 540 560 580 600 620 :
The released antration and
Wavelength (nm) Wavelength (nmj)
conductivity. 5.0 5.0 )3 nanofibers
4.54 «  MIPAQDs 4.5 = NIPMOQD .

were synthes 4_0.. , ” . 20 idies 1941 As
shown in Fig b & 3 7 8 2l (CoH50H),

E 3.0+ & Sl}-

% 2.54 .
formaldehyde € 9] ! 7:5'3 y=0.07228x-0.05983 to the HCHO
gas at 230 °C 1.5 e ] 5 RE=0.9952 . proach, Yang
et al. develor lng R3=0.9980 ;g / O sensing at
125°Cc 08 0 0= | timeof 7/24

0 20 40 o0 8O 100 120 140 0 20 40 &0 S0 100 120 140

sec, hence at The concentration of phoxim (ng/mL) The concentration of phoxim {ng/mL)

Figure 20. (A,B) Effect mf fphoxim concentration
imprinted polymer MIP/QDs gnd NIP/QDs (25 °C). (

(reproduced with the permiss|on from reference 126]))
~n 15 |

1
In this light, CstBrlgﬂ—,PQD immobilized TiO, in

pectra of molecularly
NIP/QDs with phoxim

CH COCH
se opal photoni “tglﬁ_[(IOPCs’) have been engaged as

(197 This co

electrodes for the eIec'E(')chennicaI dopamine discove

to dopamine from 0.1 § 250 [uM with a LOD of 0.01
a

as “photonic stop bancgeffeci_’ of TiO, IOPCs on the

sses a linear response
i$ sensor is discovered
PQD$, which enhances the
photocurrent upon ex;%sure oanalysis. In a similar

: 5k N
fashion, nanostructured qua y imprinted polymers

bre consumed in the
pndingly 198111991 The

(MIPs) and polyethylene gl

electrochemical determinat'b
quasi-2D and 3D CH3NH3PbI3/TiONpﬂ1posites carhﬁect the CBry ﬁgwn to 20 pmol‘l, and hence become a
reliable system for CBr, sensing. Subsequently, the MIP-PEG/CH3;NH3;Pbl; nanocomposite displayed remarkable
sehigtye,8rfBeRRABESFIOf Highssassis/1g 10 GAam HEeRATH GRS esnrfetleil eplimamngrkingdamperpmuipdlafie oD
andnBBAfikiESF deReBYiSHTre)aonountsxof &g tvera masgkssl a3 HHEO \N s hicdiasg NF6 (reproduced with the
permission from reference 194,

Recently, an inner filter effect-based melamine assay has been demonstrated by barium sulfate-coated CsPbBr;
pardbsrrth anhangstasuairsiteyieca® BietolPantasuilpe 2ploedshy ARy EREi REray ke RRRasiEstaRPS
fhecrasestdRsifye dployrbgrNas@ads d). eds Geasttedarke tencrb&iveids isovdhdiieoroblmcmetas was
BEPROPRfIsEYAPalptAa tiseayRIke St o ASOLEAMERLARRING. LRBIEE B A0 WREGHII0AE BeNEP FRSRPAREA352%6r¢N&aa
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ekt rksene. dhderdal hamiptogpaiyion By Geiindhe lotyggectiananeyhodnCeRiv&lie ) Deteasedcigcapkeane
exldev@RIGO)amahgas mpnsites preperte el tpsdvaydtexpO ¥ d @s/@ qparatzd cdistidatiaat qphbjo e eni; detsonion
BAY. (@00, thenplstioetiecsiovitffeamd thatHRiutintepisity vedsOsPbBed Qb dissrseieashedsies thadpresgeratafeR GES]
BAHAPIA0HY. halidse pamsitiestuezmbieth ranosynipesitesl rera atsvemibrewapedation céutargimajorgwand
teayiatian) dolcerrsitive opltiaatimin Stecepréfizdiom methedtatite splavion gohyhedadiie taeticsskiterissiénhy
fclleviag a semdar Fthatusmvéas dan Wakpthedogoittnyl ineyrmeyatinad oexbgpiithale resskitse 286 AHER s g4l
cenciead fviotieiateabepeohad fthlichtossluntpradteffiest of gas sensing A,BB'Og (A = Ca, Sr; B = Fe; B' = Fe, Mn)
oxygen deficient perovskites to O,, CO and CO, was investigated by the Karki research group. In their work, a
clear sensing mechanism was provided 112,

Towards toy Strong green fluorescence Fluorescence quenching Fluorescence recovery  clkite oxide

(Lao_gsroleeoﬁ“ nff> 34 520 nm 320 nm 520 nm 2 32{Lisin 520 nm 2 of H2, NH3,
CH, and CO, / 2 / des act as a
sensor at hic ( ",,»;,,H P or doping of
LaFeO5 with ® . ’. .. &”/"\Nﬁkm* inostructured
L &
*

e @
perovskites t ® e CaFeO3; with
LA ).017 ppm at

operation ten

room temper 3 )0 °C for the
; 116 Dispersed " Agoregated ;

sensing of su o CsPhBr3NCs@BaSbT] . AN %ﬁ? melamine . ArNPs play a better

reproducible 5 5 stic aspect of

the detection of H,S is noted in the Equation (2).
Figure 21. Schematic illustration of turn-on fluorescent melamine nanosensor based on the inner filter effect of the

200
2H,S + 30, & 2SC} + 2H,0 + 3e* @)

| 8. Advantages and Limitations
With the optimum LOD (4 ppm) and response/recovery time (60-360 s/180-500 s), LaFeO3; nanofibers are the

hest dedigmabiodbderejdpyezhindh@erdpbkitesbizdethsgasagtgrobas have certain advantages and limitations as

listed below.
Similar to the toxic gas/VOC determination, metal oxide perovskites were also employed as humidity sensors. Sol—

gel meihdheneg@behisoptesiectfomagmesiarties ) bothsamesaiuoxidé& rapdlopethl nhaldeysign o el eOhatidd
LaMnO; paowskiies atoes deemonsagedd deviomiohsedsing peptiettiction Le8pé8iallaktyyaFes energeticl/toxit @jaBes
0.4, 0.6, m@cahdrhidtyepmotdetcio. different humid conditions by the change in resistance. A similar response from
the Lag7Srg3MnO; (LSMO) nanocrystals was detected through the impedance analyzer. LMSO nanocrystals
showed &VIRHhPXIGRIVRAOYSKIERS rRED HRLRI YRS I1s)thRoRPIETINAEOD 0, IATRAAGSER MYt IMES LW eanExRRE

nanoperol@¥@lesTherafarso ey EFPNe deBIRR M viihiBR 1© dliBemAnihen-aranieradppag sensor materials
[208]/209],

The non-enzymatic/enzymatic determination or direct recognition of analytes, such as glucose, p-
phenylénddiBHIRECER FRBRHEE B @l MBHAItRREHRISIIG AGARRH tBRAICEXIeARENHY SRS <18 chyRe yatals2haes
[122]  Atta RFFUBPIRIPTPAYEH HesebidgRitiiatincebsrrakiEisH a8 AT Beln BeiAbicaphdyRialBRHNAURRI DR
perovskitd PBFOYEAISIRRNSHRL( R SRR PRISORMBASNIRENEF!S, [+ and Pt2*), respectively 191121 Ag shown in
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Figure 6, Seleaprametsensspiynsd bbthr pendesRitd2dgaA lng;Drpiovedctowertds fractiged plelialSipy, GibPoi@gision
0-0.7) wittvhedDaadific2Dar | ddnfiviicecimoth ) resmeh i L toive (haradenialis), suecheap ditidiagly. This work can be used in the
electrochemical catalytic estimation of glucose. Toxic p-phenylenediamine (PPD) in hair dyes was
electrochdmieHiRP e tBOIH ) &T-0b ¢ BFOBE , AiIBE[rasies yth Rerevekiteomaterials, @pald X)) dhibgificdésaaad)
carbon el SRIGRLA[PYEBRRASBYLS) in alkaline solution [120]. The electrode displayed highest responses of 655 and
308 pA mM~1cm=2 in the PPD concentration range of 0.5-2.9 mM (millimole) and 2.9-10.4 mM, individually, with a
LoD of 0. YA HIVHIWEGER R GoRe i LB S R S T R0 BTSRRI L AP B 2%i T 4 S5
doped (894 S0P &FBES A BlRg S URBIEE T o thEIARA PR BRIV VbR, B IR 9aBeb s ne PS T mancq, R imifed

requires kaj)ngrrni mbg(lgogrsnsé rt]rﬂereby careful optimization is necessary.

= Environment and sob perovskite-facilitated sensory

investigations, except lﬂ

= Cost-effectiveness in tﬁ'b § i i still a concgrn for the researchers.

15
1n
reliability and toxicity. T

= Due to the materigto

challenge to apply then?

synthetic tactics, stabilizer ligdhds 2¥8mptihitufld et 800 1000 1200 1400 1600
tls

This review summarized the senging e i rganometallic halide perovskite
nanomaterials. We focused ono.megecti [ i VOCs and electromechanical
underlying mechanisms. The
fluorescent-based assays of _ar@b;t L I . ‘:"‘ ith givgn advantages and limitations.
Moreover, the sensory utilitiesy gaf also reviewed. Besides the

aforementioned sensing applicatigis £

« The underlying mechanisms in nfany sénsory *eports?still rebuire if-depth® investigations with respect to
) [Glucose] / mmal L.
theoretical concepts.

Figure 6. (A) Amperometric response of ﬁraphite/Srde0.7Au0,303 with successive additions of glucose from 0.2 to
» There are only limited reports on the fluorescent-based analyte assays using[ metal oxide Perovskites, thereby
100 pM. Insets (1, 2): calibration curves for glucose for concentrations from 0.41o 10 uM and from 20 to 100 pM,

need more attention. ) ) ) ) o
respectively. We used 0.1 M NaOH and an applied potential of —76 mV. (B) Calibration curve for glucose in diluted

for | i f 10-5.2 uM). | L vol LSVs) of 10 mL of dil i
. P TR Ry B A0SV haSe ey TRV G SHESROSY SRP MILERCEa Ny SpERA k] EBmperatiins, Wheefre,

O 512 a0 LR SR QL8 5035 A QaRiBepllgproduced with the permission from

reference 121)),
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SimNarast-edfactvenck plecinodiie naine |-tiasedatizdyt epdivsuliery, isaletjomededigientiliceréstnt gktisengutt nittaenials
expiosizets \wpe difisc astab{ishergas SnOBTs panvskiteatixids 46C PHysra pavaertEd) Smay@geariappatiber. was
synthesized by the sol-gel method (assisted by citric acid and cetyltrimethylammonium bromide (CTAB) in water)
and' BRIBIGYEdARMtIELhIGN0ES @NBer RiHdigs o fapareMskijedsanavwiiarPaasyl sbemes/ SO RtRe)eroflRIR
(THRHORISNe@RHtaengexetsHdN ENREaEAbe @ RAperature. As displayed in Figure 7, SCO shows better selectivity
to nitro explosives than other competitive analytes and solvents. Moreover, it revealed a fast response to aII
e‘xpﬁ’oesrf\’/‘é%k{}v‘?th”%‘ﬂﬂ‘%a‘.hert' LPSHRRT %389 @ PI0d 5 IN MROS NN SRR RSP e REe RIRLBARd TG, (AR

work glan exceptlonal example, thereby this tactic can be extensively used for other analytes.
Biesir
Iﬂlm

lopment of stable perovskite nanot

e Focus og]Iead tudies.

100

or environmental and biological assays needs

i
5

. ResearcPE iqm;h

to be inteRsive

= 60

ulated and encouraged.

in FL Intemiity

=
= -
. Investiga’.gons e incorporation of well-known magtixes erovskite-composite sensors, sugh as metal
400

organic feame tal nanostructures, hybrid clustess an ers, need more attention.
o

2
o Perovskite na

colorimetric/naked eye

6."‘&‘ q?'l‘“ #3\"-‘9 #_ﬁ‘# Jj{f‘{"*‘-}*&i"ﬂ“ .1’:}#?‘1&;
» Design and development 0 {va tOX|8 perovskltg nanomaterial-based dem{:qﬁ{ﬂobes towards sensing-drug

delivery modules are required to be estabhshed in the future.

Figure 7. Graphs for s_el_ectivi_ty test of _SC_O in_ _the_presence of _the (a) nitro compound, aromatic_and nonben_zen_e
TR () SIRUS IR AIMEHLSH AT QoIS PNk SeBSehiFIRAT Rl adiRPdo P
respect to- their applicaliy Rty ST Ge SERRRee SR PRMS SRR S e foniarténg on perovskite-based

photonics, which may provide in-depth theories for the design and development of nanoperovskite sensors and

RiR-ClestANa SRRl et sogialrivd EseinARECN@Pagished (1.0% mol) yttrium orthoaluminate nanoperovskites
(by the sol-gel method) for temperature sensing in the first and second biological windows (293—611 K), which can
be employed in subtissue luminescence imaging 224, Likewise, nanostructured p-type LaCoO5 was synthesized by
solution polymerization tactics and engaged in ultraviolet detection (1221, When exposed to a UV light source, the

material showed changes in resistance. These results further confirm the exceptional analytical applications of

Wﬁ &%g/skites.
6" Mt HElTaE PEYBYERITEE i At eteesh

applications. Chem. Soc. Rev. 2013, 42, 5425-54

RS8N EIREITICBANEe PETONRKIeftin AV eSHORR IARIBISAr RIS RS CRIRPIRIERRICSIMS BROTRRISGARshemical
stucﬁj@,‘fﬁﬁg}ﬁ@@ﬁ@mo@éﬁg@@m@’ (ga,nggning halide perovskites were investigated for novel applications 1271,

Their propert|es like the instability in water or aqueous media, were established as aqueous sensors. For example,

ar%?laBn Wor‘E(ersapnrgp%%teeJl%lg Eres‘?'l?ﬂsc%rgpeu romlg1 te(r&alé % %y?’ est7c%1em|cal method) perovskites for

Ayeersvskitemaatimakgseisrhp ritt anater mRLchemoserespoyiirdedalyte alatec izt iran sistodetestonal
(ODiram$iporhasetb permpskiiteSm iR, O Hicgitionystal has been developed for water detection 129, This
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ha@halrsplayad Wphbtondmaeis CEndenyiem tdmGieldr{medng ofstationeaf endssioryv(il) basedamsigglda a PL
respareaparticles, fluorescent gold nanoclusters and other gold-based nanomaterials. TrAC Trends

Anal. Chem. 2015, 65, 83-96.

Towards metal ions discrimination, inorganic halide perovskites were effectively employed with certain promising

6. vang, B.; Akiba, U.;Anzai,J.-I. ecent Progress in. Nanomaterial-Bas Eecﬁroc emical .
applications. For instance, Sheng’ et al. established tfie metal ions sensing ability of cesium lead halide perovskites

qua%itgﬁweggt%r%igoaggcr%ﬁ]%rcl?liél)nrggsriﬁﬁrﬁﬂé&ggri]ec\év'ﬂ?l %ué gvgno :|Ln F%%’rel %%%stBrg quantum dots (QDs)
rév&hedl aiatinddceSemn gelithingrmines qeatdvietaliNardd chusters fispRgtentisth Dbemwserisol b3t ions. This
halidpplieatokise GheieosansoystidElzeds t1B36ugh hot-injection tactic with PLQY of 63%. It demonstrated
FSRINa INBA,ISRARR b 10 2P2 Pong K VNI BRSSO (il ST LN AL S iRl 0y, Similary,
O R QK e A G B R O S S SRS PSRRI eguokers LU eiiicatoswith @
Iine&zgafge of 0-100 nMand LOD of 0.1 nM 31, From both work, it was concluded that luminescent CsPbBrj is a

good material for the PL-based Cu?* sensing.
9. Zhang, W.; Eperon, G.E.; Snaith, H.J. Metal halide perovskites for energy applications. Nat.

Energy 2016, 1, 16048. b

10. Gao, P.; Gratzel, M.ENazee

5
11. Choi, J.J.; Billinge, %3’ } 5 to applications.

12. Labhasetwar, N.; Saraua af Megea ' wall, "N Blagade, R.; Doggali, P.;
Grasset, F. Perovskiten-mtyE genw%%mgwenta applications. Sci. Technol. Adv.
Mater. 2015, 16, 036002. e

00 — 1 e e e
13. Zhao, Y.; Zhu, K. Org,anic—inorg 21; ﬁ%ﬁdde‘gj hakide perovskites
electronic applicatiofis®Chem. $6c.'\Rev-281%, 45, ittt tEn G
= — i &+ blank 1

—8— CsPbBr, 005 + Yo
ide perovskites for solid-state light-

olectronic and

]
14. Adjokatse, S.; Fangglgl.;H,; Loj
emission applicatior. Mater, 0 7.

u . - b “ ql} - - i - -~ E ‘ - . -
15. Bhandari, K.P.; Ellingsan, R'!ﬂvjémmng\ferwew of Hytrid @wamc—*l&r]?rgamc Metal Halide

Perovskite Solar Cells. In A Comprehensive Guide to Sof‘égroluz'n]gmystems; Letcher, T.M.,
FiguheBalisTe Mire B -cifCRAE AitaPIRR S HRREIN M/ or Yre AosPBBB; BB s 2A%eotfeentration of metal

18N8 881d)e €50 PP RIRY &KeE- SyntResii i dp iitd alu BripTiiabed ddneFAlca M iRInRImalized by
ap‘ﬁﬁc%ﬁ%l?ﬁ@% \'y,lﬂgwﬁgggﬁgn Jo_fmy' igl?S’ gﬁq_l%ﬁ@( column); (b) images of the CsPbBr; QDs in
cyclohexane under ultraviolet light excitation with and without Cu?*; (c) the [Cuz’f] on PL spectrum of the CsPbBrj
17. CHBR-Ya ) a9z B0 v8+ SR8 iter @l &7 Pl dBi SR BV St SQlar GellSTrA R IRV

recent progress and issues. RSCp%gr}]/iS%%%quE;ﬁ %Qér%%zé?ﬁ%%:

18. Hong, K.; Le, Q.V.; Kim, S.Y.; Jang, H.W. Low-dimensional halide perovskites: Review and issues.

PL ng@pm%_@ﬁdg@s yas pigp gemgnstrated by europium (Eud")-doped lead free Cs3Bi,Brg perovskite
quantum dots 232, The Eu3* incorporated Cs3Bi,Brg QDs with PLQY of 42.4% were prepared from the ligand

assisted reprecipitation method and applied in PL based Cu?* sensor. Linear range of Cu?* detection was found to
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18 Rawvilo, P\ wWEnaande Dlaf Einavs nardicMefab@d deBlimie resienasioN ahestruQDsas wkfat ivaslgadritfication.
Rederlyy siarasBrAdyDd aieilita20d 14/t123{rd00 BedB4 .of uranyl ions (UO,2") has been reported by Halali and
AP Che RURASKEROSRERIA & PR 5 ek Yo iz QML pgtRafoany
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