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Metals are actively involved in multiple catalytic physiological activities. However, metal overload may result in

neurotoxicity as it increases formation of reactive oxygen species (ROS) and elevates oxidative stress in the nervous

system. Mitochondria are a key target of metal-induced toxicity, given their role in energy production. As the brain

consumes a large amount of energy, mitochondrial dysfunction and the subsequent decrease in levels of ATP may

significantly disrupt brain function, resulting in neuronal cell death and ensuing neurological disorders. 
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1. Introduction

Mitochondria play a key role in many cellular physiological and pathological processes, including energy metabolism,

calcium homeostasis, lipid biosynthesis, and apoptosis . One of their main functions is to produce adenosine

triphosphate (ATP) by coupling the electron transport chain (ETC) with phosphorylation. The ETC consists of four major

protein–metal complexes (I–V) which primarily serve to generate a proton gradient to drive the production of ATP .

Superoxide anion, a byproduct of the ETC’s operation, is extremely unstable and rapidly converted into hydrogen

peroxide (H O ) and ROS in the cytoplasm . However, excessive production of ROS may cause oxidative stress, ETC

dysfuction, mitochondrial structural damage , and oxidative damage to proteins, DNA, and lipids .

Neurons are highly polarized cells, heavily dependent on the energy generated by mitochondria, and the brain consumes

about 20% of the body’s resting ATP, while it accounts for only about 2% of the body’s mass . In addition, mitochondria

are necessary calcium-buffering organelles in neurons as they regulate local calcium dynamics to control neurotransmitter

release . Mitochondrial dysfunction has been implicated in a variety of diseases, and is a causative factor in several

neurodegenerative diseases, including Alzheimer’s disease (AD), Parkinson’s disease (PD), Huntington’s disease (HD),

autism, and amyotrophic lateral sclerosis (ALS) .

Among the chemical elements that humans are exposed to, metals play an important role in both health and disease.

Metals are natural components of the Earth’s crust and enter the biosphere through a variety of human activities . They

are generally classified into two groups: essential and non-essential metals. The main routes of human exposure include

ingestion, inhalation, and dermal contact . The brain is able to regulate these metals effectively under physiological

conditions. However, excessive exposure to metals, such as arsenic (As), aluminum (Al), cadmium (Cd), lead (Pb),

copper (Cu), and manganese (Mn) may lead to their accumulation, and ensuing neurodegeneration . Mitochondrial

impairment and metal dyshomeostasis have been linked to some neurodegenerative disorders including AD, PD, HD, and

ALS . Metals can cause neurodegeneration by disrupting mitochondrial function, and thereby deplete ATP, induce ROS

production, and ultimately lead to cell death through apoptotic and/or necrotic mechanisms . There has been a growing

interest in understanding the metabolism of neurotoxic metals and their role in the etiology of various neurodegenerative

diseases, and a great deal of research has been done for this purpose. However, the effects of various metals on different

neurodegenerative diseases are not identical, and their specific mechanisms of damage have yet to be fully clarified.

2. Molecular Mechanisms of Metal-Induced Mitochondrial Dysfunction
2.1. Arsenic (As)

As, a widely distributed toxic metalloid, is a risk for about 200 million people in more than 24 countries around the world

. It can be absorbed through skin, digestive tract, and inhalation. After absorption, As can be distributed to various

organs, including kidney, lung, liver, and spleen in the animal and human bodies . More seriously, As can enter the

central nervous system (CNS) through the BBB and accumulate in different brain regions . In vivo studies showed

that excessive exposure to As induced neuronal apoptosis, which interrupted the neurodevelopment and cognitive

functions of rats . Epidemiological studies in rural-dwelling adults and elders also show that As (3–15 µg/L) levels
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in water negatively correlated with the scores of cognitive performance and memory, indicating that As is a neurotoxic

metalloid , which also acts as a risk factor for AD . However, the mechanisms of As-induced neurotoxicity

remain unclear.

To date, As-induced neurotoxicity has been related to Aβ overproduction , inflammatory responses , thiamine

deficiency , oxidative stress, disruption of neurotransmitters , cytoskeletal gene expression, mitochondrial

dysfunction, and disruption of acetyl cholinesterase activity . Among them, mitochondrial dysfunction has been

demonstrated to play a key role in As-induced neurotoxicity. Several in vitro studies have shown that As may induce

adverse effects on mitochondrial functions. For example, Haga et al.  suggested that aggregated mitochondria were

found in A172 cells after 50 μM arsenic trioxide (As O ) treatment for 8 h. Subsequently, other investigators also

suggested that sodium arsenite (NaAsO ) or As O   treatment induced mitochondrial dysfunction via increasing

intracellular Ca  levels, mitochondrial membrane potential (MMP), or calpain 1 levels in N A cells , SHSY-5Y cells ,

and primary astrocytes , as well as rats’ primary neuronal cells . Moreover, in vivo studies have also verified the

critical roles of oxidative stress and mitochondrial dysfunctions in As-induced neurotoxicity .

It is well known that the mitochondrion is the main source of ROS formation, as well as a major target of ROS .

Oxidative stress is closely related to mitochondrial dysfunctions induced by As. Yadav et al.  showed that the activities

of oxidative stress marker enzymes MnSOD and CAT were decreased by As in the mitochondrial fraction of different brain

regions (including striatum, hippocampus, and frontal cortex) of rats via increasing ROS, and lipid peroxidation after

exposure to NaAsO   for 28 days . Similar results were found in sub-chronic As exposure studies done by other

investigators which indicated that MnSOD, CAT, Gpx, GR, and GST activity were decreased in the mitochondrial fraction

of rat brain . Moreover, various studies suggested that As directly impaired the mitochondrial respiratory system via

oxidative stress. Dwivedi et al.  indicated that As caused oxidative stress which in turn inhibited the activities of

complexes I, II, and IV in the mitochondria of rat brain. These results have been corroborated by other labs .

Furthermore, excessive As exposure disrupted oxidative phosphorylation, and thus interrupted the ATP synthesis and

mitochondrial respiration in the mitochondria of the brain . Consistent with these results, sub-chronic exposure to low

levels of As has been shown to decrease gene expression of the mitochondrial complexes II, IV, and V in mice brains 

. All of the above-mentioned studies suggested that the mechanisms of oxidative stress involved in As-induced

mitochondrial dysfunctions play a pivotal role in As-induced neurotoxicity.

In summary, these studies suggest that the mitochondrial dysfunction in the CNS is the most important mechanism of As-

induced neurotoxicity. It includes impairments of Ca  homeostasis , abnormal mitochondrial dynamics , and

changes in membrane potential and permeability , which induces neuronal injuries via the mediating mitochondria-

dependent pathway.

2.2. Aluminum (Al)

Al is a ubiquitously distributed metal on the earth, and it can be easily absorbed via skin contact, inhalation, and ingestion.

Al sulfate has been ubiquitously used for water purifying, food processing, and the medicine and pharmaceutical industry,

which ensure its presence in human bodies . An increasing number of studies have shown that Al could accumulate in

various mammalian organs, including bone, kidney, lung, liver, spleen, and brain . Growing evidence has also

suggested that Al accumulations in various brain regions may cause neurotoxic symptoms and learning impairment .

Studies in rodents indicated that chronic Al exposure led to Al accumulation in the hippocampus and caused

neurobehavioral impairment . Other studies also reported that Al caused neurofibrillary degeneration . Altmann

et al. showed that the impairment in cerebral function may be related to the concentrations of Al in the contaminated water

. Additionally, epidemiological studies suggested that Al has been considered as a potential risk factor in the

development of neurodegenerative diseases, such as AD , PD , and ALS, etc. .

Several studies have proposed that mitochondrial dysfunction may play a critical role in the toxic effects of Al, including

neurotoxicity . Rao et al.  have shown that the ROS formation and mitochondrial respiratory activity, as well as

glutathione depletion, were increased in the glial cells after being treated with Al for 24 h. Other groups have also depicted

that Al exposure increased ROS formation and impaired the cytochrome c oxidase, which impaired mitochondrial

functions in various neuronal cell types, including PC12 , SH-SY5Y neuroblastoma cells , and rat and

cerebellar granule neuronal cells . Mitochondrial dysfunction was also observed in in vivo studies . Acute

exposure to 50 μM Al maltonate via intracisternal injection caused the release of cytochrome c (cyt-c), accompanied by

decreased Bcl-2, upregulated Bax, p53, and caspase-3, and DNA fragmentation in the mitochondria of rabbit brain .

Subsequently, Kumar et al. also reported that sub-chronic Al exposure for 12 weeks resulted in elevated ROS generation,

and decreased ATP synthesis and cytochrome levels in a rat’s brain, which implied disruption of mitochondrial function

. In addition, their other study also suggested that Al exposure decreased MnSOD and aconitase activities in different
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regions of the rat brain . Additionally, transmission electron microscope results showed that Al exposure caused

mitochondrial swelling and vacuolization structures, and thus increased the diameter of mitochondria in the hippocampus

nerve cells of mice and rats . Finally, Al exposure upregulated the autophagy-related proteins LC3-II and Beclin-1,

while downregulating p62 expression, suggesting that Al-induced learning and memory impairments may be related to

mitophagy .

Recently, oxidative stress and mitochondrial disorders have been suggested as major targets for Al-induced neurotoxicity.

For example, quercetin has shown protective effects on Al-induced mitochondrial swelling and chromatin condensation in

rat hippocampus . Naringin also has protective effects on memory impairment of sub-chronic Al-exposed rats via

preventing the activations of mitochondrial oxidative damage in the brain . Subsequently, Centella asiatica, which has

antioxidant properties, was shown to ameliorate memory impairment and the activation of oxidative stress and decrease

mitochondrial enzyme activity in the hippocampus and cerebral cortex induced by Al . In addition, some other natural

compounds also have been shown to have neuroprotective effects on Al-induced neurotoxicity, such as crocin, curcumin,

and polyphenols . These studies indicate that inhibition of oxidative stress and mitochondrial dysfunction may be

a therapeutic strategy to prevent the neuronal injuries induced by Al.

2.3. Copper (Cu)

Cu is an essential trace metal for human health. Cu takes part in many cellular enzymatic activities, including energy

production, redox balance, and neurotransmitter biosynthesis . An adequate amount of copper is critical for the

maintenance of redox balance in the mitochondria . The mitochondria are both a regulatory hub for Cu homeostasis

and a target of Cu toxicity . For example, Cu is required for metallation of the catalytic core of cytochrome c oxidase, a

mitochondrial metalloenzyme in the respiratory complex chain . However, overload of mitochondrial Cu is detrimental to

the function of respiratory complexes, leading to elevation of ROS and mitochondria dysfunction. Wilson’s disease is a

genetic disorder caused by excessive mitochondrial copper in the liver .

Brain mitochondria are particularly sensitive to the detrimental effects of Cu . Compared to the mitochondria in the liver,

kidney, and heart, brain mitochondria are susceptible to elevated levels of Cu, which attacks free thiols in large molecules

that are indispensable for maintaining neuronal cell function . The membrane potential, efficiency in ATP production,

and structural integrity of brain mitochondria were prone to damage caused by excessive Cu . Chronic Cu exposure led

to spatial memory impairment that was associated with mitochondrial damage in the hippocampus . Specifically, beta-

amyloid-induced memory deficit in rats is exacerbated by Cu exposure. Meanwhile, analysis of isolated mitochondria from

rat hippocampus following Cu exposure demonstrated a significant decline in mitochondria health, including increased

lipid peroxidation and glutathione oxidation . Mishandling of Cu in the mitochondria has been linked to age-related

neurodegenerative disorders . In a mice model of AD, a proteomics study showed that low levels of Cu exposure

(0.13 ppm, 2 months) induced deficits in mitochondrial dynamics, leading to increased H O   production and reduced

cytochrome oxidase activity . Common biochemical characteristics of PD include accumulation of iron and diminished

Cu content in degenerated brain regions. The disruption of Cu metabolism was believed to be involved in the pathological

process in loss of catecholamine neurons . Additionally, in a 6-hydroxydopamine (6-OHDA)-induced-PD model, Cu

exposure increased oxidation of 6-OHDA, resulting in an increase in the rate of p-quinone formation and

H O  accumulation. In the same model, the 6-OHDA-induced lipid peroxidation and protein oxidation were potentiated by

Cu exposure .

Mitochondrial dysfunction following chronic Cu exposure involves oxidative stress, collapse in mitochondrial membrane

potential, depletion of GSH, comprised function of respiratory complexes, reduction in APT production, and structural

damage to the mitochondria . Experimental evidence showed that free protein thiols in the mitochondria are potential

toxic targets of Cu . GSH supplementation attenuated Cu-induced lipid peroxidation but failed to protect oxidized thiols

. In addition, the induction of the mitochondrial permeability transition (MPT) was associated with Cu-induced astrocytic

injury . Furthermore, mitochondrial health in the hippocampus is a potential in vivo target of Cu. A recent study showed

that mitochondrial biogenesis and respiratory function were impaired in the hippocampus of mice chronically exposed to

CuCl   .

2.4. Cadmium (Cd)

Cd is a heavy metal that has no nutritional roles for humans. Cd-induced cellular damage is largely mediated by disruption

of mitochondrial activity . Elevation of ROS in the mitochondria and induction of mitochondria-derived apoptosis

signaling are involved in Cd-induced neurotoxicity . Mitochondrial protection afforded by antioxidants can attenuate

Cd-induced neuronal damage .
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An elevation in protein and lipid peroxidation, decrease in antioxidant capacity, and structural damage to the mitochondria

were shown in the brains of rats chronically exposed to Cd . The structural stability of mitochondria-associated ER

membranes (MAMs) is critical for the proper function of the mitochondria. Recent studies show that MAMs are not only

the physical bridge to facilitate communication between the ER and mitochondria, but they are also indispensable for

cellular homeostasis processes such as autophagy, lipid metabolism, and Ca   transport . Cd exposure induced

increased production of ROS in the mitochondria, leading to impairment of MAMs . The shapes of mitochondria are

subjected to transformations in response to cellular stress, which is driven by two closely related processes: mitochondrial

fusion and fission. Mitochondrial fusion and fission are required for proper intracellular distribution and quality control of

the organelle . Mitofusin 2 (Mfn2) is a mitochondrial outer membrane-localized GTPase that is essential for

mitochondrial fusion. Cd-induced neuronal necroptosis was associated with ROS-induced S-glutathionylation of Mfn2 .

Increased ROS levels are detrimental to the activity of key enzymes involved in lipid metabolism. Cd exposure altered the

lipid profile in a rat brain, resulting in an increased level of cholesterol (CHL) in the mitochondria . Furthermore, Cd

exposure promotes lipid peroxidation (LPO), which is mediated by the increased level of oxygen free radicals . The

mitochondria are both a storage site for cellular calcium ions and regulators for calcium ion homeostasis. Cd can

competitively bind receptors and ion channels that regulate calcium ion influx, modulating calcium-dependent cellular

activity . The Ca /calmodulin-dependent protein kinase II (CaMK-II) regulates cytoskeletal dynamics and apoptotic

cell death. Recent advances show that CaMK-II mediates the effects of Cd exposure on actin depolymerization

microtubules and cadherin junctions, which are the underlying mechanisms of Cd-induced cytoskeletal disruption and

alterations in cellular morphology . Nutritional trace metals, such as Zn and Se, can mitigate Cd-induced mitochondrial

toxicity. For example, in a cellular toxicity model of PC12 cells, Cd exposure led to depletion of cellular GSH and oxidative

damage to the mitochondria, which can be attenuated by Zn supplementation . Additionally, Se supplementation

suppressed Cd-induced oxidative stress and the mitochondrial apoptosis pathway .

2.5. Mercury (Hg)

Mercury is a naturally occurring element that is found in various inorganic and organic forms . Both organic and

inorganic mercury are neurotoxic. Methylmercury (MeHg) is of special concern as it is an ubiquitous environmental

contaminant and its consumption in fish can lead to a devastating neurological disorder, referred to as Minamata disease

. Numerous studies have shown that mercury causes brain mitochondrial dysfunction, playing a key role in Hg-

induced brain damage and neurological disorders.

As early as 1974, Chang and Hartmann found that mercury was present both in neurons and in glia after MeHg or

mercuric bichloride (HgCl ) administrated to rats orally or subcutaneously . Notably, mitochondria accumulate mercury,

mostly because of their abundance of thiol (–SH) groups. Although mercury initiates multiple additive or synergistic

disruptive effects, a key mechanism of disruption of mitochondrial function is associated with the production of ROS.

HgCl  and/or MeHg exposure enhance ROS formation in the CNS, evidenced by both in vivo  and in vitro models,

including primary rat cortical neuron , rat cortical astrocyte , cerebellar granule neurons and astrocytes ,

and microglia , as well as in mixed primary neuron–astrocyte culture . ROS overgeneration leads to consequent

oxidative stress  and mitochondria-mediated apoptosis. For example, MeHg exposure results in cytochrome c release,

caspase-3 and caspase-9 activation, and apoptosis-induced factors (AIF) increase in primary rat cortical neuron .

Mitochondria-mediated apoptosis in brain cells is secondary to alteration of mitochondrial membrane potential (MMP) and

transition of mitochondrial permeability , which have been observed in neuron/astrocyte mixed-culture  and

astrocyte mono-culture  after mercury exposure. In addition, the mitochondrial dysfunction evoked by mercury was

correlated with damage in mitochondrial bioenergetics. Mercury has been found to act as an inhibitor of the enzymatic

activities of mitochondrial respiratory complexes, impairing ATP synthesis in rat hippocampal mitochondria . MeHg

exposure reduced GSH levels in astrocytes, increasing the vulnerability to oxidative stress . Apart from a series of

biochemical impairments in mitochondria induced by mercury exposure, pathological changes in mitochondrial

morphology have also been demonstrated. Li et al.  found that a low dose of mercury, lead, and cadmium caused

dose-dependent mitochondrial depletion, as well as ridge and matrix dissolution in the hippocampal neurons of rats.

Additionally, an in vivo study observed that MeHg induced mitochondrial swelling in the hippocampus of MeHg-exposed

F1 generation rats, and enlarged and fused mitochondria in mice cerebral cortex .

Dreiem and Seegal  found that antioxidant Trolox significantly reduced MeHg-induced ROS, while failing to restore

mitochondrial function in rat striatal synaptosomes. The authors revealed that MeHg increased mitochondrial calcium

levels, which are fundamental to mitochondrial function. If mitochondria take up too much Ca , it delays the rise in

cytoplasmic Ca    and the opening of the MPT pore, which may promote the release of cytochrome c and other pro-

apoptotic factors, culminating in apoptosis . The modulatory effect of cellular calcium homeostasis by MeHg in mouse

spinal motor neurons was also found . In addition, proteomic analysis revealed that many mitochondrial proteins were
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deregulated by mercury exposure in primary mouse cerebellar granule neuron and astrocytes , as well as in rat

hippocampus , thus impairing mitochondrial function associated with cellular metabolism and energy production.

2.6. Lead (Pb)

Pb is an environmentally abundant metal pollutant with human exposure mainly through air inhalation and food and water

intake. Pb is a strong toxicant for the developmental CNS . Pb intoxication in children, even at low doses, is found

to impair learning and memory and affect cognitive functions and intellectual development . The brain is the

primary target of Pb toxicity. Mitochondria play a key role in Pb-induced impairment of nervous system function.

An in vivo study found that the activity or levels of several mitochondrial enzymes were inhibited by Pb exposure. For

example, lead acetate (PbAc) exposure in drinking water decreased aldehyde dehydrogenase (ALDH2) expression in

brain nucleus accumbens , and PbAc exposure from postnatal day 1 (PND1) through PND21 in drinking water of the

mother significantly decreased offspring activity of mitochondrial monoamine oxidase (MAO) in all brain regions, including

cerebral cortex, hippocampus, and cerebellum, in a dose- and age-dependent manner , attributed to the high affinity of

Pb for the -SH groups in enzymes, consequently damaging mitochondrial activity and function. In addition, pre- and

neonatal exposure to a low dose of Pb (Pb concentration in whole blood < 10 μg/dL) induced synaptic ultrastructural

abnormalities in mitochondria including elongated, swollen, and shrunken changes in mitochondria , indicating the

mitochondrial morphological disruption induced by Pb. Mitochondria-mediated apoptosis has also been shown in Pb-

induced neuronal death. PbAc intoxication caused cognitive dysfunction and anxiety-like behavior, along with altered

Bax/Bcl-1 expression and increased cytochrome c release from mitochondria in rat brain . In addition, (CH COO) Pb

exposure induced apoptosis via the mitochondrial pathway in embryonic neurocytes isolated from chicken . Similarly,

the combined treatment (As+Cd+Pb) in individual lethal concentration (LC)-5 induced a toxic effect on C6-glioma cells

derived from rat glioma, via mitochondria-mediated apoptosis, including caspase-9 activation and Bax/Bcl-2 changes .

Notably, Zhu et al. found that MPT pore opening plays an important role in Pb-induced neurotoxicity. In SH-SY5Y cells,

PbAc exposure significantly impaired mitochondrial function, evidenced by ATP decrease, MMP collapse, ROS

production, mitochondrial apoptosis, and morphology changes (swelling and rupture). PbAc treatment significantly

increased the protein level of Cyp D, a component of MPT, and induced MPT pore opening in both PC12 and SH-SY5Y

cells. Inhibitor of Cyp D significantly reversed mitochondrial damages and cell death induced by Pb .

2.7. Zinc (Zn)

Zinc is an essential trace element that is required for the function of numerous enzymes and DNA-binding transcription

factors. Excess zinc influx has been manifested to play a role in neuronal damage and death associated with traumatic

brain injury, stroke, seizures, and neurodegenerative diseases . Mitochondria have been identified as targets of

the neurotoxic effects of zinc by reducing ATP production and increasing ROS.

Zinc exposure reduced the cellular nicotinamideademine dinucleotide (NAD+) in cultured mouse cortical neurons, followed

with a progressive loss of ATP levels and subsequent cell death , indicating the potential inhibition of

mitochondrial respiration enzyme. Indeed, several mitochondrial enzymes, including α-ketoglutarate dehydrogenase,

NAD+-dependent isocitrate dehydrogenase, succinate dehydrogenase, and cytochrome c oxidase, have been

demonstrated to be inhibited by zinc exposure in liver mitochondria . Notably, by using bovine heart mitochondria,

complex III, specifically the bc 1 complex, was identified as the site of Zn  binding and inhibition . ROS generation

has been found to be critical in zinc-induced neurotoxicity, demonstrated in diverse brain cell models . As

mitochondria are an important source of cellular ROS production, the influx of Zn   through Ca -permeable

AMPA/kainate channels also triggers rapid mitochondrial depolarization, leading to prolonged production of mitochondrial

superoxide in cortical neurons .

In addition, several other mechanisms have been involved in the zinc-induced mitochondrial dysfunction. For example,

extracellular zinc application stimulates the Ras/MEK/ERK pathway, which leads to zinc-induced mitochondrial

dysfunction and consequent cell death in rat neurons . An immediate early transcription factor, egr-1, was found to act

downstream of ERK 1/2 to induce neuronal death after zinc exposure . Furthermore, elevated intra-neuronal zinc

impairs mitochondrial trafficking without altering morphology, which was restored by PI3k inhibitors, suggesting the role of

PI3k activation in zinc-inhibited mitochondrial movement in neurons . Apart from the adverse effects on neurons and

glia, zinc overload also critically induced ROS formation in mitochondria and degradation of mitochondrial network in

cerebral microvessels, which were mediated through Drp-1-dependent mitochondrial fission pathway, thus contributing to

increased permeability of the BBB after cerebral ischemia.
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Not only zinc overload, but also zinc defficiency, may impair neurological functions  and cause neuronal apoptosis via

an intrinsic (mitochondrial) pathway in human neuroblastoma IMR-32 cells and primary rat cortical neurons .

Researchers have identified that the transposition of phosphorylated p53 into the mitochondria mediated zinc deficiency-

induced mitochondrial alterations and apoptosis in neuronal precursor cell (NT-2 cell line) .

2.8. Iron (Fe)

Iron is a crucial trace metal for life and is the most abundant transition metal in the brain. It acts as a catalytic center for

multiple enzymes and supports many elementary biological processes, including DNA synthesis and repair, oxygen

transport, mitochondrial respiration, and neurotransmitter metabolism. Oxidative stress, iron deposition, and mitochondrial

dysfunction have been considered as hallmarks of many neurodegenerative diseases, including PD, HD, and AD ,

and a positive feedback loop among these three factors seems to exist in neurological disorders.

Upregulation of cellular redox-active iron is directly related to increased ROS and with changes in intracellular reduction

potential . In the presence of H O , which is mainly produced by mitochondrial ETC, Fe   generates hydroxyl

radicals (OH) via the Fenton reaction. The hydroxyl radical is considered to be one of the most reactive substances in

biological systems because its reaction rate is limited only by its diffusion. This free radical can attack proteins, DNA, and

lipid membranes, thus disrupting mitochondrial function and cellular integrity, and eventually leading to oxidative stress

and cell apoptosis . Iron overload promotes the production of mitochondrial ROS in SH-SY5Y cells, in an AMP-

activated protein kinase (AMPK)-dependent manner , and caused ATP production defects, mitochondrial complex I

inhibition, and mitochondrial apoptosis in primary cortical neurons . In addition, mitochondria-targeted iron chelators

showed protective effects against mitochondrial oxidative damage and neuronal death, both in rotenone-treated SH-SY5Y

cells and the dopamine neurons from MPTP-intoxicated mice, which indirectly suggested that iron accumulation in

mitochondria induced mitochondrial oxidative damages in neurons and consequent cell death . Moreover, iron

overload may induce Drp-1-dependent mitochondrial fragmentation by upregulating intracellular calcium. Lee et al. 

found that in ferric ammonium citrate (FAC)-stimulated HT-22 hippocampal neuron cells, mitochondria were fragmentated

by dephosphorylation of Drp1 (Ser637) and apoptotic neuronal death was increased. Notably, FAC-induced iron overload

leads to intracellular calcium elevation and further activation of calcineurin, while inhibition of Ca   signals related to

calcineurin prevents iron overload-induced mitochondrial fragmentation and neuronal cell death. Redox-sensitive

ryanodine receptor (RyR)-mediated Ca   release also was shown to underlie the iron-induced mitochondrial fission in

primary hippocampal neurons .

Recently, a new iron-dependent programmed cell death, namely ferroptosis, has been found to be a main driver of many

neurodegenerative diseases. It is characterized by the accumulation of lipid peroxidation products and lethal ROS derived

from iron metabolism and can be pharmacologically inhibited by iron chelators. Although the detailed mechanism by which

iron overload promotes ferroptosis has yet to determined, it is reasonable to hypothesize that iron overload may drive the

generation of hydroxyl radicals, which further react with liposomes to produce lipid peroxidation products and cause

mitochondrial dysfunction, and eventually ferroptosis . Although mitochondria have been shown to be vital

regulators of iron homeostasis and ferroptosis in neurodegenerative diseases , more direct evidence targeting iron

overload, mitochondrial dysfunction, and ferroptosis is still required. The mitochondria are also the site for the synthesis of

iron–sulfur cluster biogenesis (ISCs) and heme prosthetic groups. There is evidence that mitochondrial ISC assembly

defects may cause iron overload and consequent negative effects on cellular or mitochondrial function .

Therefore, iron accumulation induced by direct excessive iron exposure or secondary to iron overload has been

demonstrated to play an important role in neurological diseases, via impairing mitochondrial function and inducing

oxidative stress. Targeting chelatable iron and the consequent ROS, especially in mitochondria, appear as possible

therapeutic options for age-related neurodegenerative conditions .

2.9. Manganese (Mn)

Mn is the 12th most abundant mineral element in the earth crust, and is both nutritionally essential and toxic in excess. Mn

is an essential metal for normal growth, development, and cellular homeostasis, as well as a cofactor for multiple

enzymes; for example, Mn-superoxide dismutase (Mn-SOD), pyruvate carboxylase, arginase, and glutamine synthase

(GS). Manganese preferentially accumulates in tissues rich in mitochondria , and it is taken up by brain

mitochondria via mitochondria Ca  uniporter .

Mn is known to induce mitochondrial dysfunction in the nervous system , including the inhibition of the enzymes of the

tricarboxylic acid (TCA) cycle in human neuroblastoma (SK-N-SH) and astrocytoma (U87) cells  and a reduction in the

activities of ETC in rat primary striatal neurons  and in PC12 cells , ultimately resulting in ATP depletion 
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and mitochondria-mediated apoptosis . Notably, these mitochondrial impairments have been found to be

rescued by some antioxidants , indicating that oxidative stress is primarily involved in the mechanism of Mn-

induced mitochondrial dysfunction.

Another cause of mitochondria-mediated apoptosis induced by Mn exposure is the induction of the MPT . This process

causes unrestricted proton movement across the inner mitochondrial membrane, resulting in mitochondrial swelling,

mitochondrial membrane potential destruction, further production of ROS, and cellular apoptosis .
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