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Antimicrobial peptides (AMPs), also known as host defense peptides (HDPs), are produced by all living matter as a critical

part of the innate immune system [1,2,3]. Their existence was discovered in 1939, the year gramicidin was isolated from

the bacteria, Bacillus brevis; some resources, however, claim that the discovery of lysozyme in the 1920s should be

treated as the first AMP instance, due to lysozyme’s non enzymatic, bactericidal second mode of action [2].
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1. Introduction

As of 2019, over 3000 AMPs have been isolated across all kingdoms . Most of them have variable sequence length—

from 10 up to 60 amino acid residues, mainly in L-configuration . AMPs are expressed in many cell types in response to

the activation of the Toll-like receptor (TLR) signaling pathway . They are predominantly comprised of two types of

amino acids residues—cationic residues such as Arg, Lys, and His, and hydrophobic residues (mainly aliphatic and

aromatic) . Both cationic and hydrophobic residues engage in the antimicrobial mechanism of action. Furthermore,

AMPs can be classified into three groups, based on their structures (Scheme 1): α-helical, β-sheets, and extended

peptides. α-helical peptides are the largest group of AMPs with characteristic qualities such as amphipathic properties,

and the ability to possess a tertiary structure with a hinge in the middle of a chain . β-sheets peptides feature one to

five disulfide bridges that help to stabilize their bioactive conformation. Peptides rich in amino acids such as proline,

arginine, tryptophan or glycine usually have a linear structure .

Scheme 1. Schematic representation of α-helical and β-sheets, common secondary structure of amphipathic peptides.

Hydrophobic amino acid residues are colored red, while hydrophilic residues are colored blue.

HDPs have a wide range of antibacterial activities, and low susceptibility to antimicrobial resistance .

Nevertheless, the use of HDPs is limited due to their low resistance to proteases, and their increased cost of preparation

. Different peptides , peptoids , polymethacrylate derivatives , polynorbornene

derivatives , polycarbonate derivatives , peptide polymers , and polymers made by controlled living

radical polymerization (CLRP)  were developed to mimic the antibacterial properties of HDPs, and to ameliorate their

shortcomings .
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The widely developed peptide-drug research has led to the introduction of around 60 FDA approved peptide therapeutics

in the market . Over 140 are in clinical trials, and over 500 are in the preclinical stages. Although numerous biomimetic

and de novo designed AMPs are at different stages of clinical trials , only eight AMPs received FDA approval, i.e.,

daptomycin (approved in 2003) and oritavancin (approved in 2014) .

2. Samson's Hair of AMPs

There are three main factors—charge, hydrophobicity and amphipathicity, which determine the activity of AMPs, and they

are all related to their intrinsic properties.

The positive charge of AMPs (between 2+ and 9+) is one of the most essential factors responsible for their antibacterial

activity . Positively charged AMPs outcompete the binding of native Mg(II) and Ca(II) ions to lipopolysaccharides (LPS),

and destabilize the outer membrane of Gram-negative bacteria . Consequently, the destabilized regions enable the

peptide to pass into the cell. Once through, AMPs bind to the cytoplasmic membrane and cause depolarization and pore

formation, resulting in cell death . In the case of Gram-positive bacteria, AMPs must overcome the outer wall with two

main obstacles, peptidoglycan and teichoic acids, before an AMP interacts with the cytoplasmic membrane. AMPs

overcome peptidoglycan because it is able to penetrate through the relatively porous peptidoglycan. The porous nature of

peptidoglycan makes it easy for small molecules (< 50 kDa) to penetrate through it, and furthermore, it does not possess

a negative charge, which could prevent the penetration of positively charged AMPs through it . To overcome the

anionic teichoic acids, they can either act as a ladder that will help positively charged AMPs to travel to the cytoplasmic

membrane, or the can act as “cages” that entrap AMPs inside the bacteria, thus reducing their local concentration on the

membrane The behaviors of teichoic acids vary based on the type of AMP and the type of bacteria . After crossing the

outer wall, AMPs can disrupt the integrity of the cytoplasmic membrane, leading to membrane disruption and dislocation

of peripheral membrane proteins .

The hydrophobicity of AMPs is another important factor. It is assumed that hydrophobic residues help to insert peptides

into the bacterial membrane and further impair the membrane . It was also revealed that hydrophobic residues

account for 40–60% of all amino acids in AMPs . Moreover, the hydrophobicity is strongly correlated with antimicrobial

activity, where increasing the hydrophobicity to a certain level improves antimicrobial activity . The relationship

between hydrophobicity and antimicrobial activity is also proven to be the case for peptidomimetics such as peptoids,

where amino acid side chains are linked to the peptide backbone through the amide nitrogen rather than to the α-carbons

. However, a higher hydrophobicity also increases hemolytic activities, resulting in unwanted toxicity to eukaryotic cells

. Studies with model peptides have shown that a continuous region of 4-6 hydrophobic residues is sufficient to

sustain the antimicrobial activity of peptides, while simultaneously reducing the hemolytic activity .

The amphipathicity of AMPs, created by the segregation of hydrophobic and polar residues on the opposite sites of the

backbone, is another factor related to their activity . Amphipathicity is considered the strongest indicator of AMP activity,

and is described by the hydrophobic moment, defined as the vector sum of the hydrophobicity of each amino acid located

in the helix . The mechanism by, which amphipathicity works is the result of previous factors. The positively charged

regions of AMPs enable binding to the anionic phospholipid head groups of the bacterial membrane. Meanwhile, the

hydrophobic regions of peptides invade the lipid bilayer and interact with the hydrophobic acyl chains of phospholipids,

which results in membrane penetration . Several studies have shown the importance of amphipathicity in the process

of AMPs binding to membranes, and the negative impact on activity against Gram-positive bacteria and fungi, when

amphipathic character of the peptide was eliminated .

3. AMPs: Achilles’ Heel

Despite the recent advancements in AMP research, there are still major challenges to overcome. One of the main

obstacles in AMP applications is the proteolytic instability of peptide drugs . Peptides are targeted by numerous

proteolytic enzymes located in bodily fluids and tissues of the host. Moreover, AMPs can be recognized as an antigen and

targeted by host immune system . One of the countermeasures for their potential immunogenicity could be

glycosylating AMPs with a glycosyl profile similar to that of the host. For instance, covering AMPs with polysialic acid

(derived from Neisseria meningitidis or E. coli that shares structural mimicry with host cell lectins), or its analogues, can

lessen the immunological response . Nevertheless, some bacteria have already developed resistance to AMPs. For

example, LL-37, a human antimicrobial peptide, can be digested by proteases synthesized by P. aeruginosa,

Enterococcus faecalis, Proteus mirabilis, S. aureus, and S. Pyogenes . Synthesizing proteases to target specific
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antimicrobial peptides is one of the many ways bacteria participate in this evolutionary “arms race”. Other methods used

by bacteria to cope with AMPs, including the use of efflux pumps, lowering the binding affinity, or reducing the anionic

charge of lipopolysaccharides on their surface, are exhaustively discussed in .

The high toxicity of AMPs in eukaryotic cells is another one of their shortcomings. This high toxicity can lead to hemolysis,

nephrotoxicity, and neurotoxicity . More studies need to focus on the pharmacokinetics and pharmacodynamics

of AMPs in order to determine a proper drug dosage that will maintain a balance between positive and negative outcomes

.

The bioavailability of AMPs is rather low. Peptides are hardly absorbed by the intestinal mucosa, and their

pharmacological distribution requires additional financial input. In recent years, much progress has been made in this field

—e.g., nano-carriers not only increase the bioavailability, but also lower cytotoxicity and reduce degradation of a

compound, leading to increased efficiency . Despite different efforts, the entire process of AMPs design and discovery

(costs of synthesis and screening) is relatively high and does not guarantee the expected outcome . The high

production cost of AMPs (as for 2006, producing 1 g of peptide using solid-phase peptide synthesis (SPPS) costs USD

100–600) limits the development and testing of new AMPs, even if recent improvements in SPPS lowered the costs of

synthesis .

AMPs, as other peptide drugs, can induce immune responses and cause allergies . Immunogenicity depends on the

host immune system, but is also correlated with the peptide’s dose, duration and frequency of treatment, route of

administration, and the patient’s pathologies . Immunogenic response can affect the peptide-drug efficiency

and even lead to allergy and/or hypersensitivity . Bering that in mind, it is important to study the immunogenic and

allergic activity of AMPs. In vitro tests together with mathematical calculations of allergens similarities, with the use of

specific databases of allergenic compounds , i.e., http://www.allergome.org, can give nowadays reliable results .
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