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Epidemiological results revealed that there is an inverse correlation between high-density lipoprotein (HDL) cholesterol

levels and risks of atherosclerotic cardiovascular disease (ASCVD). Mounting evidence supports that HDLs are

atheroprotective, therefore, many therapeutic approaches have been developed to increase HDL cholesterol (HDL-C)

levels. Nevertheless, HDL-raising therapies, such as cholesteryl ester transfer protein (CETP) inhibitors, failed to

ameliorate cardiovascular outcomes in clinical trials, thereby casting doubt on the treatment of cardiovascular disease

(CVD) by increasing HDL-C levels. Therefore, HDL-targeted interventional studies were shifted to increasing the number

of HDL particles capable of promoting ATP-binding cassette transporter A1 (ABCA1)-mediated cholesterol efflux. One

such approach was the development of reconstituted HDL (rHDL) particles that promote ABCA1-mediated cholesterol

efflux from lipid-enriched macrophages. Here, we explore the manipulation of rHDL nanoparticles as a strategy for the

treatment of CVD. In addition, we discuss technological capabilities and the challenge of relating preclinical in vivo mice

research to clinical studies. Finally, by drawing lessons from developing rHDL nanoparticles, we also incorporate the

viabilities and advantages of the development of a molecular imaging probe with HDL nanoparticles when applied to

ASCVD, as well as gaps in technology and knowledge required for putting the HDL-targeted therapeutics into full gear.
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1. Introduction

Epidemiological studies identified several independent risk factors for cardiovascular disease (CVD), including

hypertension, age, smoking, insulin resistance, elevated low-density lipoprotein cholesterol (LDL-C) levels, and

triglyceride levels [ ]. The majority of people establish plaques during young adulthood, making plaque regression the

optimal therapeutic strategy [ ]. The most effective LDL lowering agent, PCSK9 inhibitor evolocumab, only

regressed coronary atheroma volume as assessed by serial coronary intravascular ultrasound by 0.95%, although 78

weeks of treatment reduced the LDL-C to 36.6 mg/dL in humans [ ]. Clinical studies confirm that apolipoprotein AI

(apoAI) can largely promote the regression of atherosclerosis by increasing functional high-density lipoprotein (HDL)

particles [ ].

2. rHDL Nanoparticles as a Drug Delivery Vehicle

The application of rHDL nanoparticles for delivering therapeutic compounds for the treatment of cancer has been studied

extensively [ ]. Recent studies show that rHDL nanoparticle serve as a drug delivery system to deliver compounds

efficiently into macrophages and atherosclerotic plaques [ ]. To investigate the immunomodulatory drugs for

atherosclerosis, several nanoparticles were developed to increase the specificity of the drug delivery. rHDLs were

efficiently used to deliver a liver X receptors (LXR) agonist GW3965 to atherosclerotic plaques of Apoe  mice [ ].

Importantly, rHDLs loaded with GW3965 completely abolished the liver toxicity of GW3965 in a one-week intensive

treatment regimen in atherosclerotic mice. The long-term treatment with rHDLs significantly reduced atherosclerotic

plaques in Apoe  mice [ ].

Statins have potent anti-inflammatory functions, but these cannot be fully exploited with oral statin therapy owing to a low

systemic bioavailability. Interestingly, an injectable rHDL nanoparticle was synthesized to deliver simvastatin, and the

effect of simvastatin-rHDL on atherosclerotic plaques was examined in mice. This study demonstrates that statin-loaded

reconstituted HDL nanoparticles improved inflammation in atherosclerotic plaque [ ]. More interestingly, nanoparticle-

based delivery of simvastatin inhibited plaque macrophage proliferation in Apoe  mice with advanced atherosclerotic

plaques [ ]. rHDL nanoparticles increased the plasma half-life of statins to 20 h. In addition, a recent study showed that

rHDL-mediated targeted delivery of the LXR agonist promoted atherosclerosis regression [ ].
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Arachidonic acid (AA) was engineered into the rHDL complex to increase the efficacy of statins. AA-LT-rHDL (arachidonic

acid-lovastatin-rHDL) exhibited lower reactivity with LCAT and more potent inhibition effects on foam cell formation in the

presence of LCAT because of less undesired LT leakage during the remodeling of rHDLs induced by LCAT and more

cellular drug uptake [ ]. In addition, increasing AA concentration in AA-LT-rHDL particles reduced intracellular lipid

deposition, decreased intracellular cholesterol esters content, and DiI-oxLDL uptake, and inhibited the expressions of pro-

inflammatory cytokines TNF-α and IL-6 [ ]. Together, these results proved that AA modification prevented the reactivity

of LT-rHDL with LCAT, thereby inhibiting the undesired drug leakage during rHDL remodeling induced by LCAT. To better

fulfill the targeted-delivery of rHDL, it might be interesting to determine whether the efficacy of the incorporation of AA into

LT-rHDL is better than LT-rHDL for the treatment of atherosclerosis in mice. It would also be intriguing to investigate

whether the polyunsaturated fatty acids, docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), have better

efficacy than AA in preventing LCAT-induced degradation of rHDL.

3. Delivery of Oligonucleotides Using rHDL Nanoparticles

HDLs are highly heterogeneous and transport a large variety of lipids, proteins, and microRNAs [ ]. Anti-sense

nucleotides and siRNA(s) are widely used to modulate gene expression and are being considered for therapeutics of

atherosclerosis [ ]. One of the major issues is that the half-life of anti-sense nucleotides is usually low in the

presence of serum nucleases [ ]. In addition, the therapeutic efficiency of nucleic acids is relatively low owing to the non-

specific bio-distribution and subsequent off-target effects of nucleotides. Recent studies demonstrate that HDLs are

natural at carrying nucleotides and transporting nucleotides specifically to recipient cells [ ]. Moreover, HDL-miRNA

cargoes from atherosclerotic patients induced remarkable gene expression, with substantial loss of conserved mRNA

targets in hepatocytes. Collectively, these results show that HDL is involved in a mechanism of intercellular

communication by transporting and specific delivery of miRNAs to cells. Therefore, rHDLs are believed to be an efficient

vehicle for the specific delivery of siRNA and other anti-sense nucleotides for therapeutic applications [ , ].

4. Molecular Imaging of rHDL-Based Nanoparticles in Atherosclerosis

Mounting evidence shows that early stages of the lesion development is dominant by monocyte recruitment followed by

monocyte differentiation into macrophages in mice, whereas macrophage proliferation is more predominant in advanced

atherosclerotic plaques [ , ]. Molecular imaging approaches are developed to detect macrophage inflammation and

lipid accumulation [ ]. Immune cells such as neutrophils and monocytes are major sources of peroxidases because

these enzymes are stored in granules, such as myeloperoxidase (MPO). MPO plays important roles in the inflammatory

response and perpetuation of chronic inflammation in atherosclerosis [ ]. Inactivation of MPO reduced reactive oxygen

species (ROS)-mediated vascular inflammation and atherosclerosis [ ]. Several imaging agents targeting

myeloperoxidase were developed to monitor the inflammatory response and macrophage accumulation [ , ].

rHDLs were recently developed as imaging agents due to their ability of specific delivery to macrophages [ , ].

Interestingly, superparamagnetic rHDL nanoparticles were developed for magnetically-guided drug delivery and

lipoprotein drug delivery through magnetic targeting which have shown to be effective chemotherapeutic approaches for

prostate cancer [ ]. Recent studies demonstrate that this nanomedicine-based delivery strategy based on rHDL

nanoparticles also allows for the delivery of compounds to atherosclerotic plaque. Statin-rHDL ameliorates plaque

inflammation and opens a new field for atherosclerosis nanotherapy [ ]. S-rHDL labeled with Cy5.5 (lipid monolayer) and

DiR (hydrophobic core) show that Cy5.5 and DiR were accumulated and detected in the atherosclerotic lesions [ ].

Similarly, HDL mimetic CER-001 was radiolabeled with 89Zr to allow for imaging macrophage accumulation and positron

emission tomography–computed tomography (PET/CT) imaging [ ].

LXRs, oxysterol-activated nuclear receptors, play an important role in RCT through promoting ABCA1 and/or ABCG1-

mediated cholesterol efflux. In vivo PET imaging probes radiolabeled with zirconium-89 (89Zr) on discoidal HDL

nanoparticles were made by the reconstituting apoAI and the phospholipid 1,2-dimyristoyl-sn-glycero-3-phosphocholine,

the chelator deferoxamine B, and 89Zr [ ]. It was demonstrated that the radioactivity in atherosclerotic aortas of rabbits

was more than three-fold higher than the control animals after the injection with 89Zr-HDL nanoparticles. There was

increased accumulation of radioactivity in lesions measured by the in vivo PET imaging [ ]. Therefore, rHDLs

demonstrated to be a reliable imaging probe and this allows us to study its in vivo properties to visualize the macrophage

accumulation in advanced atherosclerotic lesions by using noninvasive PET imaging [ ].
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5. Concluding Remarks

HDL-targeted drug CETP inhibitors except anacetrapib did not decrease cardiovascular events in clinical trials.

Convincing results demonstrate that increased HDL cholesterol levels do not always correlate with enhanced protective

HDL properties [ ], thus questioning its potential as a biomarker of HDL functionality. In addition, the association

between low levels of HDL-C and CVD may be confounded by other factors, such as insulin resistance, inflammation,

and/or metabolic derangements leading to altered plasma lipids. Importantly, current research is focused on both

developing robust HDL functional assays and determining specific proteins or lipid molecules within the HDL complex to

promote cholesterol efflux capacity for future translational and pre-clinical studies.

Although several rHDL nanoparticles failed to regress the atherosclerotic plaques in humans, it should be noted that these

clinical trials are relatively short-term studies; the duration of these trials was only 4–6 weeks. There is solid evidence that

HDL beneficial effects have to do more with the achievement of a continuous flux and steady export of cholesterol, rather

than absolute levels of HDL cholesterol [ ]. Whether rHDL nanoparticles would be more effective for the treatment of

coronary artery disease over a longer period of time remains to be investigated. Furthermore, the field of rHDL

nanoparticles has developed considerably and is poised for a big leap with the application of drug delivery systems and

technologies that enable the specific delivery of new compounds to the biological system [ ]. In conclusion, recent

advances on rHDL nanoparticles have opened up a new avenue by which to ameliorate the inflammatory response for the

treatment of CVD. Better understanding of the functional roles of HDL will likely lead to new approaches to battle and

monitor the expanding burden of CVD.
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