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Epidemiological results revealed that there is an inverse correlation between high-density lipoprotein (HDL)

cholesterol levels and risks of atherosclerotic cardiovascular disease (ASCVD). Mounting evidence supports that

HDLs are atheroprotective, therefore, many therapeutic approaches have been developed to increase HDL

cholesterol (HDL-C) levels. Nevertheless, HDL-raising therapies, such as cholesteryl ester transfer protein (CETP)

inhibitors, failed to ameliorate cardiovascular outcomes in clinical trials, thereby casting doubt on the treatment of

cardiovascular disease (CVD) by increasing HDL-C levels. Therefore, HDL-targeted interventional studies were

shifted to increasing the number of HDL particles capable of promoting ATP-binding cassette transporter A1

(ABCA1)-mediated cholesterol efflux. One such approach was the development of reconstituted HDL (rHDL)

particles that promote ABCA1-mediated cholesterol efflux from lipid-enriched macrophages. Here, we explore the

manipulation of rHDL nanoparticles as a strategy for the treatment of CVD. In addition, we discuss technological

capabilities and the challenge of relating preclinical in vivo mice research to clinical studies. Finally, by drawing

lessons from developing rHDL nanoparticles, we also incorporate the viabilities and advantages of the

development of a molecular imaging probe with HDL nanoparticles when applied to ASCVD, as well as gaps in

technology and knowledge required for putting the HDL-targeted therapeutics into full gear.

ABCA1  reconstituted high-density lipoprotein  cardiovascular disease  molecular imaging

1. Introduction

Epidemiological studies identified several independent risk factors for cardiovascular disease (CVD), including

hypertension, age, smoking, insulin resistance, elevated low-density lipoprotein cholesterol (LDL-C) levels, and

triglyceride levels [ ]. The majority of people establish plaques during young adulthood, making plaque regression

the optimal therapeutic strategy [ ]. The most effective LDL lowering agent, PCSK9 inhibitor evolocumab,

only regressed coronary atheroma volume as assessed by serial coronary intravascular ultrasound by 0.95%,

although 78 weeks of treatment reduced the LDL-C to 36.6 mg/dL in humans [ ]. Clinical studies confirm that

apolipoprotein AI (apoAI) can largely promote the regression of atherosclerosis by increasing functional high-

density lipoprotein (HDL) particles [ ].

2. rHDL Nanoparticles as a Drug Delivery Vehicle
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The application of rHDL nanoparticles for delivering therapeutic compounds for the treatment of cancer has been

studied extensively [ ]. Recent studies show that rHDL nanoparticle serve as a drug delivery system to

deliver compounds efficiently into macrophages and atherosclerotic plaques [ ]. To investigate the

immunomodulatory drugs for atherosclerosis, several nanoparticles were developed to increase the specificity of

the drug delivery. rHDLs were efficiently used to deliver a liver X receptors (LXR) agonist GW3965 to

atherosclerotic plaques of Apoe  mice [ ]. Importantly, rHDLs loaded with GW3965 completely abolished the

liver toxicity of GW3965 in a one-week intensive treatment regimen in atherosclerotic mice. The long-term

treatment with rHDLs significantly reduced atherosclerotic plaques in Apoe  mice [ ].

Statins have potent anti-inflammatory functions, but these cannot be fully exploited with oral statin therapy owing to

a low systemic bioavailability. Interestingly, an injectable rHDL nanoparticle was synthesized to deliver simvastatin,

and the effect of simvastatin-rHDL on atherosclerotic plaques was examined in mice. This study demonstrates that

statin-loaded reconstituted HDL nanoparticles improved inflammation in atherosclerotic plaque [ ]. More

interestingly, nanoparticle-based delivery of simvastatin inhibited plaque macrophage proliferation in Apoe  mice

with advanced atherosclerotic plaques [ ]. rHDL nanoparticles increased the plasma half-life of statins to 20 h. In

addition, a recent study showed that rHDL-mediated targeted delivery of the LXR agonist promoted atherosclerosis

regression [ ].

Arachidonic acid (AA) was engineered into the rHDL complex to increase the efficacy of statins. AA-LT-rHDL

(arachidonic acid-lovastatin-rHDL) exhibited lower reactivity with LCAT and more potent inhibition effects on foam

cell formation in the presence of LCAT because of less undesired LT leakage during the remodeling of rHDLs

induced by LCAT and more cellular drug uptake [ ]. In addition, increasing AA concentration in AA-LT-rHDL

particles reduced intracellular lipid deposition, decreased intracellular cholesterol esters content, and DiI-oxLDL

uptake, and inhibited the expressions of pro-inflammatory cytokines TNF-α and IL-6 [ ]. Together, these results

proved that AA modification prevented the reactivity of LT-rHDL with LCAT, thereby inhibiting the undesired drug

leakage during rHDL remodeling induced by LCAT. To better fulfill the targeted-delivery of rHDL, it might be

interesting to determine whether the efficacy of the incorporation of AA into LT-rHDL is better than LT-rHDL for the

treatment of atherosclerosis in mice. It would also be intriguing to investigate whether the polyunsaturated fatty

acids, docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), have better efficacy than AA in preventing

LCAT-induced degradation of rHDL.

3. Delivery of Oligonucleotides Using rHDL Nanoparticles

HDLs are highly heterogeneous and transport a large variety of lipids, proteins, and microRNAs [ ]. Anti-sense

nucleotides and siRNA(s) are widely used to modulate gene expression and are being considered for therapeutics

of atherosclerosis [ ]. One of the major issues is that the half-life of anti-sense nucleotides is usually low in

the presence of serum nucleases [ ]. In addition, the therapeutic efficiency of nucleic acids is relatively low owing

to the non-specific bio-distribution and subsequent off-target effects of nucleotides. Recent studies demonstrate

that HDLs are natural at carrying nucleotides and transporting nucleotides specifically to recipient cells [ ].

Moreover, HDL-miRNA cargoes from atherosclerotic patients induced remarkable gene expression, with substantial

[13][14][15]

[16]

−/− [17]

−/− [18]

[19]

−/−

[20]

[21]

[22]

[22]

[23]

[24][25][26]

[27]

[28]



Reconstituted High-Density Lipoprotein Nanoparticles | Encyclopedia.pub

https://encyclopedia.pub/entry/379 3/10

loss of conserved mRNA targets in hepatocytes. Collectively, these results show that HDL is involved in a

mechanism of intercellular communication by transporting and specific delivery of miRNAs to cells. Therefore,

rHDLs are believed to be an efficient vehicle for the specific delivery of siRNA and other anti-sense nucleotides for

therapeutic applications [ , ].

4. Molecular Imaging of rHDL-Based Nanoparticles in
Atherosclerosis

Mounting evidence shows that early stages of the lesion development is dominant by monocyte recruitment

followed by monocyte differentiation into macrophages in mice, whereas macrophage proliferation is more

predominant in advanced atherosclerotic plaques [ , ]. Molecular imaging approaches are developed to

detect macrophage inflammation and lipid accumulation [ ]. Immune cells such as neutrophils and monocytes

are major sources of peroxidases because these enzymes are stored in granules, such as myeloperoxidase

(MPO). MPO plays important roles in the inflammatory response and perpetuation of chronic inflammation in

atherosclerosis [ ]. Inactivation of MPO reduced reactive oxygen species (ROS)-mediated vascular inflammation

and atherosclerosis [ ]. Several imaging agents targeting myeloperoxidase were developed to monitor the

inflammatory response and macrophage accumulation [ , ]. rHDLs were recently developed as imaging

agents due to their ability of specific delivery to macrophages [ , ]. Interestingly, superparamagnetic rHDL

nanoparticles were developed for magnetically-guided drug delivery and lipoprotein drug delivery through magnetic

targeting which have shown to be effective chemotherapeutic approaches for prostate cancer [ ]. Recent studies

demonstrate that this nanomedicine-based delivery strategy based on rHDL nanoparticles also allows for the

delivery of compounds to atherosclerotic plaque. Statin-rHDL ameliorates plaque inflammation and opens a new

field for atherosclerosis nanotherapy [ ]. S-rHDL labeled with Cy5.5 (lipid monolayer) and DiR (hydrophobic core)

show that Cy5.5 and DiR were accumulated and detected in the atherosclerotic lesions [ ]. Similarly, HDL

mimetic CER-001 was radiolabeled with 89Zr to allow for imaging macrophage accumulation and positron emission

tomography–computed tomography (PET/CT) imaging [ ].

LXRs, oxysterol-activated nuclear receptors, play an important role in RCT through promoting ABCA1 and/or

ABCG1-mediated cholesterol efflux. In vivo PET imaging probes radiolabeled with zirconium-89 (89Zr) on discoidal

HDL nanoparticles were made by the reconstituting apoAI and the phospholipid 1,2-dimyristoyl-sn-glycero-3-

phosphocholine, the chelator deferoxamine B, and 89Zr [ ]. It was demonstrated that the radioactivity in

atherosclerotic aortas of rabbits was more than three-fold higher than the control animals after the injection with

89Zr-HDL nanoparticles. There was increased accumulation of radioactivity in lesions measured by the in vivo PET

imaging [ ]. Therefore, rHDLs demonstrated to be a reliable imaging probe and this allows us to study its in vivo

properties to visualize the macrophage accumulation in advanced atherosclerotic lesions by using noninvasive

PET imaging [ ].

5. Concluding Remarks
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HDL-targeted drug CETP inhibitors except anacetrapib did not decrease cardiovascular events in clinical trials.

Convincing results demonstrate that increased HDL cholesterol levels do not always correlate with enhanced

protective HDL properties [ ], thus questioning its potential as a biomarker of HDL functionality. In addition,

the association between low levels of HDL-C and CVD may be confounded by other factors, such as insulin

resistance, inflammation, and/or metabolic derangements leading to altered plasma lipids. Importantly, current

research is focused on both developing robust HDL functional assays and determining specific proteins or lipid

molecules within the HDL complex to promote cholesterol efflux capacity for future translational and pre-clinical

studies.

Although several rHDL nanoparticles failed to regress the atherosclerotic plaques in humans, it should be noted

that these clinical trials are relatively short-term studies; the duration of these trials was only 4–6 weeks. There is

solid evidence that HDL beneficial effects have to do more with the achievement of a continuous flux and steady

export of cholesterol, rather than absolute levels of HDL cholesterol [ ]. Whether rHDL nanoparticles would be

more effective for the treatment of coronary artery disease over a longer period of time remains to be investigated.

Furthermore, the field of rHDL nanoparticles has developed considerably and is poised for a big leap with the

application of drug delivery systems and technologies that enable the specific delivery of new compounds to the

biological system [ ]. In conclusion, recent advances on rHDL nanoparticles have opened up a new avenue by

which to ameliorate the inflammatory response for the treatment of CVD. Better understanding of the functional

roles of HDL will likely lead to new approaches to battle and monitor the expanding burden of CVD.
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