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The Senescence-Associated Secretory Phenotype (SASP), also known as Senescence-Messaging Secretome (SMS), is

one of the fundamental characteristics of the senescent cell, consisting in the abundant secretion of generally

proinflammatory compounds in the tissue microenvironment.
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1. Introduction

The Senescence-Associated Secretory Phenotype (SASP), or Senescence-Messaging Secretome (SMS), can be defined

as a highly variable, dynamic, and long-lasting program of senescent cells, consisting in the abundant secretion of

generally proinflammatory compounds in the tissue microenvironment . Investigators of SASP have demonstrated the

presence and the biological relevance, among the secreted proteins, of numerous cytokines, growth factors, chemokines,

and matrix-metalloproteinases. Moreover, the contribution of small molecules, such as ROS, miRNAs, and extracellular

vesicles (EVs), which represent an intensively investigated area of research, may be considered an important target in the

future .

The spectrum of secreted molecules seems to be so broad, diversified, and context-dependent that, unsurprisingly,

contradictory interpretations have been proposed about the role of SASP in the pathophysiology of chronic diseases .

Albeit the general agreement on the detrimental aspects of the SASP in the context of cancer and age-related disorders,

the evidence for a protective role of SASP-evoked immune response should not be neglected . Indeed, the SASP has

the potential to attract innate and adaptive immune cells in proximity of tumor cells and pre-malignant lesions  or

enhance cytotoxicity against drug-induced senescent tumor cells .

The experimental models used to investigate senescence and SASP still confirm the intricacy of the subject. Certainly, the

type and strength of the senescence-inducing stimulus, the identity of the cell undergoing senescence, the composition,

and time-dependent variability of the secretome, are all crucial aspects to consider in the research on SASP. In addition,

when evaluating the effects of SASP within tissues or tumors, the quality of the immune infiltrate and the

persistence/accumulation of senescent cells over time represent additional layers of complexity. However, a certain

degree of overlap has been demonstrated among various SASPs, with specific proteins being found almost invariably,

namely IL-1, IL-6, IL-8, GROα/β, GM-CSF, MMP-1, MMP-3, MMP-10, ICAM-1, PAI-1, and IGFBPs .

2. Specifics

The emergence and maintenance of SASP are controlled by multiple stress response pathways; however, many of these

seem to converge on two central transcription factors, NF-κB and GATA-4, which therefore are considered the main

regulators of SASP transcriptional control .

The biological function of SASP is a highly debated subject. SASP is thought to contribute to age-related organ

dysfunction; indeed, senescent cells accumulate in various tissues during aging and the inflammatory milieu created by

them contributes to the so-called “inflammaging”, a low-grade, sterile and chronic state of inflammation that characterizes

the aged organism . Accordingly, the seminal work of Baker and colleagues (2011) demonstrated how the selective

elimination of senescent cells (or at least of p16 Ink4a -expressing cells) in progeroid mice results in delayed onset of age-

related conditions . Abrogation of SASP in senescent preadipocytes using JAK inhibitors similarly reduces systemic

inflammation and frailty in aged mice .

Being senescence often considered a tumor-suppressing mechanism , the pro-tumorigenic activity of SASP,

demonstrated in vivo and in vitro, is difficult to explain . For instance, SASP largely promotes the proliferation of

malignant epithelial cells, presumably through the secretion of growth factors and matrix metalloproteinases . The

degradation of the extracellular matrix mediated by the secreted enzymes fosters tumor migration and metastatization .
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In specific contexts, SASP shows to promote tumor angiogenesis through the production of VEGF and other angiogenic

factors . Consistently to this evidence, ablation of the proinflammatory secretome of premalignant senescent cells leads

to a lesser number of neoplastic lesions in a mouse model of pancreatic cancer .

In contrast, in an experimental model of liver carcinoma, the SASP is required for the effective tumor clearance mediated

by innate immune cells, especially by Natural Killer cells . The immune surveillance of senescent cells evoked by the

SASP may represent an important mechanism to control the development of pre-malignant lesions in the liver .

From the point of view of evolution, the apparent contradiction between the tumor-suppressive role of senescence and the

pro-tumorigenic activity of SASP has been partially addressed with the concept of “antagonistic pleiotropy” .

According to this concept, senescence as a tumor-suppressive mechanism underwent positive selection because of the

benefit it confers at young ages. On the other hand, the detrimental effects of SASP on tumor development and age-

related conditions are manifested only in aged organisms, on which negative selection does not act. It is clear that the

accumulation of senescent cells is typical of old age and might be due to the decline of immune surveillance and induction

of paracrine senescence. Therefore, the negative impact of SASP could be prevalent only in tissues highly populated by

senescent cells and not in young tissues.

An alternative explanation can be found in functions unrelated to aging and cancer, like the positive role of senescence on

tissue regeneration and remodeling during embryonic development .

Strategies aimed at abrogating or modulating the SASP are currently being investigated for translational purposes,

although this area of research is still in its infancy .
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