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The Scribble polarity module is composed by Scribble (Scrib), Discs large 1 (DIgl) and Lethal (2) giant larvae
(L(2)gl), a group of highly conserved neoplastic tumor suppressor genes (TSGs) from flies to humans. Even though
the Scribble module has been profusely studied in epithelial cell polarity, the number of tissues and processes in
which it is involved is increasingly growing. Here we discuss the role of the Scribble module in the asymmetric
division of Drosophila neuroblasts (NBs), as well as the underlying mechanisms by which those TSGs act in this
process. Finally, we also describe what we know about the consequences of mutating these genes in impairing the

process of asymmetric NB division and promoting tumor-like overgrowth.

Scribble polarity module asymmetric cell division neuroblasts tumorigenesis Drosophila

| 1. Asymmetric Division of Drosophila Neuroblasts

NBs, the neural stem cells of the Drosophila central nervous system (CNS), divide asymmetrically to give rise to
another NB that keeps on dividing and a daughter cell called ganglion mother cell (GMC) that will start a
differentiation program WEIE!, This cell fate commitment is possible by the action of cell-fate determinants, which
are asymmetrically located at the basal pole of metaphase NBs and segregate exclusively to the GMC during NB
division (Figure 1). The translational regulator brain tumor (Brat), the transcription factor Prospero (Pros), and the

cytoplasmic protein Numb are among those determinants that inhibit proliferation and activate differentiation in the
GMC [AEIEIIE]E][10][11][12]
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Figure 1. Drosophila neuroblasts (NBs), the neural stem cells of the central nervous system (CNS), divide
asymmetrically. (a) NBs divide asymmetrically to give rise to another NB and a ganglion mother cell (GMC), which

receives the cell-fate determinants that induce a differentiation program in this cell. The GMC divides
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asymmetrically through a terminal division to give rise to two different neurons of glial cells. The sibling NB that
does not receive the cell-fate determinants keeps on dividing. A group of proteins apically located at the cortex of
metaphase NBs (the “apical complex”) is in turn crucial for the basal sorting of the cell-fate determinants, as well as
for the correct orientation of the mitotic spindle along an apico-basal axis of cell polarity previously established. (b)
A diagram showing the most representative components of the apical complex and the cell-fate determinants
Numb, Pros and Brat. Pon and Mira are adaptor proteins of Numb (Pon) and of Pros and Brat (Mira) (modified from
Carmena, Fly, 2018).

A group of proteins located at the apical cortex of metaphase NBs control, in turn, the basal sorting of cell-fate
determinants, as well as the orientation of the mitotic spindle along the NB apico-basal axis of polarity, two key
processes to ensure the asymmetry of the division. This apical complex is an intricate protein network that includes
the conserved partitioning defective proteins Par-6 and Par-3 (Bazooka, Baz, in Drosophila) and the atypical
protein kinase C (aPKC) (Figure 1) 3114151161117 Baz physically interacts with the adaptor protein Inscuteable
(Insc) that in turn binds and activates Partner of Insc (Pins; LGN in mammals), allowing the interaction between the
Gai protein subunit anchored to the membrane and Pins, which thereafter orchestrates the orientation of the
spindle (Figure 1) [1811191[20121][22][23][24][25] Thjs process requires the function of Canoe (Cno; Afadin in mammals)
that, after being phosphorylated by the serine-threonine kinase Warts (Wts; LATS1-2 in mammals), binds the N-
terminal Pins""R domain, the same region that Insc was bound to 231[26127]i28] Cngo then contributes to the apical
recruitment of the Pins-interacting proteins Mushroom body defect (Mud; NuMA in mammals) and Dlg1 281271, pig1
binds the middle Pins“'NKER domain and the Kinesin heavy chain 73 (Khc-73) motor protein that interacts with
astral microtubule plus-ends, anchoring the spindle to the apical cortex 2JEBAB Mud, like Cno, interacts with the
PinsTPR domain and, additionally, with the Dynein molecular motor, which binds the astral microtubule minus-ends

promoting pulling forces on them and reinforcing the apical-basal orientation of the spindle 22 (Figure 1).

| 2. Types of Neuroblasts: Different Lineages, Same Origin

Embryonic NBs delaminate from the neuroectoderm inheriting the apico-basal polarity of the neuroepithelial cells.
The establishment of an axis of cell polarity is a prerequisite for a correct asymmetric division. Once this axis of cell
polarity is established, the mitotic spindle aligns along it and the cell-fate determinants localize asymmetrically at
the basal pole of the NB. These embryonic NBs will divide a finite number of times, up to twenty, entering
quiescence at the end of embryogenesis. At late first larval stage, NBs resume proliferation, this time undergoing
hundreds of them and increasing their size before each division. These NBs that divide to give rise to another NB
and a GMC have been called type | NBs (Figure 2) 2. Some years ago, another type of NBs, called type Il NBs,
were found in the larval central brain [I32l33], These NBs also divide asymmetrically to give rise to another NB and,
instead of a GMC, a progenitor cell called an intermediate progenitor (INP) that, after a maturation process, will
divide asymmetrically to give rise to another INP and a GMC (Figure 2). Given this additional phase of proliferation,
type Il NB lineages are larger than type | and more prone to induce tumor-like overgrowth when the process of
ACD is compromised (see below). In addition, while type | NB lineages occupy most of the central brain, these type

Il NB lineages are only eight per brain hemisphere and are located at precise locations at the dorso-medial part of
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the brain (Figure 2). Very recently, it has been shown that type Il NBs have also an embryonic origin and are

arrested at the end of embryogenesis 341331,
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Figure 2. Types of NBs in the Drosophila CNS. (a) A dorsal view of the larval central brain (CB) containing type |
(purple) and type Il (red) NBs. There are only eight type Il NB lineages per brain hemisphere located at very
specific positions at the dorso-medial part of the CB. OL: optic lobe; VNC: ventral nerve cord; A: anterior; P:
posterior. (b) Type Il NB lineages are bigger than type | NB lineages. In type Il NB lineages, the NB divides
asymmetrically to generate another NB and, instead of a GMC (like in type | NB lineages), an intermediate
progenitor (INP), which after a process of maturation, divides asymmetrically to give rise to another INP and a
GMC. iINP: immature INP; mINP: mature INP (modified from Carmena, Fly, 2018).

The Scribble Module in Asymmetric Neuroblast Division
during Development

A role for the neoplastic TSGs of the Scribble module in asymmetric NB division was first shown for Digl and L(2)gl
(361371 DIg1 and L(2)gl were found to be essential for the basal targeting of the cell-fate determinants Numb and
Pros, as well as of their adaptor proteins Partner of Numb (Pon) and Miranda (Mira), respectively, in both
embryonic and larval mitotic NBs [B€I37. However, DIgl and L(2)gl were dispensable for the localization of apical
proteins, such as Baz, Insc or Pins and for the orientation of the mitotic spindle B8, Dig1 was required for the
cortical localization of L(2)gl, which became cytoplasmic in dlgl mutant embryos; however, L(2)gl was not
necessary for the localization of DIgl. Hence, it was proposed that, at least for its localization, although not
necessarily for its function, DIgl would act upstream of L(2)gl B8IB7. |n fact, we now know that L(2)gl acts
functionally upstream of DIgl 8. Both proteins are distributed predominantly at the cortex, although, at
metaphase, Dlgl is apically enriched while L(2)gl is phosphorylated and inactivated by aPKC at this location £,
This is promoted by Aurora-A (AurA) kinase, which at metaphase phosphorylates Par-6 with the consequent
activation of aPKC. Activated aPKC phosphorylates and inactivates L(2)gl, which leaves the apical complex and it
is replaced by Baz/Par-3 [28I39]1401 Baz then, allows the phosphorylation of the cell-fate determinant Numb by

aPKC, and the consequent exclusion of P-Numb to the basal pole of the NB 8 (Figure 3a). The inhibition of L(2)g|
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by aPKC is mutual, as L(2)gl represses aPKC basally, restricting it to the apical cortex 4 (Figure 3b, c). Thus, the
localization of at least some apical proteins, such as aPKC, do depend on some of the TSGs of the Scribble
module. L(2)gl also binds and represses non-muscle myosin Il heavy chain, called Zipper in Drosophila, at
interphase. At metaphase, when L(2)gl is inactivated by aPKC, it was proposed that myosin Il becomes active and,
in turn, promotes the cortical exclusion of the cell-fate determinant adaptor protein Mira from the apical NB cortex
(Figure 3b) 2243 The basal targeting of Mira would occur by passive diffusion throughout the cytoplasm, not by
active transport, and it would depend on another myosin, myosin VI, Jaguar in Drosophila, which would be
essential for the final localization of Mira in a basal crescent (Figure 3b) [44l43] vYet, the role of myosin Il in Mira
localization (Figure 3b) was questioned and the model to explain Mira asymmetry was replaced by another one
some years ago 8. This latter work showed that aPKC can directly phosphorylate Mira at several sites to exclude
it from the apical cortex independently of L(2)gl, which would be antagonizing aPKC activity (Figure 3c) [49l[46]
More recently, additional data seem to point to an integrated view of both models ¥4, Thus, aPKC direct
phosphorylation of Mira, event that occurs at prophase, would not be the only mechanism that regulates Mira
asymmetry, and an actomyosin-dependent mechanism would be additionally required to maintain Mira asymmetric

localization at metaphase (Figure 3d) (471481,
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Figure 3. L(2)gl in asymmetric NB division. (a) L(2)gl forms part of an inactive Par complex. At metaphase, the
kinase AurA phosphorylates Par6, which leads to the activation of aPKC and the consequent phosphorylation of
L(2)gl by active aPKC. P-L(2)gl then leaves the Par complex and it is replaced by Baz/Par-3, which binds both
aPKC and Numb making possible the phosphorylation of Numb by aPKC and the exclusion of P-Numb from the
apical cortex. (Modified from Wirtz-Peitz et al., Cell, 2008). (b) Myosin-dependent model to explain the basal
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sorting of the adaptor protein Mira. aPKC phosphorylates and inactivates L(2)gl at the apical pole of metaphase
NBs. Hence L(2)gl cannot bind and inactivate myosin Il, which excludes Mira from the apical cortex. Myosin VI
would help to locate Mira in a basal crescent. L(2)gl is active at the basal pole inhibiting both aPKC and myosin I,
allowing in this way the accumulation of Mira at this location. (¢) Myosin-independent model to explain the basal
sorting of Mira. Apical aPKC directly phosphorylates both L(2)gl and Mira excluding them from the apical cortex. At
the basal pole L(2)gl counteracts the activity of aPKC. (d) An integrative model both aPKC and myosin-dependent.
At prophase, before the nuclear membrane is disorganized, cortical aPKC phosphorylates Mira and excludes it
from the cortex. At metaphase, aPKC is apically enriched and the basal actomyosin network contributes to the
asymmetric Mira retention by providing an anchoring scaffold to Mira at this location. The role of L(2)gl is not
discussed in the context of this model (Hannaford et al. eLife, 2018), but it could be also counteracting the activity
of aPKC basally.

Regarding Dlg1, over the past 20 years, since it was first described in the process of NB asymmetric division [2€
871 we have substantially increased our knowledge about the mechanisms underlying DIg1 function in this context.
The guanylate kinase (GK) domain of DIg1l/DLG1 (Figure 4a), a phosphoprotein recognition motif, binds the
Pins/LGN linker domain (Pinst"ke" both in Drosophila and in mammals 2214950 This conserved Pinst"ker domain
must be phosphorylated by the mitotic kinase AurA to physically interact with the DIgl GK domain 22, which in turn
recruits the motor protein Khec-73. This kinase first interacts through its MAGUK binding stalk (MBS) domain (Khc-
73MBS) with the GK motif of DIg1 at the cortex, and then with astral microtubule plus-ends through its motor domain
(Khc-73Mon (Figure 4a). This Pins-DIg1-Khc73 pathway mediates a microtubule-induced Pins-Gai (the latter is
bound to the GoLoco domains of Pins, see above and Figure 1) cortical polarity at metaphase NBs, independently
of the Par complex 9. However, this pathway is not enough for a full orientation of the mitotic spindle. Pins must
activate another microtubule motor pathway mediated by Dynein that interacts with minus-end astral microtubules.
The Pins™PR domain is the motif involved in the activation of this pathway by binding Mud/NuMA, which in turn
associates with Dynein that exerts pulling forces on microtubules. Both PinsTPR- and Pinst"ke"-mediated pathways
are required and act synergistically to promote a robust spindle alignment 22, The mechanism by which these
Pins-mediated pathways interact was identified some years ago B (Figure 4b). In this work, authors show how the
Drosophila 14-3-3( protein associates to the 14-3-3 binding motif present in the Khc-73 C-terminal stalk, (Figure
4a). The NudE Dynein cofactor [2223] interacts in turn with 14-3-3¢, which forms a heterodimer with 14-3-3Z. This
complex 14-3-3¢/14-3-3¢/NudE acts then as the bridge between both Pins-mediated pathways to allow a full,
optimal spindle orientation (Figure 4b) Bl More recently, DIgl has been shown to be phosphorylated in its SH3
domain by aPKC B4l (Figure 4c). This phosphorylation releases an auto-inhibitory intramolecular interaction
between DIgl SH3 and the GK domains. In this situation, the spindle orientation factor Gukh can bind to the Digl
GK domain and to astral microtubules, contributing, along other DIgl effectors such as Khc-73, to DIgl-mediated

spindle alignment (Figure 4c).
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Figure 4. DIgl in asymmetric NB division. (a) Modular structure of the ACD regulators Pins, DIgl and Khc-73. The
kinase AurA phosphorylates the linker domain (L) of Pins, and the GK domain of DlIgl binds both this
phosphorylated Pinst"ke" domain and the MBS motif of Khc-73. This kinase binds astral microtubule plus-ends
through its motor domain and 14-3-3( protein through a 14-3-3 binding motif present at the C-terminal stalk,
between the MBS and the CAP-Gly motif. TPR: TetratricoPeptide Repeat; L: Linker; G: GolLoco; PDZ: PSD-
95/DIlg/Zz0-1; SH3: Src Homology 3; GK: Guanylate Kinase; MBS: Maguk Binding Stalk; CAP-Gly: Cytoskeleton
Associated Proteins-Glycine-rich. (b) The two Pins-mediated pathways that orientate the mitotic spindle are
connected through a NudE-14-3-3 protein bridge, which binds the two motor proteins involved in each of those
pathways. NudE binds the motor Dynein and 14-3-3¢, which forms a heterodimer with 14-3-3 that in turn interacts
with the motor Khc-73 (adapted from Lu and Prehoda, Dev Cell, 2013). (c) aPKC phosphorylates the SH3 domain
of DIgl releasing an intramolecular inhibitory binding between SH3 and GK domains. GK can then bind the
microtubule interactor protein Gukh, which contributes to the proper orientation of the mitotic spindle (adapted from
Golub et al., eLIFE, 2017).

As mentioned above, Scrib was identified later than L(2)gl and Dlgl B3 and consequently, it was described to be
involved in NB asymmetric division a posteriori than those ACD regulators . In this work, Scrib localization was
found to be cortical in NBs, with an apical enrichment at metaphase, similar to DIgl distribution. Likewise, as
L(2)gl, Scrib localization was dependent on Dlgl 58, Authors described for the first time the function of all these
TSGs, L(2)gl, Dlgl and Scrib, in regulating cell size and mitotic spindle asymmetry in NBs. While in wild-type
telophase NBs, the NB was bigger than the GMC, and the apical centrosome and astral microtubules larger than
the basal ones, in /(2)gl, dlgl and scrib embryonic mutant NBs, symmetric divisions (with equal-sized NB and

GMC) and even inverted divisions (with the NB smaller than the GMC) were detected 28l Scrib, as previously
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shown for L(2)gl and Dlgl, was found to be required for basal targeting of cell fate determinants and adaptor
proteins, such as Mira and Pros, but not for the localization of apical proteins (561, More recently, however, the
apical protein aPKC has been shown to require Scrib for a proper cortical crescent formation at metaphase in type
Il NB lineages of the larval brain 4. Thus, over the past years, all of these TSGs (L(2)gl, Dlgl, and Scrib) have
been shown to be also necessary for the correct localization of at least some apical proteins (i.e., L(2)gl for aPKC;
DIgl for Pins and Scrib for aPKC localization). Some of the Scrib motifs, such as the LRR region and the PDZ
domains, have been proved to be required for the proper cortical localization and function of Scrib in NBs [58],
However, while the mechanisms by which L(2)gl and DIgl regulate the asymmetric division of NBs have been
deeply investigated over the past years, we do not have any clear clue about the underlying mechanisms or mode

of action of Scrib in this context.

3. The Scribble Module in Asymmetric Neuroblast Division
during Tumorigenesis

ACD is a fundamental process during development to generate cell diversity. In addition, as we have learned over
the past years, ACD is also a relevant process to take into account in the context of cancer and stem cell biology. A
connection between failures in the process of ACD and tumorigenesis was first shown in the lab of C. Gonzéalez
using the neural stem cells or NBs of the Drosophila larval brain as a model system B, In these experiments,
pieces of GFP-labeled brains mutant for different ACD regulators were transplanted into the abdomen of adult host
flies. These flies, after several weeks, developed big tumoral masses inside their abdomen, tumors that in some
cases induced metastatic growth 2. However, mutations in genes involved in ACD modulation do not always
cause tumor-like overgrowth. It will depend on the type of ACD regulator and the particular environment in which
the NB lineage grows 89, For example, type Il NB clones in the larval brain mutant for the ACD regulator gene
cnolAFDN or for each of the Scribble module (/(2)gl, dlg1 and scrib) do show ectopic NBs within the clone but they
do not overgrow BZ. In fact, at least the scrib mutant clones are smaller than control NB clones and they do not
appear very frequently. As it occurs in epithelial scrib mutant clones, in scrib NB clones a JNK activity-dependent
apoptosis is also triggered 2. However, the simultaneous loss of scrib and cno/AFDN in these larval NB clones
overcomes the scrib/IJNK-induced apoptosis and causes massive tumor-like overgrowths 7. This effect is due to
the upregulation of Ras, normally repressed by Cno/Afadin (162 Activated Ras, then, promotes a switch in the
JNK function, from a pro-apoptotic to a pro-growth effect, similar to what occurs in epithelial Ras¥2? scrib double
mutant clones [E3I64I651I57]  Neither cno I(2)gl nor cno digl double mutant clones show the strong synergistic
cooperation displayed in cno scrib mutant clones. In fact, the former double mutant clones are very similar to cno
single mutant clones BZ. One possibility to explain the different behavior of cno I(2)gl and cno digl mutant clones
is that JNK is not activated in /(2)gl nor in dlgl NB single mutant clones, even though in epithelia JNK is activated
in each of those single mutant clones 84, This is something that should be analyzed in detail in NB mutant clones.
Nevertheless, the capability or not of inducing JNK in the /(2)gl or dlg1 single NB mutant clones is probably not the
only explanation, as Ras"?? scrib NB mutant clones do not show the tumor-like overgrowth shown by cno scrib NB
mutant clones B2, Thus, altogether, the data we currently have strongly suggest that Cno is acting in the same

pathway that the ACD regulators DIgl and L(2)gl and is epistatic to them. This is consistent with previous results
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showing that Cno contributes to DIgl recruitment to the apical pole of the NB [28] and that Cno is required for a
proper aPKC cortical localization 54, as aPKC acts upstream of L(2)gl 8. However, Scrib must be working in at
least a partially independent pathway to that involving the ACD regulators, Cno, L(2)gl, and Dlgl, and this would
explain the strongest effect of cno scrib double mutant clones. Hence, in asymmetric NB division, the Scribble

module does not seem to be so functionally interdependent as in epithelia.
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