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The derivation of induced pluripotent stem cells (iPSCs) from somatic human cells by Takahashi and Yamanaka in 2007

represented a turning point for the field. For the first time, they provided isogenic pluripotent cells with the potential for

personalized cell replacement therapies; no ethical issues would be created by using the somatic cells. This opportunity

marks a decisive step compared to the generation of human embryonic stem cells (ESCs) arranged by Thomson et al. in

1998. The production of induced pluripotent stem cells (iPSCs) represent a breakthrough in regenerative medicine,

providing new opportunities for understanding basic molecular mechanisms of human development and molecular

aspects of degenerative diseases.
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1. iPSCs Production

The 2012 Nobel prize sanctioned that specialization of cells is reversible and that adult somatic cells could be

reprogrammed to an immature, pluripotent state. However, several years after this breakthrough, the comparison of the

characteristics of iPSCs with ESCs made clear that not everything that glitters is gold. Since then, many efforts have been

made to better understand the biological peculiarities of iPSCs and make the best use of those cells.

Takahashi and Yamanaka  were able to generate iPSCs using retroviral transduction into adult somatic cells. The

process involved four transcription factors: (a) octamer-binding transcription factor 4 (Oct4), (b) sex-determining region Y-

box 2 (Sox2), (c) Kruppel Like Factor 4 (KLF4), and (d) the oncogene c-MYC; all four are called OSKM. These were

selected after testing many genes supposedly involved in the first stages of ESCs’ development .

Since then, numerous different methods have been established to improve reprogramming efficiency. They included

varying the source of cells to be reprogrammed (Figure 1A), the genes used for the reprogramming, and the methods of

reprogramming (Figure 1B). Takahashi’s retroviral approach reached an efficiency of 0.02% in reprogramming , while

further attempts by other groups achieved an efficiency of 0.05–0.08% .

Figure 1. Old and new epigenetic memory in iPSCs. (A) Schematic representation of the possible tissue of origin of the

source cells used for reprogramming in human and mouse adult tissues and extraembryonic human tissues. (B) Methods

of reprogramming (viral and non-viral) of the source cells. (C) Gene silencing and activation after reprogramming.
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These changes in reprogramming methods merged approaches still based on integration into the host genome of

exogenous reprogramming factors, and included lentiviruses and transposons as vectors. Those methods offer higher

reprogramming efficiency, although the integration process entails permanent DNA modification, potential insertional

mutagenesis, and transgenes reactivation.

To overcome these and other potential pitfalls that could limit the future use of iPSCs for tissue regeneration, additional

methods were developed based on viral and non-viral, non-integrating delivery of the transgenes containing OSKM 

. Further modification of the design of the reprogramming expression vectors and new methods of delivery were

designed to minimize or eliminate vector sequences that could be integrated into the iPSCs genome . However,

these different approaches resulted in a significant decrease, in some cases more than 100-fold, of the reprogramming

efficiency .

The following sections present the induction methods in two groups: viral and non-viral (Figure 1B).

1.1. Viral Reprogramming Methods

Within the viral approaches, apart from the aforementioned genome-integrating vectors, we can include Adeno (AV),

Adeno-associated (AAV), and Sendai viruses (SV).

Viral non-integrating reprogramming methods were developed to overcome concerns related to exogenous gene

integration and DNA modification at the expense of generally lower reprogramming efficiency. For example, the Adenoviral

approach permits an efficiency of only 0.001–0.0001% in mouse fibroblasts  and 0.0002% in human fibroblasts ;

multiple infections might be required . In addition, the use of viral vectors might elicit an immune response in the host

after cell transplantation, thus compromising the efficacy of the therapy .

1.1.1. Sendai Virus

Sendai virus is a negative sense, mRNA virus belonging to Paramixoviridae family . It is non-pathogenic to humans,

and its use as a viral vector has several advantages: (1) being an mRNA virus, it does not enter the nucleus in its lifecycle,

thus eliminating the risk of modifying the host genome and/or causing gene silencing by epigenetic changes ; (2) it

shows a broad tropism, being able to infect several cell types in vitro ; (3) due to its non-integrating nature,

viral genome is diluted to every cell duplication, allowing its removal from the reprogrammed cells; and (4) it allows the

production of a large number of proteins, thus allowing multiplicity of infection (MOI) reduction. Sendai viral vectors were

successfully used to reprogram fibroblast cells , as well as blood  and renal epithelial cells in the urine . This

technique is quite efficient, ranging between 0.01% and 4% in the generation of human iPSCs at 25 days of induction 

. Up to 10 passages or a high-temperature culture (39 °C) might be necessary to remove the viral genome

completely ; however, an auto-erasable, replication-deficient Sendai virus was recently developed using microRNA-302

which impedes viral replication by blocking the viral RNA-dependent RNA polymerase .

1.1.2. Adenovirus

Adenovirus is a non-integrating virus  that remains in the epichromosomal form in all cell types, except in egg cells .

Adenovirus offers a large cargo capacity, a transient expression, and rapid clearance from dividing cells, thus requiring

multiple rounds of infection. The reprogramming efficiency is low, 0.001–0.0001% in mouse cells and 0.0002% in human

cells, most likely because of the low infection efficiency and the narrow expression window of reprogramming factors .

1.1.3. Adeno-Associated Virus

Adeno-associated virus is a non-pathogenic, non-autonomous single-stranded DNA virus, unable to replicate without the

presence of a co-infecting helper virus. In its absence, AAV’s genome remains in episomal form within the infected cells,

although integration into the host’s genome was reported in fewer than 10% of cases.  For all these reasons, this vector

has been used in more than 100 clinical trials . However, the need for multiple rounds of transduction for cell

reprogramming, limited transgene capacity (5 kb), and low efficiency (less than 0.01%)  still limit AAVs’ use as a

vector for inducing pluripotency.

1.2. Non-Viral Reprogramming Methods

Along with these techniques, we can include mRNA transfection, miRNA infection/transfection, PiggyBac, Episomal

plasmids/vectors, minicircle vectors, and protein and chemical induction .

1.2.1. mRNA Transfection
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mRNA transfection was first used for cell reprogramming by Warren’s group. They overcame several obstacles to

transcribe mRNAs to express reprogramming factors efficiently, reaching a 1.4% reprogramming efficiency . Moreover,

the addition of Lin28 to the Yamanaka reprogramming factor protocol, valproic acid in the cell culture medium, and a

change of O  concentration to 5% allowed for an increase in efficiency to 4.4% . 

1.2.2. miRNA Infection/Transfection

Regarding the miRNA infection/transfection, several miRNA, such as miR-302b or miR-372, are strongly expressed in

ESCs. Their addition to Yamanaka factors increased up to 15-fold reprogramming efficiency for OSKM alone .

Interestingly, some miRNAs could reprogram cells at high efficiency even in the absence of co-transfection with OSKM,

bringing the efficiency of reprogramming for BJ-1 fibroblasts up to 10% .

1.2.3. Transposons: PiggyBac and Sleeping Beauty

These two transposons usually consist of a polycistronic transcript containing the OSKM factors joined by 2A peptides,

allowing post-translational cleavage of the polyprotein into single reprogramming proteins as well as maintenance of their

stoichiometric co-expression . PiggyBac is a transposon, a mobile genetic element, that can be easily inserted and

removed from chromosomal TTAA sites in the genome. Using a transposase, it can be integrated and subsequently

excised from the genome . When the OSKM factors are cloned into the PiggyBac vector and co-transfected into mouse

embryonic fibroblasts (MEFs), reprogramming efficiency ranged from 0.02 to 0.05% of the total transfected cells .

This technique requires only a single transfection; the transposon can transport substantial cargo and presents low

immunogenicity.

An intrinsic feature of the PiggyBac vector is its integration into the host genome. However, it could be cleanly excised

from the iPSCs genome. Potential reintegration is conceivable due to the use of the same enzyme for insertion and

excision. This reintegration risk forces a tight screening of iPSC clones to confirm the absence of integration and is time-

consuming. As previously mentioned, reprogramming efficiency is quite low (0.01–0.1%) but can be improved using

sodium butyrate. Regardless, the efficiency remains 50-fold lower than retroviral-mediated reprogramming methods .

Sleeping Beauty transposon vector differs from PiggyBac in its ability to integrate randomly into host genomes, thus

showing no integration tendency with regard to specific genes and gene-regulatory elements .

1.2.4. Episomal Plasmids

Episomal plasmids ensure a technically simple procedure, a stable transgene expression due to their self-replication, and

a low immunogenicity, allowing their removal by culturing cells in the absence of drug selection . Due to their

vulnerability to exonucleases, episomal vectors have an extremely low reprogramming efficiency, primarily due to the

short expression time in the cells. It is possible to overcome this issue by repeating transfections daily; however, the

reprogramming efficiency remains unsatisfactory (0.0003–0.0006%) . The inclusion of NANOG, LIN28, and LT (SV40

large T gene) as reprogramming factors enhanced the efficiency 100 times, making it comparable to viral-based methods

. Instead of using a single plasmid for every Yamanaka factor, which is laborious and less efficient, as only a few cells

receive all the plasmids, some groups use polycystronic plasmids to obtain a “3+1 delivery” of the reprogramming factors

(with Oct4, Klf4, and Sox2, carried by one plasmid, and c-Myc by the other) , while other groups rely on one single

plasmid to deliver all four genes , under the control of a constitutively active CAG promoter. However, these last

methods do not ensure an adequate stoichiometric co-expression of the multiple reprogramming factors. The use of

picornaviral 2A self-cleaving peptides to link reprogramming factors, when used as a polycistronic construct , can

partially ameliorate the balance of the expression of the four genes. However, there is still the chance that polycistronic

plasmid could produce an unbalanced expression of each reprogramming factor . This issue, together with the large

size of the plasmid, hampers the efficiency of plasmid-based reprogramming .

1.2.5. Minicircle Vectors

Minicircle vectors are supercoiled DNA episomal vectors similar to a standard plasmid but containing only the eukaryotic

promoter and the cDNA(s) of the genes to be expressed. Their small size, resistance to cleavage, extremely low

immunogenicity, and high transfection efficiency make them a good tool for cell reprogramming , despite a very low

reprogramming efficiency (0.005%) and long reprogramming time (14–18 days). Thus, multiple rounds of transfection are

required, causing a reduction in cell viability . In order to improve the efficiency of reprogramming, various researchers

used electropulsation, included additional reprogramming factors and/or microRNAs, used small molecules, and included

hypoxic conditions . Tight screening of the clones is necessary to exclude the integration of transgene

sequences.

1.2.6. Liposomal Magnetofection
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Liposomal magnetofection is a non-viral technique that allows the delivery of nucleic acids in cultured cells by mixing

nucleic acid and magnetic nanoparticles in cationic lipids. The lipids are concentrated on the surface of the cells using a

magnetic field . This technique has little chance of genomic integration, requires only a single transfection, and has low

immunogenicity. There are rare cases of genomic integration. Consequently, screening iPSC clones is necessary to

confirm the absence of integration . Moreover, its reprogramming efficiency is between 0.032% and 0.040% after 8

days .

1.2.7. Proteins

Although the bioactive forms of reprogramming proteins can be synthesized by prokaryotic or eukaryotic systems, the

main hurdle for reprogramming is their limited capability to cross the cell membrane. To overcome this obstacle, the

protein approach takes advantage of the HIV-TAT protein (a protein transduction domain) in delivering recombinant

proteins. This technique allows the introduction of proteins into cells from the external environment without

permeabilization agents . The efficiency of this procedure is quite low, at 0.006% of mouse fibroblasts  and 0.001%

of human fibroblasts . To improve the reprogramming efficiency, some authors supplemented the culture media with

valproic acid (VPA), with 0.006% of cells induced to pluripotency after 30–35 days .

Protein transduction domains later became a method to deliver not only proteins but also other macromolecules. Those

included peptide nucleic acids (PNA), antisense, short-interfering ribonucleic acids (siRNA), liposomes, iron nanoparticles,

and plasmids .

1.2.8. Chemical Induction

Despite the methods mentioned above for reprogramming, the highest degree of safety at the cost of low reprogramming

efficiency is represented by iPSC generation through the use of small molecules to obtain chemically induced pluripotent

stem cells (CiPSCs).

Hou et al. developed a combination of six small molecules (obtained after an intense work of screening of more than

10,000 compounds). They included several cAMP agonists (Forskolin, Rolipram, and Prostaglandin E2) and epigenetic

modulators (sodium butyrate, 3-deazaneplanocin A (DZNep), 5-Azacytidine, and RG108) to generate chemically induced

iPSCs (CiPSCs). Interestingly, they found that small molecule (sm) iPSCs could be generated using only one gene of the

OSKM, namely Oct4, with the addition of CHIR99021, tranylcypromine (VC6T), VPA, and 616452 . Compared to

ESCs, CiPSCs have similar doubling time, gene expression profiles and differentiation ability, and they generate

teratomas and chimeric mice . Moreover, it is intriguing that different chemical cocktails are needed to induce other

source cells . To date, current chemical reprogramming efficiency is only 0.2%, with an induction time of more than 36

days that was recently reduced to 16 days .

2. Comparison between Different Methods of Reprogramming

The presence of the high level of copy number variation (CNV) in hiPSCs compared to hESCs or human somatic cell

samples can be explained with two, not self-excluding, hypotheses: (a) they are gained de novo during the

reprogramming procedure or in vitro iPSCs culture or, (b) they are present in the starting somatic cell population that could

also be a mosaic . Since the first work of Yamanaka , many efforts have been made to understand how

reprogramming could impact the quality of iPSCs.

In a study conducted by Ma et al., the comparison between different methods of reprogramming (i.e., Sendai virus

(IPSCs-S) and retroviral (iPSCs-R) methods) indicated that some lines, such as iPS-S4, iPS-S5, and iPS-R2, did not

display significant genomic macroscopic alterations. Copy number variation (CNV) analysis did not entirely exclude the

presence of small insertion-deletions (indels), point mutations, or translocations .

In other papers, the genetic stability of independent iPSCs lines with common donors was tested by CNV SNP

microarrays . However, lines produced using integrating vectors showed a trended but not significantly higher

frequency of clinically significant CNV (58%) compared with non-integrating vectors (41%). Since this study compared

iPSCs lines obtained from the same donor, the authors could evaluate whether the CNV differences were due to the

tissue of origin or the method or reprogramming . Similarly, Schlaeger et al.,  compared episomal vector

reprogramming, Sendai virus, RNA, and lentivirus reprogramming, finding no differences in CNV. Many different groups

found that if differences do exist between the reprogramming methods, these are most likely present when the

reprogramming is made using integrating viral vectors; they are also very subtle, although they could be more deleterious

.
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Taken together, these data suggest that different induction methods do not contribute significantly to the genic alterations

found in iPSC lines obtained from isogenic cells; most likely, the genic impairment found in iPSCs could be ascribed to the

somatic donor cells or the cultivation time.

3. Source Cells for Reprogramming

The cells used for reprogramming depend on the organism, the availability of the tissue, and the kind of differentiated cells

we would like to produce from the iPSCs. As addressed in the following sections, many tissues cannot be used because

they are unavailable (i.e., brain tissue) unless obtained as discarded tissue.

However, to date, iPSCs have been obtained using a plethora of tissues (Figure 1B). In this regard, some of these

methods require invasive procedures such as biopsies, as in primary skin fibroblasts. More accessible sources are

available, namely peripheral blood from which we can retrieve T cells , B cells , hematopoietic stem cells , and

bone marrow cells. Recently, iPSCs have been produced by choosing less invasive cells to obtain, such as keratinocytes

isolated from hair follicles . Very often, cell sources have been obtained from biological waste material . Examples

include renal epithelial cells in the urine , mesenchymal stem cells from teeth and fat tissue , liver and stomach

cells , melanocytes , neural stem and progenitor cells , and embryonic and extraembryonic tissue . These

outcomes indicate that cells of all tissues might be converted into iPSCs. The final point about the origin of source cells

concerns their age. Senescent cells or cells obtained from the elderly are induced to iPSCs with more difficulties.

However, Lapasset et al. found that their induction efficiency could be increased using a six-factor reprogramming cocktail

(SOX2, OCT4, KLF4, NANOG, LIN28, and c-MYC) instead of the usual OSKM, which also eliminates the marks of cellular

aging .

Depending on the cells of origin and the methods of reprogramming, gene cocktails other than OSKM, such as p53

shRNA, Lin28, L-Myc, SV40LT, Nanog, Glis1, and others, have been used in different reprogramming mixes, sometimes

improving the efficiency of reprogramming in particular subsets of tissue sources .

An important aspect that we mentioned earlier is the presence of mosaicisms in the source cells that could negatively

affect reprogrammed cells. The production of iPSCs from a patient affected by Down syndrome showed that the patient

was a mosaic, since one-third of the reprogrammed cells were euploid, whereas the remaining 66% were trisomic .

Abyzov et al. demonstrated that 50% of the CNVs identified in the hiPSC lines were detectable, even at a very low

frequency, in the source fibroblast population , indicating the presence of somatic mosaicism in these cells.

4. Epigenetic Alteration after Reprogramming

Independently of the reprogramming method, profound modifications of the epigenetic landscape of the donor cells

appear during iPSC induction. Pluripotent stem cells  such as ESCs show a distinctive epigenetic profile, with active

chromatin modifications. Histone acetylation, hypomethylated DNA, a tri-methylation at the 4th lysine residue of the

histone H3 (H3K4me3), and tri-methylation at the 36th lysine residue of the histone H3 (H3K36me3)  locate primarily

within the regions of genes responsible for pluripotency (Figure 2).

[24] [69] [70]

[71] [72]

[26][73] [74]

[75] [76] [77] [78]

[79][80]

[26][81]

[82]

[63]

[83]

[84][85]



Figure 2. Epigenetic landscape changes. DNA and histones modification in the reprogramming process. Starting from a

somatic cell throughout the reprogramming process (initiation, maturation, and stabilization), there is an intense

modification of the histones and DNA in specific sites.

The opposite happens in tissue-specific genes . Another interesting aspect of pluripotent stem cells is that they have

elevated levels of the so-called bivalent domains, with methylation in H3K27me3 and H3K4me3 in differentiation-related

genes, which can be easily activated or silenced, eliminating H3K27me3 or H3K4me3. This sensitive equilibrium is pivotal

for the maintenance of stemness  (Figure 2).

During reprogramming, silencing of somatic cell genes and activation of pluripotency-associated genes are observed

(Figure 1C), and they push for a de-differentiation of the cell into a naïve, pluripotent state. These cells are ultimately

characterized by unlimited cell proliferation and differentiation into cells derived from the three germ layers in vitro; in vivo,

they can form teratomas, generate chimeras, and complete organisms through tetraploid complementation. These are the

most rigorous criteria for pluripotency characterization of pluripotent stem cells , which can be addressed only in non-

human cells .

To date, the molecular mechanisms that underlie the derivation and maintenance of iPSCs are not yet wholly understood.

Most of the studies on the transcriptional and epigenetic circumstances driving pluripotency and reprogramming have

been performed on mice. Due to the strong cross-species similarities, many of these results have been translated to

humans.

The change in gene expression occurs progressively due to a defined sequence of cellular and molecular events (Figure

2). It can be divided into initiation, maturation, and stabilization. Some of the phases concern cellular dynamics in which

there is a change in cell size, a mesenchymal-to-epithelial transition, a change in proliferation rate, and a metabolic

switch; the stabilization phase is transgene independent. Another aspect concerns transcription dynamics in which the

somatic genes are switched off in the initiation phase. At the same time, cell cycle genes are activated from the maturation

to the stabilization phase; the pluripotency genes are also activated from the maturation phase. Meanwhile, the epidermis

genes are on only in the maturation phase. The epigenetic dynamic H3K4me2 (permissive) and H3K9me3 (repressive)

methylation are turned on early in the activation phase and decrease along with the other phases. H3K4me3/H3K27me3

(bivalent) increases from the maturation phase throughout the stabilization phase, similar to DNA hydroxymethylation and

histone acetylation. Finally, DNA methylation and demethylation increase during the stabilization phase .
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