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14-3-3c0 is an acidic homodimer protein with more than one hundred different protein partners associated with

oncogenic signaling and cell cycle regulation.

protein-protein interaction (PPI) 14-3-30 dimer stabilizer inhibitor cancer

| 1. Introduction

The 14-3-3 proteins are a group of acidic polypeptides that are highly conserved in all eukaryotic cellsiH2E], The
14-3-3 family was initially described by Moore & Perez in 1967 as an abundant mammalian brain protein family
which took its name based on its elution profile, specifically the fraction number of bovine brain homogenate from
diethylaminoethyl (DEAE) cellulose column (14th fraction) and subsequent purified fraction 3.3 from gel
electrophoresisBIEIAE The 14-3-3 family comprises seven human isoforms which are named after their
respective elution positions on high performance liquid chromatography (HPLC) (B-beta, €-epsilon, y-gamma, n-
eta, o-sigma, t-tau, and -zeta) with at least 500 partners forming protein—protein interaction (PPI) in mammalian
cells22ALLAZ noreover, 14-3-3 proteins have also been detected in non-vertebrate species such as plants and
yeasts [L3I14I5I16]117] The overall structure of 14-3-3 proteins is highly conserved among the family members with
a molecular mass of approximately 28-30 kDa and isoelectric point of 4-5[EI18] Crystal structures of 14-3-3
proteins revealed that they are highly helical with a clamp-like shape dimer. All human 14-3-3 isoforms are
expressed as both homo- and heterodimers. The dimer form of 14-3-3 proteins is capable of binding two ligand

motifs at the same time, either from the same target or from two different partners12.

The 14-3-3 proteins are also classified as phosphoserine/phosphothreonine (pSer/pThr)-recognition proteins, as
they generally exert their activity through binding to the phosphoserine/phosphothreonine-containing motifs of a
multitude of molecules with various functions such as kinases, phosphatases, transmembrane receptors, and
transcription factors[229[21122] |n general, there are two high-affinity phosphorylation-dependent binding motifs that
are recognized by the amphipathic binding grooves of all 14-3-3 isoforms, i.e., Arg-Ser-Xaa-pSer-Xaa-Pro (R-S-X-
pS-X-P, mode |, Figure 1a) and Arg-Xaa-Xaa-Xaa-pSer/Thr-Xaa-Pro (R-X-X-X-pS/T-X-P, mode I, Figure 1b),
where X is any amino acid and pS/T represents phosphorylated serine or threoninel23l241231[261127] A third binding
motif recognized by the C-terminus of 14-3-3 proteins, i.e., pS/pT-X;_,-COOH (mode lll, Figure 1c) has also been
reported (28129 Nevertheless, not all 14-3-3 interactions require a phosphorylated residue as 14-3-3 has also been

reported to bind to several non-phosphorylated proteins and peptides, such as exoenzyme S, Cdc25B, and
p190RhoGEF [2[31][32[33][34]35]
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Figure 1. (a) 14-3-3¢/phosphopeptide complex (mode 1, PDB: 1QJB), (b) 14-3-3¢/phosphopeptide complex (mode
Il, PDB: 1QJA), (c) 14-3-30/TASK3 peptide (mode Ill, PDB: 6GHP).

Consistent with the ability of 14-3-3 proteins to bind to various binding motifs, 14-3-3 proteins are found to be

involved in a wide range of physiological processes which include cell proliferationB8E738] cell cycle control 240
(411[42](43] and cell apoptosis4443146]47],

| 2. Role of 14-3-30 in Cancer

The 14-3-30 protein has attracted the attention of researchers as a vital target to fight against cancer growth and
metastasis. Previous studies have demonstrated the role of 14-3-3c in suppressing tumor metabolic
reprogramming 8. In addition, few reports have also highlighted the crucial role of 14-3-3¢ against the cancer cell
invasion and metastasis. For instance, a low level of 14-3-30 has been shown to promote production of lactate
which stimulates the migration of epithelial cancer cells to a distant organ through breaking down of extracellular
matrix48l49 Studies have also showed that, among all seven well-known human 14-3-3 isoforms, 14-3-30 is the
only isoform that possesses tumor-suppressing activityJI9BABLUB2] |t has been shown that 14-3-30 protein
directly controls the G2-M checkpoint of the cell cycle by protecting the tumor suppressor factor P53 against the
MDM2-mediated ubiquitination and degradation23l54I33], |n addition, 14-3-30 was also reported to play a crucial
role in the cell cycle arrest regulation by acting as a cyclin-dependent kinase (Cdk) inhibitor, i.e., through
sequestering the cyclin-dependent kinase 1-cyclin B1 complex from entering nucleus and initiate mitosis, as well as
binding to the cyclin-dependent kinases 2 and 4B857, Moreover, 14-3-30 was also found to negatively regulates
the oncogenic activity of the Protein kinase B (also known as Akt) and thus protecting against Akt-mediated
tumorigenesis®3. Further, 14-3-30 has also been reported as a target gene in mammary epithelial cells which
regulates the antiproliferative activity of the transforming growth factor-beta 1 (TGF-bl) through the Smad3-
dependent mechanism859, Furthermore, reports have demonstrated 14-3-3¢ involvement in controlling cell
proliferation and cancer metastasis via the termination of NF-kB signal in mammary cells by regulating the nuclear
export of the p65 subunit of NF-kB transcription factor and subsequently inhibits its transcriptional activity8J61],
Moreover, 14-3-30 has also been reported to regulate the expression of human TASK-3 channel (which is believed
to facilitate cancer cell’s proliferation and survival), by blocking the endoplasmic reticulum retention sequences,
and thereby promoting the surface expression of this channel®2E3l64 14-3-3¢ also regulates the oncogenic

activity of transcriptional coactivator TAZ which is an oncogenic protein that promotes cell proliferation and
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migration. The binding of TAZ to 14-3-30 leads to cytoplasmic retention of TAZ which subsequently disabling its
function(621(66],

Unlike other isoforms which show elevated expression in many types of cancer, 14-3-30 protein level is
downregulated in chronic myeloid leukaemia, nasopharyngeal carcinoma, as well as lung, breast, oesophageal,
uterine, ovarian, and skin cancers/267E8I6ATAI7Ll The |ow expression level of 14-3-3c protein in many cancer
types has been linked to either promoter hypermethylation of Sfn gene (which encodes the 14-3-30 protein) or
direct 14-3-30 degradation through ubiquitination which eventually aborts the normal physiological role of 14-3-30
against tumor growth and metastasisPUI2ISI7ATE] - Consistent with these observations, introduction of a DNA
demethylating agent, 5-aza-20-deoxycytidine significantly upregulated the expression level of 14-3-30 in salivary
gland adenoid cystic carcinoma and nasopharyngeal carcinomal’8l. In addition, a separate study demonstrated that
an upregulation of 14-3-30 expression by Marsdenia tenacissima extract was able to mediate G2/M cell cycle

arrest in breast cancer [£8l,

Although numerous studies have showed the vital role of 14-3-30 in controlling the tumor formations and
metastasis, some studies have also indicated that the 14-3-3c could be a double-edged sword 8 as its
upregulation has also been linked with resistance to chemotherapeutic agents/2BIEL | addition, studies have
shown that 14-3-30 also induces overexpression of matrix metalloproteinase 1 (MMP-1), a proteolytic enzyme that
degrades native fibrillar collagens, and is often associated with poor prognosis in malignant tumorl82lE2l83]
Furthermore, 14-3-30 has also been reported to bind to the c-Abl protein, preventing its nuclear translocation and

subsequently interfering with its pro-apoptotic effect/84185],

| 3. Conclusions

In conclusion, the aberrant expression of 14-3-30 has been observed in many cancers. Various protein partners
and mechanisms involving 14-3-30 in cancer growth and metastasis have been reported. This suggests that 14-3-
30 is an important target for anticancer drug discovery and development. Consistent with this observation, different
chemical classes of 14-3-3c PPI modulators have been developed as potential therapeutics against cancer. This
includes 14-3-30 PPI stabilizers such as fusicoccanes analogues and fragment-derived small molecule stabilizers,
as well as phosphonate and non-phosphonate type 14-3-3c PPI inhibitors. These modulators were successfully
identified using a combination of techniques including in silico tools (ligand-based screening, docking, molecular
dynamics simulations), biophysical techniques (NMR, X-ray crystallography, isothermal titration calorimetry),

fluorescence polarization, as well as cell-based assays.

However, it is worth noting that both inhibitors and stabilizers of 14-3-30 PPI available to date mainly target the
amphipathic binding pocket. While inhibitors bind directly to the three key amino acids in the amphipathic binding
pocket (Arg56, Argl29, and Tyr130), the stabilizers generally bind to the site adjacent to the amphipathic binding
pocket, as the amphipathic binding pocket is often occupied by the protein partner of 14-3-3c. Having said that, a
direct interaction with Lys122 at the amphipathic binding pocket of 14-3-3c was observed in both inhibitors and

stabilizers. This suggests that a 14-3-3c PPI inhibitor is also likely to interfere with the binding of other 14-3-3c
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partners which are involved in suppressing cancer cell growth, metabolism, and metastasis, such as the tumor
suppressor gene P53, TASK-3, p65, and TAZ. Intriguingly, these amino acid residues are also conserved among all
14-3-3 isoforms. This suggests that modulators that target the amphipathic binding groove of 14-3-30 may also
bind to other isoforms, and may produce other undesirable effects since only 14-3-3c is frequently downregulated
in cancer while other isoforms are usually upregulated.

Although the molecular tweezer seems promising as a potentially selective 14-3-3c inhibitor as it has been
reported to bind to the C-terminal domain of 14-3-30, rather than the amphipathic binding pocket, and yet is
effective in displacing the binding of the protein partner from 14-3-3ag, it is still unclear if this inhibitor is indeed
selective to 14-3-30 since recent finding seems to suggest that molecular tweezer may binds to any solvently
exposed Lys residues. Moreover, the interacting amino acid residue Lys214 is also conserved across all isoforms.
Nevertheless, it is clearly demonstrated that it is possible to target other sites on 14-3-30 in modulating its PPI
interaction and is potentially the way forward for the design of new highly selective modulators of 14-3-3c in the

future.
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