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As an apoplastic signal, extracellular ATP (eATP) promotes pollen germination (PG) and pollen tube growth (PTG)
of Arabidopsis thaliana by stimulating Ca2+ or K+ absorption. P2K1 receptor, heterotrimeric G alpha protein and

CNGC2/CNGC4 are involved in eATP stimulated signaling in Arabidopsis pollens.

extracellular ATP (eATP) Arabidopsis thaliana pollen grain ion influx signaling

| 1. Introduction

The apoplast, including the cell wall and intercellular space, plays essential roles in modulating plant cell growth
and development due to the existence of numerous signaling molecules within the apoplastic matrix. In recent
years, growing evidence has shown that adenosine triphosphate (ATP) is present in the apoplast and participates
in physiological processes such as vegetative growth, development, and stress response LB, eATP is involved
in maintaining cell viability & and the growth rate of cultured cells 8, regulating the rate or direction of the growth of
roots I, hypocotyls B8 and cotton fibers 22, |t is also involved in modulating stomatal movement 21221131 Some
stresses induce eATP release as a “danger signal”’, which in turn induces resistance responses to disease,
hypotonic conditions, high salinity, and cold stress [14[231[16][17][18]

The signal transduction of eATP has been intensively investigated over the past two decades. Two lectin receptor
kinases, P2K1 and P2K2, were identified to be eATP receptors in Arabidopsis thaliana 1929 involved in eATP-
induced immune responses 13I14121] Sjgnal transducers in the plasma membrane (PM), including heterotrimeric G
proteins 12221 NADPH oxidase 231241 and CaZ* channels [El23125]26] \yere reported to be involved in eATP signal
transduction. Several secondary messengers, e.g., ROS, H,0,, NO, and Ca?* may be responsible for the eATP-

induced intracellular responses that eventually alter plant growth and development [BIL7[261[27](28][29]

PG and PTG are fundamental processes in plant sexual reproduction. lon intake is the main factor affecting the two
processes BIBLE2 Through the regulation of turgor pressure, K* ions play essential roles in PG and PTG. Proper
K* channel expression is essential for Arabidopsis pollen hydration on stigma 231, K* influx causes pollen tube
apex bursting and the release of sperm cells to complete double fertilization B4 and endows pollen with
competitive ability 3%, Excessively low or high K* or Ca2* concentration inhibited PG and PTG in vitro in
Arabidopsis B8IE7 Inward K* channels that drive K* absorption by pollen cells are involved in PG and PTG [23138]

(391491 ca?* is involved in modulating the activity of some inward K* channels in pollen protoplasts [E2141],
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As a component of the cell wall and a cytoplasmic messenger, Ca2* ions play essential roles in PG and PTG [21132]
[42][43][44][45] * Syfficient Ca?* is necessary for PG and PTG. Pollen tubes emerge from the aperture where high
cytosolic Ca®* concentration ([Ca?*].y) is localized 4248144, [Ca?*],,, initiates pollen germination 48! and regulates
the rate and direction of growth of pollen tubes [24143148IM49501[51]  Exoceytosis occurs continuously during PG and
PTG. Ca?*-regulated vesicle trafficking and fusion with the PM therefore play key roles in PG and PTG [B1I521[53][54]

BSIS6I57], ca2* influx and signaling are responsible for stimuli-triggered or -regulated PG and PTG [581[521[601(61](62]
(63],

2. ATP Addition Impacts PG and PTG in Pollens from 34
Species

To verify the universality of eATP-regulated PG and PTG, we examined the effects of 0.1 mM ATP on PG and PTG
of pollen grains from 34 species. Pollen germination rates increased significantly in 28 species (p < 0.05) and
decreased significantly in 6 species (p < 0.05). Pollen tube length measurement results showed that tube growth
was significantly promoted in 19 species (p < 0.05) and significantly inhibited in 5 species, while no effect was

observed in 10 species (Figure 1).
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Figure 1. ATP-regulated PG and PTG in various plant species. Pollen grains of 34 plant species were germinated

in vitro in the medium containing 18% sucrose, 0.1 mM KCI, and 0.5% agarose. Germination duration of each

species is listed in Table 1. PG (A) and PTG (B) were noted. In each experiment, at least 300 pollen grains or 150

pollen tubes were counted or measured. Data from 3 replicates were calculated to obtain mean + SD. Student’s t-

test p values: * p < 0.05, ** p < 0.01.

Table 1. Plant materials for in vitro pollen germination (sorted by the initials of the Latin names of plant species).

Latin Famil Class Phvium Germination
Name y y Duration (min)
1 Aquilegia viridiflora Ranunculaceae Dicotyledoneae Angiospermae 30
2 Arabidopsis thaliana Brassicaceae Dicotyledoneae Angiospermae 300
3 Berberis thunbergii Berberidaceae Dicotyledoneae Angiospermae 40
4 Brassica campestris Brassicaceae Dicotyledoneae Angiospermae 240
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Latin
Name

Family

Class

Phylum

Germination
Duration (min)

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

Brassica pekinensis
Cercis chinensis
Clivia miniata
Cotinus coggygria

Cotoneaster
horizontalis

Forsythia suspensa
Hyacinthus orientalis
Jasminum nudiflorum

Kolkwitzia amabilis

Lonicera maackii
Lonicera japonica
Magnolia denudata
Malus halliana
Malus micromalus
Nicotiana tabacum

Orychophragmus
violaceus

Paeonia suffruticosa
Paeonia lactiflora
Paulownia fortunei
Pinus bungeana
Pinus tabulaeformis
Punica granatum
Prunus cerasifera

Rosa xanthina

Brassicaceae
Leguminosae
Amaryllidaceae

Anacardiaceae

Rosaceae

Oleaceae
Hyacinthaceae
Oleaceae
Caprifoliaceae
Caprifoliaceae
Caprifoliaceae
Magnoliaceae
Rosaceae
Rosaceae

Solanaceae

Brassicaceae

Paeoniaceae
Paeoniaceae
Scrophulariaceae
Pinaceae
Pinaceae
Punicaceae
Rosaceae

Rosaceae

Dicotyledoneae

Dicotyledoneae

Monocotyledoneae

Dicotyledoneae

Dicotyledoneae

Dicotyledoneae

Monocotyledoneae

Dicotyledoneae
Dicotyledoneae
Dicotyledoneae
Dicotyledoneae
Dicotyledoneae
Dicotyledoneae
Dicotyledoneae

Dicotyledoneae

Dicotyledoneae

Dicotyledoneae
Dicotyledoneae
Dicotyledoneae
Coniferopsida
Coniferopsida
Dicotyledoneae
Dicotyledoneae

Dicotyledoneae

Angiospermae
Angiospermae
Angiospermae

Angiospermae

Angiospermae

Angiospermae
Angiospermae
Angiospermae
Angiospermae
Angiospermae
Angiospermae
Angiospermae
Angiospermae
Angiospermae

Angiospermae

Angiospermae

Angiospermae
Angiospermae
Angiospermae
Gymnosperm
Gymnosperm
Angiospermae
Angiospermae

Angiospermae

150

90

420

40

60

120

80

90

60

60

120

2880

30

60

30

180

60

60

60

4320

4320

120

60

20

https://encyclopedia.pub/entry/14023

4/13



Extracellular ATP (eATP) | Encyclopedia.pub

Latin Eamil Class Phvium Germination

Name y y Duration (min)
29 Robinia pseudoacacia Leguminosae Dicotyledoneae Angiospermae 30
30 Rosa farreri Rosaceae Dicotyledoneae Angiospermae 30
31 Saintpaulia ionantha Gesneriaceae Dicotyledoneae Angiospermae 180
32 Sophora japonica Leguminosae Dicotyledoneae Angiospermae 30
33 Swida alba Corneceae Dicotyledoneae Angiospermae 60
34 Syringa oblata Oleaceae Dicotyledoneae Angiospermae 90

3. eATP Regulates PG and PTG of Arabidopsis thaliana via
K* and Ca?* Intake

To verify the role of ion uptake in eATP-promoted PG and PTG, Arabidopsis thaliana pollen was germinated in
vitro, and the effects of apyrase or ATP addition on PG and PTG were investigated. In the basic medium, which
contained 0.1 mM KCI, apyrase inhibited PG and PTG significantly. After 100 units/mL apyrase treatment, the
pollen germination rate decreased from 39.2 + 2.5% to 26.7 + 3.4%, and the pollen tube length decreased from
16.9 2.4 ymto 10.3 £ 1.8 pm (p < 0.05). Control treatment with heat-denatured apyrase or bovine serum albumin
(BSA) did not affect PG or PTG (p > 0.05) (Figure 2A,D). At low K" concentrations (0.02-0.1 mM), ATP
supplementation (0.1 mM) promoted PG and PTG significantly, while at high K™ concentration (1.0 mM), ATP
supplementation slightly inhibited PG but did not affect PTG (Figure 2B,E). To confirm that eATP supplementation
promotes PG and PTG by increasing K* uptake, 1 mM of the K' channel blockers Ba?*, Cs*, or TEA
(tetraethylammonium) was added into the basic medium containing 0.1 mM KCI. In these conditions, the effects of
eATP on PG or PTG were significantly suppressed (p < 0.01) (Figure 2C,F).
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Figure 2. eATP regulates the PG and PTG of Arabidopsis thaliana by facilitating K* uptake. Apyrase-inhibited PG
(A) and PTG (D), ATP-regulated PG (B), and PTG (E) in medium containing serial concentrations of KCI. K*
channel blockers (1 mM) inhibited ATP-promoted PG (C) and PTG (F). In (A-F), the K* concentration in the
medium is 0.1 mM. In each experiment, at least 300 pollen grains were counted to obtain PG, and at least 150
pollen tubes were measured to obtain the pollen tube length. Data from 3 replicates were combined to obtain the

mean + SD. Student’s t test p values: * p < 0.05, ** p < 0.01.

To verify the role of Ca2* in eATP-promoted PG and PTG, 0.1 mM ATP was added to medium containing EGTA,
series of concentrations of Ca?*, or Ca* channel blockers. In 0.5 mM EGTA-containing medium, PG and PTG
were significantly suppressed, and ATP supplementation did not have any effect. In medium containing 0.1 mM
CaCl,, PG and PTG were both stimulated by 0.1 mM ATP. In medium containing 1 mM CaCl,, pollen tube growth
was markedly stimulated, while pollen germination was suppressed by 0.1 mM ATP. In medium containing 0.1 mM
Ca?*-permeable channel blockers (Gd3* or La3"), resting PG and PTG were both suppressed, and added ATP did
not have any effect on PG and PTG (Figure 3). These data indicate that eATP may promote PG and PTG by
facilitating Ca2* intake.
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Figure 3. eATP regulates PG and PTG of Arabidopsis thaliana by facilitating Ca®* uptake. ATP (0.1 mM) regulates
PG (A) and PTG (B) in medium containing a Ca2* chelator, serial concentrations of Ca2*, and channel blockers
(0.2 mM). In each experiment, at least 300 pollen grains were counted to obtain PG, and at least 150 pollen tubes
were measured to obtain the pollen tube length. Data from 3 replicates were combined to obtain the mean + SD.
Student’s t test p values: * p < 0.05, ** p < 0.01.

To verify the role of ATP hydrolytes in PG and PTG, 0.1 mM ADP, AMP, adenosine, adenine, or phosphate (Pi) was
added to the medium containing 0.1 mM KCI or CaCl,. PG and PTG were not affected by these reagents in either
KCI or CaCl, medium. To verify the effect of various ATP salts on PG and PTG, 0.1 mM ATP sodium, Tris, or
magnesium salt was added to the medium containing 0.1 mM KCI or CaCl,. PG and PTG were significantly
promoted by the three ATP salts (p < 0.05) in both the KCI and CaCl, media. To ensure that ATP acts as a signal
rather than an energy carrier, 0.1 mM ATPyS, a weakly-hydrolyzable ATP analog, was added to the medium
containing either 0.1 mM KCI or CaCl,. PG and PTG were significantly promoted by ATPyS (p < 0.05) in the KCI
and CacCl, media.

4. ATP Stimulates K* and Ca?* Influx in Arabidopsis thaliana
Pollen Protoplast

To confirm that eATP stimulates K* uptake in pollen grains, whole-cell patch clamping was performed to detect the
effect of eATP on K* conductance in the PM. In pollen protoplasts, a time-dependent inward-rectifying K* current
was recorded at a negative voltage of more than =140 mV. The addition of 1 mM CsCI significantly suppressed the
current intensity, confirming that the inward currents may be carried by K* influx (Figure 4A). The addition of 0.1
mM ATP stimulated the inward K* current: the maximum current intensity increased from —-129 + 32 pA to —254 +
34 pAat -200 mV (n =7, p < 0.05), and the open potential shifted to more positive (Figure 4B). In CsCl-pretreated
protoplasts, the effect of ATP on the inward K* currents was markedly suppressed. The maximum current intensity
decreased from —270 + 35 pAto —-83 £ 18 pAat —200 mV (n =7, p < 0.05) (Figure 4C).
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Figure 4. CsCl inhibits eATP-stimulated K* influx in the protoplasts of Arabidopsis pollen grains. (A) CsCl (1 mM)

inhibited resting and 0.1 mM ATP-stimulated inward K* currents. Representative current traces from step-voltage

clamping are shown. (B,C) I-V relationship curves of inward K* currents (n = 7). In each experiment, data from 7

protoplasts were recorded and combined to obtain the mean + SD.

To further confirm the promotion of eATP on the Ca?* uptake of pollen grains, the effect of 0.1 mM ATP on inward

Ca®* conductance was investigated. The addition of 0.1 mM ATP strongly promoted Ca?* influx in pollen

protoplasts: the maximum inward current intensity at —200 mV increased from —147.6 + 21.9 pAto -243.1 + 22.8

pA (n = 7, p < 0.05) (Figure 5A,B). GdCl; (1 mM) significantly suppressed Ca?* conductance (Figure 5A,C, n = 7,

p < 0.05). In Gd3*-pretreated pollen protoplasts, ATP did not stimulate Ca?* inward conductance (Figure 5A,C, n =

7, p > 0.05).
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Figure 5. GdCl; inhibits eATP-stimulated Ca?* influx in the protoplasts of Arabidopsis pollen grain. (A) GdCl; (0.1

mM) inhibited resting and 0.1 mM ATP-stimulated inward Ca2* currents. Representative current traces from step-

voltage clamping are shown. (B,C) I-V relationship curves of the inward Ca2* currents (n = 7). In each experiment,

data from 7 protoplasts were recorded and combined to obtain the mean + SD.
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