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1. Introduction

In recent years, environmental pollution, especially water pollution, is increasingly becoming a major concern worldwide.

Many organic pollutions, such as pharmaceuticals and personal care products (PPCPs), pesticides, and organic dyes are

toxic and refractory . Various techniques have been developed to eliminate aqueous organic pollutants (e.g.,

extraction, adsorption, biological treatment, and advanced oxidation processes) . Advanced oxidation processes

(AOPs) are regarded as effective techniques for organic contaminants removal from water and wastewater .

The AOPs utilize highly reactive species (mainly hydroxyl radical, •OH) to oxide the organic pollutants into less toxic or no-

toxic products such as CO  and H O . According to supplied energies and reactive species, AOPs can be

categorized as photocatalysis, electrocatalysis, sonolysis, ozonation, Fenton/Fenton-like reactions, and sulfate radical-

based AOPs (SR-AOPs), among others . In recent decades, numerous studies have been conducted to develop

novel AOPs. Emerging energy sources (e.g., ionizing radiation with electron beams and γ-radiolysis, pulsed plasma, etc.)

were applied, and different reactive species (such as periodate or ferrate reagent) were introduced .

Considering the merits of different AOPs, combinations of various processes are more common approaches to enhance

degradation efficiency . Although some AOPs (e.g., UV/H O , UV/peroxymonosulfate (PMS)) work properly without

catalysts, employing catalysts can significantly reduce energy and reagent (source of reactive species) consumption .

Therefore, designing an effective and stable catalyst is a crucial strategy for the development of AOPs.

Graphic carbon nitride (g-C N ), known as a metal-free polymer semiconductor, has attracted increasing attention due to

its unique electronic band structure, anti-photocorrosion, excellent physicochemical stability, and easy availability .

The bandgap of g-C N  is about 2.7 eV, which enables it to absorb all viewing range of solar irradiation. The valance band

(VB) and conduction band (CB) mainly encompass nitrogen and carbon p  orbitals while VB top and CB bottom are

located at about +1.4 and −1.3 eV, respectively . The study of g-C N  can be traced back to 1834, when

Berzelius first synthesized a polymeric derivative of g-C N  and Liebig named it melon . In 2006, Goettmann and his

co-workers investigated Friedel–Crafts reactions that can be catalyzed by g-C N , which is its first application in the

catalytic field . In 2009, g-C N  was demonstrated as a good metal-free photocatalyst for water splitting by Wang et al.

. Up to now, g-C N  has been in-depth studied and extensively applied in photocatalysis. The g-C N  preparation relies

on (solvo)thermal polymerization of nitrogen-rich precursors such as melamine, dicyandiamide, and urea . In addition,

hard/soft temple-assisted methods and sol-gel methods are frequently used to modify the synthesis approaches. The

reaction parameters such as precursors and temperature could significantly affect the physicochemical property, including

specific surface area, bandgap, etc. . However, the pure g-C N  encounters several drawbacks, including tiny surface

area, inefficient use of visible light, low electric conductivity, and fast recombination of photo-induced carriers, which are

not beneficial to its catalytic activity . To address these issues, a lot of efforts such as (1) engineering the

nanostructure of g-C N  , (2) introducing heteroatoms (metals   or non-metals 

), (3) coupling with other semiconductors   and (4) co-polymerization   were made. g-

C N  based composites hold unique advantages for organic pollutants removal from groundwater and wastewater due to

the good adsorption capacity of g-C N  for organic molecules, which could be attributed to strong intermolecular forces

like hydrogen bonding, π-π interactions between pollutant molecules and residual amino groups in the g-C N  fragment

. On the other hand, introducing extra sources of reactive species such as H O  or PMS in photocatalysis can

significantly increase degradation efficiency . Furthermore, some studies have explored g-C N  based composites

for organic pollutants removal without light irradiation in the presence of PMS or H O  .
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Some excellent reviews on g-C N  based composites involving pollution remediation have been published . g-

C N  based composites as photocatalysts for water purification have been summarized in these reviews, while no reviews

involve other AOPs such as chemical AOPs and electrochemical AOPs. The dramatically increasing amounts of g-C N

based composites in the range of AOPs fields requires a broader, thorough, and up-date assessment.

2. Chemical AOPs

The chemical AOPs started as early as the application of the Fenton reaction to water treatment, in which •OH can be

generated from the catalytic decomposition of H O  by Fe  for the destruction of various organic pollutants (Equation (1))

.

Fe  + H O  + H  → Fe  + •OH + H O (1)

With the increasing demand for water treatment, various oxidants such as O , PMS, peroxydisulfate (PDS) were applied

in chemical AOPs. The PMS and PDS could be heterogeneous activated, and reactive species such as •SO  are

subsequently generated to degrade organic pollutants . Table 1 summarizes the part of a representative study

using g-C N  based composites as a catalyst in chemical AOPs.

Table 1. Graphic carbon nitride (g-C N ) based composites for chemical advanced oxidation processes (AOPs).

Catalyst Target
Contaminants Oxidant Reaction Conditions Performance Ref.

Cu(II)/CuAlO /g-C N Bisphenol A (BPA) H O BPA, 25 mg/L; catalyst, 1 g/L; H O , 10
mM; T, 35 °C; pH, 7

95.5% in 120
min

Cu/Al O /g-C N Rhodamine B
(RhB) H O RhB, 20 mg/L; catalyst, 1 g/L; H O , 10

mM; T, 25 °C; pH, 4.9
96.4% in 100

min

Iron oxide/g-C N Ciprofloxacin H O ciprofloxacin, 20 mg/L; catalyst, 1 g/L;
H O , 5.6 mM; pH, 3

100% in 60
min

g-C N /carbon
nanotubes/Fe(II) Methylene blue H O Methylene Blue, 90 mg/L; catalyst, 0.5

g/L; H O , 1 mM; T, 25 °C; pH, 4.9 66.8% in 1 h

Fe O @C/g-C N Acid orange 7 (AO
7) PMS AO 7, 20 mg/L; catalyst, 0.6 g/L; PMS,

0.1 g/L; T, 25 °C; pH, 4 97% in 20 min

CoFeO /g-C N Levofloxacin PMS
levofloxacin, 10 mg/L; catalyst, 0.15 g/L;
PMS, 0.5 mM; T, Room temperature; pH,

3

100% in 60
min

Co-doped g-C N 4-chlorophenol PMS 4-chlorophenol, 50 mg/L; catalyst, 1 g/L;
PMS, 2.5 mM

100% in 30
min

Mn-doped g-C N Acetaminophen PMS acetaminophen, 20 mg/L; catalyst, 0.05
g/L; PMS, 0.8 g/L; pH, 6.5

100% in 15
min

Cu -g-C N Rhodamine B H O Rhodamine B, 50 mg/L; catalyst, 0. 8
g/L; H O , 40 mM; pH, neutral 99.2% in 1 h

Pd/g-C N BPA PMS BPA, 20 mg/L; catalyst, 0.1 g/L; PMS, 1
mM; T, 25 °C; pH, 9 91% in 60 min

FeO /S-g-C N Sulfamethoxazole PMS sulfamethoxazole, 10 mg/L; catalyst, 0.5
g/L; PMS, 0.8 mM; T, 25 °C; pH, 3.54

100% in 60
min

Fe(III)-doped g-C N AO 7 PMS AO 7, 8.5 mg/L; catalyst, 0.1 g/L; PMS,
0.1 g/L; pH, 3–4 97% in 30 min

cryptomelane-type
manganese oxide/g-C N AO 7 PMS AO 7, 0.13 mM; catalyst, 0.2 g/L; PMS,

0.65 mM; T, 8 °C; pH, 7.25 88% in 30 min

carbon and oxygen dual-
doped g-C N BPA PMS BPA, 0.1 mM; catalyst, 0.5 g/L; PMS, 5

mM; T, 30 °C; pH, 6.7
100% in 60

min

Active carbon/g-C N AO 7 PMS AO 7, 50 mg/L; catalyst, 0.2 g/L; PMS,
0.4 g/L; T, 27 °C; pH, 3.82

100% in 20
min

Fe-doped g-C N /graphite 4-chlorophenol PMS 4-chlorophenol, 0.1 mM; catalyst, 0.1
g/L; PMS, 0.1 mM; pH, 3

100% in 10
min
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Catalyst Target
Contaminants Oxidant Reaction Conditions Performance Ref.

Oxygen-doped g-C N BPA PMS BPA, 0.05 mM; catalyst, 1 g/L; PMS, 10
mM; T, 30 °C; pH, 3–9

100% in 60
min

Fe(II)-doped g-C N Phenol PMS phenol, 0.1 mM; catalyst, 1 g/L; PMS, 5
mM; T, 23 °C; pH, 2.6

100% in 20
min

Mn O /g-C N 4-chlorophenol PMS 4-chlorophenol, 50 mg/L; catalyst, 0.3
g/L; PMS, 1 mM; T, 25 °C; pH, 4

100% in 40
min

Pure g-C N  holds inert activation performance of oxidants such as H O  and PMS. Considering that g-C3N4 has

excellent affinity to entrap transition metal ions, metal doping is the main strategy for improving the catalytic activity. Oh et

al. investigated the catalytic activities of Me-doped g-C N  (Me = Cu, Co, and Fe) as PMS activator for sulfathiazole

degradation. Among the prepared catalyst, Co-doped g-C N  (0.59 wt% Co) exhibited the highest degradation efficiency

for sulfathiazole, while excessive metal doping and surface defects (-C≡N) had a scavenging effect for •SO  . The

authors further studied Fe-doped g-C N  for acid orange 7 degradation, and the non-radical pathway was proposed . Li

et al. prepared Fe doped g-C N  as PMS activator for phenolic compounds degradation. (Fe (V) = O) generated from the

oxidation of Fe(III)-N was proposed as dominant reactive species . In another work, Fe doped g-C N  was also

employed in PMS activation for phenol degradation. Authors investigated the ratio of 46% and 54% of Fe (III) and Fe (II)

via Mössbauer spectra, while the XPS survey spectra suggested the primary Fe on the surface of the catalyst was in the

3+ state. It was proposed that the Fe (II) complex heterolyzed at the O-O bond of activated PMS to form Fe (IV) = O,

which was the primary active species . In PMS/Mn-doped g-C N  system, superoxide radical was firstly generated due

to the PMS bounding to the Mn-N site, and singlet oxygen produced by superoxide radical was proposed as the

responsible reactive species for acetaminophen degradation . Ma et al. synthesized Cu (I)-doped g-C N  for the

removal of rhodamine B in a Fenton-like reaction. Cu (I) could be firmly embedded in g-C N  and reactive species

produced by the interaction of H O  and Cu (I) . The unique adsorption capacity of g-C N  for some organic pollutants

also leads to superior degradation performance. Xie et al. investigated that different monochlorophenols isomers (2-

chlorophenol, 3-chlorophenol, and 4-chlorophenol) could be degraded efficiently using Co-doped g-C N  as a catalyst in

the presence of PMS. It was confirmed that the degradation rate was in the same order as the adsorption quantity .

This was attributed to the strong intermolecular forces between pollutant molecules and residual amino groups in the g-

C N  fragment . Pd-doped g-C N  was successfully synthesized by anchoring Pd nanoparticles on g-C N  using KBH

reduction method, which was regularly active for PMS activation toward bisphenol A removal . Metal oxide such as

manganese oxide   and iron oxide   decorated on g-C N  are also employed for organic pollutions degradation via

activating H O  or PMS (Figure 1). Lyu et al. prepared Cu (II)/CuAlO /g-C N  composite as a Fenton-like catalyst. The Cu

and C were investigated as dual reaction centers, and C-O-Cu acts as bridges to accelerating electrons transfer .

Nonmetal doping is also considered to be an efficient approach to improve electron transfer capability. Electronic structure

modulation was achieved in oxygen-doped g-C N  for PMS activation, which was fabricated using urea and oxalic acid

dihydrate . The authors further investigated carbon and oxygen doped g-C N  exhibited better PMS activity due to its

dual active sites-electron-poor C atoms and electron-rich O atoms . Co-doping of iron and sulfur was found to be an

approach to charge distribution and density of g-C N  for PMS activation . To improve its chemical activity and electron

transportation ability, Coupling nanocarbon materials g-C N  was developed to realize efficient PMS or H O  activation

. Moreover, combining nanocarbon materials and metal doping was frequently fabricated with g-C N  to exploit both

materials’ synergistic effect .

Figure 1. (a) Schematic illustration of the catalytic mechanism of g-C N /CDs/Fe(II) in the presence of H O , reprinted

with permission from . Copyright 2019 American Chemical Society. (b) Proposed mechanism of PMS activation by

gCN-Fe  for AO7 removal, reprinted with permission from . Copyright 2018 Elsevier.
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3. Photochemical AOPs

Light irradiation is the most widely used method of applying additional energy to assist reactive species generating, which

presents the advantages of simple, clean, relatively inexpensive, and efficient. TiO  and ZnO were firstly used as

photocatalysts for catalytic oxidation of organic contaminants. In this case, photocatalysis induces the formation of h ,

•O  and •OH, which act as principle reactive species for pollutants degradation. Consequently, visible light irradiations

have been coupled with powerful oxidants such as H O  and PMS, including catalysis with a modified photocatalyst,

resulting in various AOPs. In this section, the applications of these different AOPs as photocatalysis, Photo-Fenton (like)

reactions, and photo-assisted sulfate radical based AOPs are summarized. Some representative applications of g-C N

based composites as a catalyst in photochemical AOPs are shown in Table 2.

Table 2. g-C N  based composites for photochemical AOPs.

Catalyst Target
Contaminants Light Source Reaction Conditions Performance Ref.

NiCo O /g-C N Carbamazepine 500 W Xenon
lamp, Visible light

carbamazepine, 10 mg/L;
catalyst, 0.5 g/L; PMS, 1 mM;

100% in 10
min

TiO /g-C N Acetaminophen 300 W Xenon
lamp, Visible light

acetaminophen, 5 mg/L; catalyst,
0.5 g/L; PS, 2 mM; pH, 7

100% in 30
min

Fe doped g-
C N /graphene Trimethoprim 350 W Xenon

lamp, Visible light
Trimethoprim, 0.02 mM; catalyst,

0.5 g/L; PMS, 0.2 mM; pH, 6
100% in 120

min

MoS /A g/g-C N Tetracycline 300 W Xenon
lamp, Visible light

tetracycline, 20 mg/L; catalyst,
0.2 g/L; PMS, 0.1 mM; T, 20 °C;

pH, 5.5

98.9% in 50
min

activated carbon/g-
C N Atrazine 300 W Xenon

lamp, Visible light
atrazine, 5 mg/L; catalyst, 1 g/L;

PMS, 5 mM; T, 25 °C; pH, 5.56
97.5% in 120

min

Cobalt-doped g-C N Rhodamine B
500 W halogen
tungsten lamp,

Visible light

rhodamine B, 10 mg/L; catalyst,
0.4 g/L; PMS, 0.12 mM; T, 25 °C;

pH, 4.68

100% in 25
min

Sulfur-doped/g-C N Bisphenol A 150 W Visible
light lamp

Bisphenol A, 50 mg/L; catalyst,
0.3 g/L; PMS, 0.3 g/L; T, 20 °C;

pH, 5

85% in 120
min

g-C N -imidazole-
based ligand-FePcCl Carbamazepine Xenon lamp,

Visible light
carbamazepine, 25μM; catalyst,

0.1 g/L; PMS, 0.3 mM; pH, 7 95% in 25 min

Cu-modified alkalinized
g-C N Rhodamine B halogen tungsten

lamp, Visible light
rhodamine B, 10 mg/L; catalyst,
0.4 g/L; H O , 9.8 mM; pH, 4.6 95% in 10 min

3.1. Photocatalysis

As one typical technique of AOPs, photocatalytic degradation held the advantages of non-toxic, convenient operation, and

high efficiency. With the irradiation of UV or visible light with energy larger than the semiconductor’s energy gap, the

electron-donating and electron-accepting sites are formed in the surface of the semiconducting catalyst. The

photogenerated electrons migrate from the valence band (VB) to the corresponding conduction band (CB), leaving holes

in the VB, resulting in the electrons and holes occupying the CB and VB, respectively. Holes can directly oxidize pollutants

or react with H O/OH  to produce hydroxyl radicals (E  = 2.8 eV/NHE). Whereas the electrons capture dissolved

oxygen (O ) to yield superoxide radical (E  = −0.3 eV/NHE). The resulting •O  are subsequently protonated to

produce the •OH. Finally, those generated radicals take part in the oxidation of pollutants. In the early seventies, Fujishima

and Honda showed the possibility of using the photo-excited semiconductor titanium dioxide (TiO ) to split water into

hydrogen and oxygen in a photo-electrochemical solar cell . This fundamental work led to developing a new AOP

technology, based on semiconductor photocatalysis, for water purification.

g-C N  compounds have emerged as up-and-coming candidates to replace TiO , owing to its graphite-like structure and

medium bandgap . However, the photocatalytic activity of g-C N  is still limited by its low electric conductivity and

fast recombination of photo-induced carriers . In this regard, modulating the nanostructure of g-C N  towards

enhancing light harvest efficiency and catalytic mass-transfer is highly desirable. Researchers have made great efforts to

design g-C N  with various structures, including 3D porous/nanospheres structure, 2D nanosheet and nanorod, etc. 

. Such structures such as 3D porous and 2D nanosheet could provide high surface area, exposing more active sites
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for catalytic surface reactions. Furthermore, nanostructured g-C N  could significantly reduce photo-induced carriers’

transfer distance, leading to a lower recombination possibility. Moreover, the light quantum efficiencies could be

significantly improved by constructing 0D, 1D nanorod, and 2D architectures g-C N  .

The VB top of g-C N  locates at about 1.4 V, leading to a small thermo-dynamic force for organic pollutants oxidation.

Moreover, the more positive potential of •OH/H O standard redox voltage results the hole cannot directly oxidize the H O

to generate •OH (E  = 2.8 eV/NHE). To overcome this shortcoming, several elements of doping have been

conducted . Generally, metal doping occurs by inserting into the framework. In contrast, non-metal doping

occurs in C or N atoms of g-C N  replaced by a heteroatom, which could enhance photocatalytic activity via improve the

transfer and separation rates of photogenerated carriers and modulate bandgap . Constructing heterojunction is

another approach to enhance photodegradation performance for g-C N  . Generally, Z-schemed heterojunction

could be a good option that possesses higher redox potentials in forming reactive radicals and directly hole oxidation

ability .

3.2. Photo-Fenton Like Processes

The Photo-Fenton process, the combination of ultraviolet or visible light with the conventional Fenton process, can

enhance catalysts’ catalytic capacity and increase the degradation efficiency of organic pollutants and reduce iron sludge

production . The successive and competitive steps reaction mechanism for the photo-Fenton process are shown in

Equations (2) and (3).

Fe  + H O  → Fe  + •OH + HO (2)

Fe  + H O + hv → •OH + Fe  + H (3)

As shown in Equation (2), Fe  rapidly reacts with H O  to generate Fe . The main form of Fe  is [Fe(OH)]  at pH 2.8–

3.5, which plays a key role in reactions. Subsequently, the reduction of [Fe(OH)]  under light irradiation achieves redox

recycling (Figure 2). Moreover, •OH can be generated via direct photolysis of H O  . In the photo-Fenton process, the

key is to accelerate the reduction of Fe  to Fe  via light irradiation. In the heterogeneous photo-Fenton reactions, the

active sites’ redox cycle determines the reaction rate . Although g-C N  cannot act as active sites for H O

decomposition, unique up conversion property, and substantial nitrogen coordinating sites make it become the ideal

support for active sites . In addition, the excellent photocatalytic activities of g-C N  based composites endue unique

advantages as a catalyst for photo-Fenton-like reactions . Metal doping into g-C N  is an important approach to

enhance degradation efficiency in photo-Fenton reactions. Fe-doped g-C N  has been successfully synthesized by

thermal shrinkage polymerization for aqueous organic pollutants degradation in photo-Fenton reactions. Introducing Fe in

g-C N  accelerated the separation of photogenerated electron-holes. The Fe accepts electrons towards rapid reduction

from trivalent to divalent, promoting the rapid generation of reactive species . Another report about porous Fe-doped

g-C N  revealed that the porous g-C N  structures enhance the photo-Fenton activity, owing to more active sites (Fe-N4)

exposure . An et al. embedded Fe into g-C N  by pyrolysis of Fe-N-containing precursor and melamine. The high-

density Fe-N  was investigated as a reactive site for H O  activation . Another strategy used to realize efficient photo-

Fenton-based degradation is heterojunction construction, including the Z scheme   and type II . Zhang et al.

prepared MnO /Mn-modified alkalinized g-C N  by the calcination-impregnating method. It was proposed that Z-scheme

charge transfer accelerated the redox cycle of the Mn /Mn /Mn  .

Figure 2. (a) schematic illustration of the catalytic mechanism of Fe O  QDs/g-C N -900 in H O /vis system, reprinted

with permission from . Copyright 2019 John Wiley & Sons, Inc. (b) Mechanism of photocatalytic degradation of

atrazine with PMS, reprinted with permission from . Copyright 2018 Elsevier.
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3.3. Photo-Assisted Sulfate Radical Based AOPs

Sulfate radical-based advanced oxidation processes (SR-AOPs) are increasingly gaining attention as an effective solution

to the destruction of recalcitrant organics in water . Among various approaches to generate sulfate radicals via

activation of additional sources of reactive species (such as peroxymonosulfate (PMS) and persulfate (PS)), the photo-

activation in the presence of a heterogeneous catalyst is worth mentioning . The general mechanism is presented in

Equations (4)–(8).

Photocatalyst + hv → e  + h (4)

S O  + e  → SO  + SO • (5)

HSO  + e  → SO •  + OH (6)

HSO  + h  → SO •  + H (7)

2SO •  → 2SO •  + O (8)

Firstly, photocatalysts are excited under light irradiation to form photo-induced electrons and holes. Then the •SO  and

•OH are generated through the combination of electrons and PMS or PS. When transition metals are constructed into

photocatalysts, they could be potential reactive sites for PMS/PS activation (shown in Equations (9)–(12)).

M  + HSO  → M  + SO •  + OH (9)

M  + HSO  → M  + SO •  + H (10)

M  + e  → M (11)

M  + h  → M (12)

Similar to the application in photo-Fenton-like reactions, g-C N  generally plays as reactive site supporters or participate

in heterojunction construction in photo-assisted sulfate radical based AOPs. The TiO /g-C N  composite was fabricated

for paracetamol photocatalytic degradation in the presence of visible light and persulfate. As prepared composite held

type II heterojunction, which inhibits the electron-hole recombination in photocatalyst and adding persulfate increased 13

times degradation rate . Liang et al. prepared porous 0D/3D NiCo O /g-C N  composite for carbamazepine removal.

99% of degradation was achieved in 10 min under visible light irradiation . Jin et al. constructed Z-scheme MoS /A g/g-

C N  via a method of chemical electrostatic adsorption. The deposited Ag further enhances photocatalytic activity via

improving light utilization ability and the separation rate of photogenerated e /h  pairs. The results indicated that the

presence of PMS dramatically accelerates the photocatalytic reaction . Through metal ions such as Fe and Co doping,

enhancing photocatalytic activity and improving PMS activation could synchronize implementation towards an efficient

organic pollutant removal .
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