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RNA interference (RNAi) was discovered at the end of last millennium, changing the way scientists understood regulation

of gene expression. Within the following two decades, a variety of different RNAi mechanisms were found in eukaryotes,

reflecting the evolutive diversity that RNAi entails. The essential silencing mechanism consists of an RNase III enzyme

called Dicer that cleaves double-stranded RNA (dsRNA) generating small interfering RNAs (siRNAs), a hallmark of RNAi.

These siRNAs are loaded into the RNA-induced silencing complex (RISC) triggering the cleavage of complementary

messenger RNAs by the Argonaute protein, the main component of the complex. Consequently, the expression of target

genes is silenced. This mechanism has been thoroughly studied in fungi due to their proximity to the animal phylum and

the conservation of the RNAi mechanism from lower to higher eukaryotes. However, the role and even the presence of

RNAi differ across the fungal kingdom, as it has evolved adapting to the particularities and needs of each species. Fungi

have exploited RNAi to regulate a variety of cell activities as different as defense against exogenous and potentially

harmful DNA, genome integrity, development, drug tolerance, or virulence. This pathway has offered versatility to fungi

through evolution, favoring the enormous diversity this kingdom comprises. 
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1. Introduction

RNA interference (RNAi) or RNA silencing has been deeply studied in the last two decades, as its discovery entailed a

revolution in the understanding of the regulation of gene expression. This RNAi pathway, broadly conserved in

eukaryotes, uses small interfering RNAs (siRNAs) to suppress gene expression of homologous sequences. These

siRNAs, of 20–30 nucleotides (nt) long, are produced from double-stranded RNA (dsRNA) by an RNase III called Dicer

(Dcr) and loaded into an RNA-induced silencing complex (RISC), which contains an Argonaute protein (Ago) that drives

the selective degradation of homologous messenger RNAs (mRNA), as well as translational or transcriptional repression

of target sequences. Moreover, in fungi and other organisms, an RNA-dependent RNA polymerase (Rdp or RdRP)

generates dsRNA from certain single-stranded RNA (ssRNA) or from the target messenger RNA, activating or amplifying

the silencing response, respectively .

Fungi have proven to be excellent model organisms for the study of the RNAi pathway, since many of the discoveries

accomplished in these organisms were later extended to higher eukaryotes. In fact, one of the first RNA silencing

phenomena reported was found in Neurospora crassa, which is an essential model organism to study modern genetics.

N. crassa has developed different RNAi mechanisms, but the two that were originally found are the best described. The

first is called quelling, a post-transcriptional gene silencing (PTGS) guided by siRNAs , which suppresses transposons

and virus infections . Quelling is triggered by the introduction of transgenes homologous to an endogenous gene. After

the transgene is transcribed, it follows a canonical pathway to activate silencing, carried out by an Rdp protein (QDE-1),

two Dicer-like proteins (Dcl1 or Dcl2), and an Argonaute (QDE-2). The second mechanism is called meiotic silencing of

unpaired DNA (MSUD) and is involved in silencing genes that are not paired with their partner on the homologous

chromosome during meiosis . This mechanism is present not only in N. crassa but also in other ascomycetes, such as

Gibberella zeae, and operates during prophase I . Some of the elements involved in the canonical RNAi pathway, such

as Dcl1, are necessary for this other mechanism, as well as a MSUD-specific Rdp (SAD-1), a second Argonaute (SMS-2),

and the helicase SAD-3. These proteins form a multiprotein complex located at the perinuclear region that acts generating

MSUD-associated siRNAs (masiRNAs) . After these first discoveries in N. crassa, the RNAi mechanism was found in

several other fungi, such as Schizosaccharomyces pombe , Cryptococcus , or Mucor .

When RNAi was discovered, it was thought to be a defense system against exogenous and potentially harmful DNA,

including transposons, virus, and transgenes. However, very soon, its involvement in other cellular functions, such as

genome integrity or gene regulation, was found. Recent studies in fungal pathogens stated that the RNAi pathway is also

implicated in development, drug tolerance, and virulence. Thus, fungi have exploited RNAi to tune their cellular processes,

reaching unsuspected limits.
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2. Defense against Viruses

The first predicted function of RNAi as a defense against viral infections would explain the conservation of the

pathway through the evolution of eukaryotes, since viral infections affect every phylum on the tree of life. This

mechanism has been widely explored in the ascomycete filamentous fungus Cryphonectria parasitica . In

Aspergillus nidulans RNAi also acts as a defense mechanism against virus .

3. Control of Transposable Elements

Transposable elements (TEs) are described as DNA sequences that have the ability to change their position

within a genome. Although TEs were initially considered junk DNA, they have been associated with several

important activities since their discovery, including centromere function, genome reorganization, and gene

expression regulation . TEs are also considered “selfish” DNA because they try to be perpetuated whilst

the host tries to curtail their spread and, thus, their consequences on genome integrity. As a result, many

organisms have developed mechanisms to ensure the control of TE activity . Some of those mechanisms

are well described in the literature and include DNA methylation , histone methylation , and heterochromatin-

inducing protein . Another mechanism that controls TE spread, probably the most ancient of all mentioned, is

RNAi. Small RNAs associated with proteins can act at the transcriptional or post-transcriptional level against TE

activity. The role of RNAi in TE repression has been well characterized in the plant kingdom  and other

organisms, such as Drosophila melanogaster and Caenorhabditis elegans . Studies on the RNAi role in TE

control in fungi, such as Neurospora crassa , Schizosaccharomyces pombe , Magnaporthe oryzae , Mucor
lusitanicus , or Cryptococcus neoformans  have served to further understand these mechanisms.

4. Regulation of Endogenous Genes

As described above, the development of RNAi mechanisms represents an evolutive advantage regarding the

defense against exogenous nucleic acids. However, specialization of those RNAi mechanisms has led to the

establishment of novel post-transcriptional regulation networks of endogenous genes according to the use of

Rdp, Dicer, and Argonaute proteins. The human pathogenic fungus M. lusitanicus, for instance, shows an intricate

RNAi mechanism as a function the interplay of the silencing proteins in three different pathways, named the

canonical, epimutational, and noncanonical RNAi pathways. The crosstalk of the RNAi pathways creates a

complex network that regulates both basic cellular activities, such as metabolism or vegetative growth, and

elaborated mechanisms, including sexual reproduction and pathogenesis . N. crassa , Coprinopsis
cinerea , Fusarium graminearum  and Magnaporthe oryzae , also produce sRNAs that regulate

endogenous genes. 

5. Heterochromatin Formation

Heterochromatin constitutes a highly condensed state of DNA. It is considered to have no transcriptional

activity due to the limited access of the regulatory proteins to the promoter regions . Generally,

heterochromatin is concentrated in the telomeric, centromeric, ribosomal, and mating type regions of the

eukaryotic chromosome . Heterochromatin assembly is strictly regulated for accurate chromosome

segregation, maintenance of telomere integrity, transcriptional silencing, and transposon control .

Heterochromatin formation in S. pombe is triggered by the production of siRNAs derived from centromeric

regions with numerous repeats . Remarkably, heterochromatin formation and the RNAi pathway can

also regulate the epigenetic inheritance of gene silencing in S. pombe .

6. Adaptation to Stressful Conditions

The epimutational pathway in M. lusitanicus was discovered after the emergence of isolates resistant to the antifungal

drug FK506 with no apparent mutations in the target genes . The isolates, called epimutants, produced siRNAs

from the mature mRNA of fkbA gene, which encodes FKBP12, the FK506-interacting protein . Epimutants

developing resistance to other antifungal agents, such as 5-fluoroorotic acid (5-FOA), have also been isolated .

Therefore, the epimutation process does not appear to occur at a specific gene locus, suggesting it might constitute a

general mechanism that generates phenotypic plasticity in Mucor by silencing key genes and allowing rapid and

reversible adaptation to environmental stresses .
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7. Pathogenesis

RNAi has also been found to play an important role in pathogenesis, more thoroughly studied in plant pathogens. Many

crops with worldwide importance are susceptible to being infected by pathogenic fungi, which translates into economic

losses. Thus, alternative methods of infection control have been investigated, allowing a deeper understanding of fungal

pathogenesis and the involvement of RNAi. Some of those pathogenic fungi, such as Colletotrichum
gloeosporioides , M. oryzae , Sclerotinia sclerotiorum  have active RNAi pathways which influences their

pathogenicity. RNAi is also involved in virulence of animal pathogens, such as M. lusitanicus .

An important feature of fungal pathogenesis is the mechanism called cross-kingdom RNAi, which has evolved to regulate

the host–pathogen interaction. The existence of sRNA trafficking between the host and the pathogen and silencing target

genes of the counterparty in trans was first discovered in plants, but afterward extended to mammal systems. Some

fungal pathogens, such as Phytophthora sojae  or Botrytis cinerea , have been found to produce sRNAs that function

as RNA effectors to suppress host immunity.

8. Loss of RNAi

In essence, RNAi has crucial regulatory and defense roles in eukaryotes, suggesting that this key mechanism has

been positively selected through evolution in plants, nematodes, animals, and fungi. Yet, some members of the fungal

kingdom have lost key components of the RNAi pathway , resulting in its inactivation. A hypothesis to explain this

contradiction could be that those species may have other defensive mechanisms more advantageous than RNAi.

Alternatively, perhaps, this RNA-based mechanism constitutes a disadvantage for them, forcing the survival of the

RNAi-deficient species.
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