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The COVID-19 pandemic, as well as the more general global increase in viral diseases, has led researchers to look to the

plant kingdom as a potential source for antiviral compounds. Since ancient times, herbal medicines have been extensively

applied in the treatment and prevention of various infectious diseases in different traditional systems. The purpose of this

review is to highlight the potential antiviral activity of plant compounds as effective and reliable agents against viral

infections, especially by viruses from the coronavirus group.
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1. Introduction

Bronchitis is a respiratory disease caused by bacterial infections, viral infections, or irritant particles . In response to

infection, the bronchial tubes become inflamed and swollen, which may eventually result in acute respiratory arrest.

Nowadays, viral pneumonia is diagnosed through analyzing a sample of bronchoalveolar lavage fluid using PCR, cell

cultures, and whole-genome sequencing . The virus was isolated from infected individuals and recognized as genus

beta-coronavirus, placing it alongside other viruses causing Severe Acute Respiratory Syndrome (SARS) and Middle East

Respiratory Syndrome (MERS) .

The treatment of this disease is a great challenge due to several reasons, including the rapid emergence of mutant

strains, the consequent high rate of virus adaptation, and the development of resistance to antiviral medicines. Another

factor is that of unwanted side effects and the high cost of synthetic antiviral drugs. The standard approach for viral

infections comprises antiviral medicines that do not cause damage to the human host but can help shorten viral infection,

inhibit virus expansion, and help in reducing/blocking complications . The potency of marine natural products has been

confirmed to target SARS-CoV-2 main protease (Mpro) .

Medicinal plants have been identified as reliable resource against several diseases for millennia. More than 70% of the

global population still depends on herbal medicines due to their relatively low cost and better compatibility with the human

body compared to synthetic drugs . During the pandemic period, studies were performed using databases of scientific

literature to screen and identify the potential of herbal plants to act as anti-coronavirus medication . It has been reported

that water and ethanol plant extracts contain biologically active substances with antiviral activity .

A wide range of compounds identified in several plant species have demonstrated antiviral activities, including alkaloids,

flavonoids, triterpenes, anthraquinones, and lignans. Interestingly, plant selection based on ethnomedical concerns

provides a higher hit rate than screening plants or general synthetic products . Some known pharmacophore structures

of bioactive substances may be useful in the creation of new anti-Covid-19 drugs. In addition, plants have also been

introduced as a safe and reliable bioreactor for the production of recombinant virus proteins that can be used in vaccine

development , e.g., nuclear transformed tomatoes and tobacco-expressing antigens have been reported to induce

immunogenic responses against SARS-CoV .

The main objective of the current review is to provide the complete overview of the ethnomedicinal uses of herbs

employed to treat respiratory diseases. We address questions regarding the potential of plant-derived compounds in

inhibiting virus propagation, thus providing relief for viral-induced pathogenesis. We also discuss how biotechnology may

help solve the challenge of rapidly obtaining pure antiviral compounds. Furthermore, this review discusses the current

state of the art regarding the possible antiviral activities of herbal medicine and makes an effort to tackle the gaps in

scientific knowledge that may lead to the advancement of innovative treatments for the welfare of people and against the

spread of viral diseases, especially SAR-CoV.
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2. Replication Inhibitors of SARS-CoV

Previous investigations have demonstrated that the development of proteases is an ideal goal to be tackled for the

inhibition of CoV replication. Though the protease activity disruption causes various diseases, host proteases are

considered reliable therapeutic targets. For several different viruses, protease activity represents a vital factor in

replication; thus, proteases are frequently targeted as protein candidates during antiviral therapeutics studies .

Lopinavir and nelfinavir are in the category of medications named protease inhibitors with a high level of cytotoxicity

recommended for the treatment of cells infected with MERS, SARS, and HIV .

3. Evidence Supporting the Antiviral Efficacy of Medicinal Plants

The use of therapeutic plants against viral infection can be traced back to the dawn of civilization; however, BOOTS Pure

Drug Co., Ltd., Nottingham (England) made the first systematic effort to screen plants against influenza . Later on, the

inhibitory effect of medicinal plants on the replication of viruses was studied on severe acute respiratory syndrome

(SARS) virus, emerging viral infections linked with poxvirus, hepatitis B virus (HBV), HIV, and herpes simplex virus type 2

(HSV-2)  It has been demonstrated that molecular mechanisms linked to the antiviral effects of medicinal

plant extracts vary among various types of viruses. Thus far, some investigations have discovered immunostimulatory

properties of medicinal plant extracts possessing antiviral activity .

4. Plant-Derived Immunomodulators

The phagocyte–microbe interactions in the immune system comprise a defense reaction that, under more harmful

circumstances, may take part in the advancement of various immune and non-immune chronic inflammatory diseases.

Agents that express a capacity to modulate and normalize pathophysiological processes are named immunomodulators

. Most of the well-known immunostimulants and immunosuppressants used in clinical practice are cytotoxic drugs,

which can have severe side effects. Therefore, plant-derived compounds and extracts have been studied regarding their

immunomodulatory potential in humans due to their lower cytotoxicity and high bioavailability .

Some plant-derived compounds, e.g., curcumin, genistein, fisetin, quercetin, resveratrol, epigallocatechin-3-gallate,

andrographolide, and colchicine, have immunomodulatory effects . These compounds can

downregulate the production of proinflammatory cytokines induced by some viroidal agents . Andrographolide and

other natural immunomodulators can enhance the activity of cytotoxic T cells, phagocytosis, natural killer (NK) cells, and

antibody-dependent cell-mediated cytotoxicity . The use of quercetin in combination with highly active compounds such

as psoralen, baccatin III, embelin, and menisdaurin increased its anti-hepatitis B activity up to 10% .

At the same time, analyses of other medicinal plant extracts with antiviral properties have shown thatGymnema

sylvestre ,Stephania tetrandraS , andVitex trifoliaextracts  possess immunomodulating activity.  found

immunomodulation potential and antiviral activities against acute common cold in leaf extracts ofThuja occidentalis. The

anti-SARS and immunomodulatory activity of water extracts ofHouttuynia cordatahave been reported via the stimulation of

lymphocyte proliferation together with enhancing the proportion of CD4+and CD8+Tcells  (Table 1).

Table 1. The mode of action against viruses and methods of active compound extraction from medicinal plants.
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Desmodium
canadense

(whole plant)
Fabaceae

Sandosaponin B and its
derivativesSoyasaponin

I Soyasaponin VI

Homoorientin
Orientin
2-vicenin
Vitexin

Isovitexin
Rutin

Desmodin
Homoadonivernite

Indole-3-alkylamine
phenylethylamine

alkaloids,
pyrrolidine
alkaloids

n/a n/a Ethanol Vero cell
cultures

High antiviral
activity

Camellia
japonica

(whole plant,
flowers)

Theaceae

Oleanane triterpenes
3β,18β-dihydroxy-28-

norolean-12-en-16-one
18β-hydroxy-28-

norolean-12-ene-3,16-
dione

Quercetin
Kaempferol

Apigenin

Do not produce purine
alkaloids n/a n/a Ethanol

Vero cells
(African green

monkey
kidney cell
line; ATCC
CCR-81)

High antiviral
activity on PEDV

corona virus
Inhibitory effects
on key gene and
protein synthesis

during PEDV
replication

Saposhnikovia
divaricate

(whole plant)
Apiaceae

n/a n/a n/a n/a

cis-3′-
Isovaleryl4′-

acetylkhellactone
Praeruptorin F
Praeruptorin B

(−)-cis-
khellactone
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Vero cells
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kidney cell
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CCR-81)

High antiviral
activity on PEDV

corona virus
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(Leaves)
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glycosides
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L-
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n/a n/a n/a DMSO Xenopus
oocytes

Inhibits 3a channel
protein of

coronavirus
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Bupleurosides
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Quercetin
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Narcissin
Rutin

Eugenin
Saikochrome A
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Human fetal
lung

fibroblasts
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Saikosaponins
attenuate viral

attachment and
penetration
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cordata

(whole plant)
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Quercetin 7-
rhamnoside

Hyperin
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Rutin

Arisolactams
Piperolactam A
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n/a n/a Water BALB/c mice

Decreases the viral
SARS-

3CL  activity
Stops viral t RNA

polymerase activity
(RdRp)

Increases the
secretion of

interleukin (IL)-2
and (IL)-10

Isatis tinctoria
(Roots extracts)

Brasicaceae
n/a

Hesperetin
Quercetin
Isoorientin
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Indigo
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Sinigrin n/a Water Vero cells
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activity of SARS-
3CL  enzyme

decreased

Lycoris radiata
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Amaryllidaceae

β-Myrcene
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Eucalyptol

β-cyclocitral
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CoV activity
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Plant sources of polyphenolic compounds with anti-protease activity.

The mode of action against viruses and methods of active compound extraction from medicinal plants.

Lectins are a special type of natural proteins (split into seven different classes of evolutionarily- and structurally-related

proteins) found in higher plants that bind to the sugar moieties of a wide range of glycoproteins . Plant lectins can

inhibit virus replication by preventing the adsorption and fusion of HIV in lymphocyte cell cultures 

. Furthermore, the antiviral effect of agglutinins specific for N-acetylglucosamine and mannose on HIV has been

reported. The inhibitory effect of these plant lectins has been shown in vitro on infection with influenza A virus, respiratory

syncytial virus, and cytomegalovirus .

During the digestion of food, quercetin and its conjugated metabolites can be converted into a range of metabolites

(phenolic acids) by enteric enzymes and bacteria in intestinal mucosal epithelial cells (IMECs) . Additionally, several

studies have shown the protective function of this flavonol against inflammation in human umbilical vein endothelial cells

(HUVECs), as well as mediation via the downregulation of vascular cell adhesion molecule 1 (VCAM-1) and CD80

expression . Quercetin considerably induces the production of derived interferon (IFN) and T helper type 1 (Th-1),
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Diallyl disulfide
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coronavirus
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Artemisin
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molecular
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and it consequently downregulates Th-2-derived interleukin 4 (IL-4) by normal peripheral blood mononuclear cells.

Investigations into influenza mechanisms have shown the positive interactions between the viral HA2 subunit (a mark for

antiviral vaccines) and quercetin.

It has been reported that the osteoblast supporting transcription factor Runx2 is essential for the long-term perseverance

of antiviral CD8+memory T cells . An addition, SFN-rich broccoli homogenate attenuated granzyme B production in

NK cells that was induced by influenza virus and granzyme B production in NK cells, and granzyme B levels appeared to

have negatively interacted with influenza RNA levels in nasal lavage fluid cells . Nasal influenza infection can induce

complex cascades of changes in peripheral blood NK cell activation. SFN increases as a result of virus-induced peripheral

blood NK cell granzyme B production, which may enhance antiviral defense mechanisms .

Resveratrol is a natural polyphenol found in grapes, mulberry, and peanuts. It is known to have antiviral properties against

a variety of viral pathogens in vitro and in vivo . Studies have shown that indomethacin and resveratrol can act as

adjuncts for SARS developed the hairy root lines fromArachis hypogaea(peanut) for the sustained and reproducible

production of resveratrol and resveratrol derivatives .

Baicalin has been reported as an antioxidant possessing anti-apoptotic properties, and it has been used for pulmonary

arterial hypertension treatment . At the same time, this compound has a low toxicity in human cell lines . Baicalin

showed considerable anti-viral properties on lipopolysaccharide-activated cells, while the oral application of baicalin

expressively increased the survival rate of influenza A virus-infected mice . The in silico analysis of the inhibitory effect

of baicalin showed that this flavone inhibits ACE2 in the case of COVID-19 disease.

Glycyrrhizin (a triterpene saponin) is one of the most important phytochemical components of theGlycyrrhiza

glabra(licorice) root . Glycyrrhizin has anti-inflammatory and antioxidant properties used for treatments of different

diseases such as jaundice, bronchitis, and gastritis . Glycyrrhizin could block the SARS-Cov virus attachment to the

host cells, especially during the initial stage of the viral life cycle . An in silico analysis of glycyrrhizin behavior showed

the inhibitory effect of this compound on SARS-Cov2 .

Narcissoside (synonym: narcissin) is a phytochemical belonging to the group of mono-methoxyflavones. This

isorhamnetin-3-O-rutinoside flavonoid is extracted from leaves of various folk plants such asAtriplex halimusL.,Gynura

divaricate,Caragana spinose, andManihot escylenta. An in silico analysis demonstrated that narcissoside has inhibitory

potential for the viral COVID 19 protein 6W63 .

Moreover, antiviral properties of this compound have been reported against chikungunya virus (CHIKV), human

papillomavirus (HPV), HIV-1 and HIV-2 proteases, emerging arboviruses like the Zika virus (ZIKV), influenza viruses, HIV,

HSV-2, and hepatitis viruses . However, due to its rapid elimination, rapid metabolism, and poor absorption, curcumin

has poor bioavailability, which reduces its therapeutic effect . It has been reported that the combination of this

diarylheptanoid with other chemical compounds like piperine can increase bioavailability (by up to 2000%) and provide

multiple benefits to human health . It has been reported that this plant-derived compound can inhibit the NF-κB

activation caused by numerous inflammatory stimuli such as markers of soluble vascular cell adhesion molecule 1

(sVCAM-1), IL-1 beta, IL-6, and inflammation (soluble CD40 ligand (sCD40L)).

The antiviral activity of this compound has been reported against a broad spectrum of viruses such as hepatitis B virus

(HBV; Hepadnaviridae), human papillomavirus (HPV; Papovaviridae), adenovirus (Adenoviridae), and herpes simplex

virus (HSV; Herpesviridae). It has been observed that epigallocatechin gallate can inhibit (+)-RNA viruses such as

chikungunya virus (CHIKV; Togaviridae), West Nile viruses (WNV; Flaviviridae), dengue virus (DENV; Flaviviridae), Zika

virus (ZIKV; Flaviviridae), and hepatitis C virus (HCV; Flaviviridae). On the other hand, it can inhibit (−)-RNA viruses such

as influenza virus (Orthomyxoviridae), Ebola virus (EBOV; Filoviridae), and HIV (Retroviridae)
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