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LncRNA can act as gene regulators, and like other epigenetic mechanisms are involved in numerous biological
processes. They achieve their regulatory function with their ability to interact with a wide range of biological
molecules, such as other nucleic acids and proteins. These IncRNA-protein interactions (LPI) are involved in many
biological pathways including development and disease. A variety of computational LPI predictors exist, each
applying different strategies to achieve their goals, and are dependent on a few biological databases containing
subsets of experimentally validated LPIl. Most modern IncRNA-protein interaction (LPI) prediction algorithms use

machine learning approaches, where algorithms are trained on large datasets with attributes of interest.

LPI INcRNA NcRNA protein transcriptomics molecular docking

machine learning deep learning databases

| 1. Introduction

Transcriptomics is the study of a complete set of RNA transcripts in a cell, measuring variable expression levels of
the genome under different conditions. Modern transcriptomics is performed with high-throughput sequencing to
investigate the function of genes and biological pathways, commonly with bioinformatics methods applying
differential gene expression analyses, splice site identification, transcript variant identification or determining
alternative promoter usage for protein-coding transcripts [Ll. A large proportion of the genome generates RNA
transcripts which do not directly code for protein products 2. In this review, we specifically consider the long non-
coding RNA (IncRNA) category of ncRNA and their interaction with proteins, an important functional mechanism of
INcRNA.

LncRNA can act as gene regulators, and like other epigenetic mechanisms are involved in numerous biological
processes. They achieve their regulatory function with their ability to interact with a wide range of biological
molecules, such as other nucleic acids and proteins B!, as well as with small molecules 4. Among their more direct
modes of action are sequestering and releasing transcripts to modulate gene expression, stabilising transcripts and
binding to DNA to sterically hinder transcription initiation 2. More indirectly, they can recruit proteins and other

molecules to form a functional complex, or act as a scaffold for targeted chromatin formation [ (Figure 1).

Figure 1: The importance and cycle of identifying long non-coding RNA-protein interactions.
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We llustrate the importance of LPI in developmental and abiotic stress pathways with several examples

encompassing multiple distinct species. In the plant Arabidopsis thaliana, LPI control alternative splicing within the
nucleus by selectively displacing existing transcripts and subsequently altering root development 8, Response to
abiotic stress is also governed by LPI, as shown by an IncRNA recruiting histone methylases to suppress
Arabidopsis thaliana flowering during cold conditions &. Dario renio LPI are also observed to interface with
transcription factors and other RNA-binding proteins during embryonic development, although their exact
mechanism of action is not well known 9. | P| also act as mediators of other epigenetic mechanisms, for instance

as chromatin scaffolds to organise the three-dimensional structure of the genome in Mus musculus 111,

Due to the widespread involvement of LPI in epigenetics, dysregulation of certain LPI contributes to disease states,
particularly cancers. Severity of a human pancreatic cancer phenotype is driven by an IncRNA-protein complex,
which triggers a positive feedback loop of protein overexpression leading to poor patient outcomes 22, Similarly,
formation of an IncRNA-protein complex is associated with poorer prognosis in breast cancer 3], colon cancer 23]
and lymphoma 14 by blocking phosphorylation sites, stabilising other epigenetic factors and through an unknown
mechanism, respectively. Therefore, insight into LPI will be valuable in complex disease research, potentially

resulting in improved diagnosis and treatment procedures.

Multiple high-throughput laboratory assays were developed to investigate LPIl, some of which will be briefly
discussed in this entry. Hence, computational methods are necessary to screen these high-throughput assays for
potential LPI which can then be subsequently experimentally validated, similar to transcriptomics workflows for
conventional protein-coding RNA A variety of these computational LPI predictors exist, each applying different
strategies to achieve their goals, and are dependent on a few biological databases containing subsets of
experimentally validated LPI. In this review, we will discuss recent bioinformatics resources for studying LPI, with

an emphasis on software and databases, together with their advantages as well as limitations.
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| 2. LncRNA-Protein Resource Databases

Starbase [39], POSTAR [40], RAIN [41], RNAInter [42], NPInter [43], ATtRACT [44] and oRNAment [45] are
examples of databases that contain information associated with IncRNA-protein interactions obtained by the
previously discussed laboratory assays, computational analysis and literature mining. Two broad classes exist:

databases containing curated INCRNA-protein interactions and databases containing RNA-binding motifs (Table 1).

Table 1. A comparison of databases containing information on IncRNA-protein interactions. Important attributes of

these databases are listed (all weblinks are accessed on 27 May 2021).

Database Information Information Last
names type available Species updated Links
ENCORI RNA-RNA,
(starBase) Interaction  RNA-protein 23 2020 http://starbase.sysu.edu.cn/
RNA-protein
binding
POSTAR motifs RNA-protein 6 2018 http://POSTAR.ncrnalab.org
RNA-RNA,
RAIN Interaction ~ RNA-protein 4 2017 https://rth.dk/resources/rain/
RNA-RNA,
RNA-protein,
RNAInter Interaction  RNA-DNA 154 2020 https://www.rna-society.org/rnainter/
RNA-RNA,
DNA-DNA,
DNA-RNA,
RNA-protein,
NPInter Interaction ~ DNA-protein 34 2019 http://bigdata.ibp.ac.cn/npinter4
RNA-protein
binding
ATtRACT  motifs RNA-protein 24 2016 http://attract.cnic.es
RNA-protein
binding
oRNAment motifs RNA-protein 5 2019 http://rnabiology.ircm.gc.ca/oRNAment/

Starbase, RNAInter, POSTAR, NPInter and RAIN all contain details of curated IncRNA-protein interactions, and
many additional attributes (including functional annotation) associated with the interactions, derived from a
combination of the laboratory assays discussed in the previous section (Table 1). These are not limited exclusively
to INcRNA, and contain various other pieces of interaction information, including interactions with other ncRNA,
other nucleic acids and proteins [36,37,38]. Starbase, POSTAR and RAIN contain LPI information from a small
number (two to four) of species, while RNAInter and NPInter host a wide range of species. To improve usability,

Starbase, RNAInter and RAIN feature third party tool integration to streamline bioinformatics workflows.

ATtRACT and oRNAment databases contain details of RBP (RNA-binding protein) motifs. While not directly
containing LPI, these can be applied to predict putative LPI and are a useful starting point or supplementary tool in

screening for LPI.
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We discovered that Starbase contains MALAT1—protein interactions supported by CLIP-seq evidence, whereas
POSTAR2 provides RNA- and RBP-centric information. RNAInter provides information associated with interacting
molecules, RNA editing, RNA structure, RNA localisation, RNA modification, evidence support (experimental
evidence) and references, interaction networks (the top 100 interactions) and dynamic expression for the major
IncRNAs. oRNAment consists of detailed information on transcripts and RBP along with numerous downloadable
graphical representations of the noted IncRNAs with multiple visualisation options. However, none of these
databases include any information on emerging INcCcRNAs such as Lassie and MaTAR25, further highlighting the

reliance of the community on these databases.

All databases feature at least mouse and human datasets, likely due to their status as model organisms relevant to
human disease, although some incorporate other model organisms as well. In summary, we discovered that there
is a surprising lack of specialised LPI databases, with most databases featuring combinations of other nucleic acid
and protein combinations. In a separate (unpublished) study we demonstrated that different isoforms of a IncRNA

genes can have different interactomes, and hence functions.

| 3. LPI Prediction Algorithms

Computational strategies for LPI prediction can be divided into two high-level categories, molecular docking and
machine learning. Lower-level subdivisions among the methods we surveyed include deep learning, tree-based
methods, graph-based methods, similarity networks, image segmentation, matrix factorisation and variants of the
Fourier transform. Within the past decade, a large number of prediction algorithms based on machine learning
have emerged. Instead, they exploit known interactions between IncRNA and protein and/or biomolecular
sequence information directly, although many also leverage known secondary structures to improve their

performance (Table 1, Table 2).

Before the current ecosystem of machine learning algorithms was established, molecular docking was the
dominant strategy used to predict and investigate LPlI or RNA—protein interactions in general. Key factors
considered include docking pose, distance and area of interracial sites, energy-based criteria and selection of the
most structurally conserved docked complex 13, Several methods also account for sequence homology or
electrical charge between biological molecules 8. However, at a high level these strategies are applied in different

ways, and on different steric features.

Most of the molecular docking methods we reviewed use methods which incorporate at least two of the previously
discussed low-level methodologies (Table 2). To provide some context for the building blocks of these more
complex methods, we first present examples of methods that use an individual strategy together with a brief
discussion of their advantages and disadvantages, which include 3dRPC [ HexServer 18 FireDOCK (12,
HADDOCK [29 \while FireDOCK focuses on exploiting side chain information, HADDOCK leverages ambiguous
interaction restraints, and is one of the few methods which has the advantage of being applicable to multi-body

problems as well as other biomolecular interactions. Among molecular docking tools, PatchDOCK takes a more
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unconventional strategy by summarising low-level geometric features into higher-level features, and has some

conceptual similarities to image segmentation.

Table 2. A comparison of molecular docking tools used to predict IncRNA-protein interactions. Important attributes
of these molecular docking tools, including their effectiveness and a link to their corresponding server, are listed (all

weblinks are accessed on 27 May 2021).

Advantages
SI:No Resource Re_ls_ource and Weblink Re;erence
ype Disadvantages aper
LncRNA- Free docking
protein and template-
docking based docking
server strategies in a
1 P3DOCK (adapted hybrid http://www.rnabinding.com/P3DOCK/P3DOCK.html 2]
from approach,
conventional results in an
docking accurate
servers) classification
Integrates
LNCRNA= template-based
protein modelling as
docking

well as ab initio

server free dockin
2 HDOCK (adapted . 2 http://hdock.phys.hust.edu.cn 22]
from with a scope
. that extends to
conventional .
. both proteins
docking .
and nucleic
servers) :
acids
Low-level
geometric
features into
LncRNA- higher-level
protein features,
docking FireDOCK and
server PatchDOCK
3 PATCHDOCK (adapted both https://bioinfo3d.cs.tau.ac.il/PatchDock/ / (23]
from complement
conventional each other,
docking where
servers) PatchDOCK can
feed output
directly into
FireDOCK.
4 FIREDOCK LncRNA- Focuses on http://bioinfo3d.cs.tau.ac.il/FireDock/ / (291
protein exploiting side
docking chain
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SI:No Resource

5 NPDOCK

6 HADDOCK

7 MPRDOCK

8 Hexserver

Resource
Type

server
(adapted
from
conventional
docking
servers)

Exclusively
INcRNA-
protein
docking
server,
developed
for nucleic
acid docking
only

LncRNA-
protein
docking
server
(adapted
from
conventional
docking
servers)

LncRNA-
protein
docking
server
(adapted
from
conventional
docking
servers)

LncRNA-
protein
docking

Advantages
and

Disadvantages

information,
optimises the
minimum free
energy of the
IncRNA-protein
complex

Chains multiple
methods into a
pipeline of tools,
which
implement
mostly FFT-
based methods.

It averages
ambiguous
interaction
restraints, and it
can generalise
to multi-body
problems as
well as other
biomolecular
interactions,
optimises the
minimum free
energy of the
IncRNA-protein
complex

Exploits protein
flexibility by
applying FFT

and considering

sequence

homology of the
target of interest

to generate a
repertoire of
structures for
“ensemble
docking”

FFT-based
algorithm to
exploit shape

Weblink

http://genesilico.pl/NPDock /

https://wenmr.science.uu.nl/haddock?2.4/

http://huanglab.phys.hust.edu.cn/mprdock/

http://hexserver.loria.fr/

Reference
Paper

[24]
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Advantages

SI:No Resource Re_ls_ource and Weblink Re;erence
ype Disadvantages aper
server complementarity
(adapted as a feature for
from optimisation
conventional
docking
servers)

MPRDOCK exploits protein flexibility by applying FFT and considering sequence homology of the target of interest
to generate a repertoire of structures for “ensemble docking”. P3DOCK’s authors claim that by complementing free
docking and template-based docking strategies in a hybrid approach, a more accurate classification is possible.
Finally, NPDOCK does not use a hybrid or ensemble strategy, but chains multiple methods into a pipeline of tools,
which implement mostly FFT-based methods. The main advantage of using such ensemble methods is a generally
improved performance over single-strategy methods as the limitations of each individual method are

complemented.

With the exception of one or two methods such as HexServer, many of these algorithms are computationally
expensive and time-consuming (hours to days of real time) to run. Some methods, such as HexServer, require
advanced hardware such as GPUs and specialised software engineering tools. Biological molecules are complex
and dynamic, with their wide range of possible conformations as well as orientations greatly increasing the search
space for algorithms. The molecular docking community is mindful of this, and provides their software on publicly
accessible and user-friendly web servers for users to run these programs remotely, although time remains a

bottleneck for these workflows.

Their strategies can be divided into several broad categories, including graph methods, ensemble learning, matrix
factorisation and deep learning. LPI are commonly formulated as similarity matrices, which can then be easily
formulated as a matrix factorisation problem. Broader strategies incorporating matrix factorisation, such as
ensemble learning and methods which leverage multimodal data, appear to have consistently robust performance
26 Few deep learning models exist, but they both perform and generalise well in comparison to other methods,

and are likely to become more popular as they have become in other areas of biology.

Matrix factorisation is the most common way to formulate LPI for prediction algorithms, including LPI-FKLKRR
(IncRNA-protein interaction kernel ridge regression, based on fast kernel learning) 21 | pI-KTASLP (prediction of
IncRNA-protein interaction by semi-supervised link learning with multivariate information) 28] | PI-NRLMF (INcRNA-
protein interaction prediction by neighbourhood regularised logistic matrix factorisation) 29 | p|-INBRA (long non-
coding RNA—protein interaction prediction based on improved bipartite network recommender algorithm) 29 and
LPI-BNPRA (long non-coding RNA—protein interaction bipartite network projection recommended algorithm) (21
These methods share a common theme of formulating IncCRNA-protein interactions as a matrix factorisation
problem and using them in broader strategies, such as multiple kernel learning or recommender algorithms. In the

special case of LPI-FKLKRR, matrices are reformulated into kernels for direct optimisation with kernel ridge

https://encyclopedia.pub/entry/11656 7/12



LncRNA-Protein Interactions | Encyclopedia.pub

regression, increasing performance in the common scenario of class imbalance. LPI-INBRA is robust against false

positives, and LPI-BNPRA is effective on closely related species other than humans.

Some graph-based methods for LPI prediction are PBLPI (path-based IncRNA-protein interaction) [PBLPI] and
PLPIHS (predicting IncRNA-protein interactions using HeteSim scores) 2. PBLPI takes into account both
functional and semantic similarity between proteins, while PLPIHS uses a custom distance metric to unify co-
expression, INCRNA-protein interactions and protein—protein interaction scores to construct a network which is then
provided to a SVM classifier. In the case of PBLPI, a disadvantage is that prediction accuracy may be reduced due
to technical limitations, while in PLPIHS performance is improved by preserving information regarding the biological

network, taking into account IncRNA-protein interactions similar to the target.

Examples of hybrid and ensemble learning approaches are IRWNRLPI (integrating random walk and
neighbourhood regularised logistic matrix factorisation for INcRNA-protein interaction prediction) IRWNRPLI uses
IncRNA-protein interactions and IncRNA/protein sequence similarity as the input into a hybrid approach of random
walk and neighbourhood regularised logistic matrix factorisation. An important distinction between these two
methods is that GPLPI is trained on known plant IncRNA, and plant non-coding RNA have different properties
(some ncRNA lose function even with 1-2 nucleotide changes) to those of animal non-coding RNA B3, For this
model to be effective on non-plant organisms, retraining is likely necessary but viable due to the relatively higher

volume of data associated with animals, in particular humans [24],

DeepBind was one of the first applications of deep learning to predict nucleic acid—protein binding, and is
applicable to LPI. By reformulating the classical position weight matrix 32 as a convolutional kernel, it operates on
raw sequence data to provide a simple prediction score for a nucleic acid—protein interaction B8, Meanwhile,
DeepLPI feeds co-expression, sequence and structural data to a neural network optimised by a conditional random
field. Using isoform data makes DeepLPI the only method to date with the ability to predict IncRNA interaction with

different protein isoforms.

LPI-SKF uses an integrative approach where verified INcCRNA-protein interactions are used to build a network, and
similarity kernel fusion is used to integrate protein and IncRNA similarity scores before applying manifold learning.
PMKDN uses multiple features from IncRNA (nucleotide composition, expression levels) and protein (amino acid
subcategories) to build a similarity matrix for similarity network fusion with a nearest neighbour’s approach. Both
these methods have the advantages of being robust against noise and capable of interaction discovery, but like
most methods that express LPI as similarity matrices, they make a strong assumption that sequence homology
correlates with interactivity, which may not hold in all cases. While this gives LPI-MiRNA the ability to operate on
datasets without prior knowledge of IncRNA interactions, a different limitation is introduced of relying on known

MiRNA—-IncRNA and miRNA—protein interactions.

Although IncPro BZ and catRAPID 28 are older methods, these are featured in this manuscript because of their
historical significance. Although the authors noted limitations associated with data availability and computational

complexity at the time, this method became a template for many other machine learning methods, including those
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discussed in this manuscript. catRAPID does not apply machine learning, but instead constructs an interaction
matrix from known secondary structure and other molecular features. A major limitation of this approach is its

reliance on obsolete genomic data, which is expected to reduce prediction accuracy.

Not all methods can predict interactions for novel INcCRNA or proteins, and few methods generalise across species
(311391401 | p| prediction for different protein isoforms is also not an active area of prediction algorithm development,
with only one method having this functionality. Another limitation observed is that some methods exploit sequence
similarity as an intermediate metric for LPI prediction, particularly methods which formulate LPI as similarity
matrices. At the same time, we consider that small nucleotide changes in biological molecules can cause major
functional changes, which can potentially cause improperly trained prediction algorithms to produce misleading
results (41,

| 4. Future Directions

Computational surveying is not a substitute for experimental validation. However, as the intention of computational
modelling is to generate a subset of the most likely testable hypotheses for laboratory biologists, we believe that
developments in both the laboratory and computational fields will complement each other. With computational
modelling reducing the quantity of experiments required, and with the experimentally validated data generated as a
result, more efficient algorithms can be developed which further reinforces the developmental cycle. As a result,

biologists interested in LPI will gain access to more refined tools, allowing them to streamline their experiments.

| Additional reference:

[PBLPI]

e Zhang H, Ming Z, Fan C, Zhao Q, Liu H. A path-based computational model for long non-coding RNA-protein
interaction prediction. Genomics. 2020 Mar;112(2):1754-1760. doi: 10.1016/j.ygeno.2019.09.018. Epub 2019
Oct 19. PMID: 31639442.
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