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LncRNA can act as gene regulators, and like other epigenetic mechanisms are involved in numerous biological

processes. They achieve their regulatory function with their ability to interact with a wide range of biological

molecules, such as other nucleic acids and proteins. These lncRNA-protein interactions (LPI) are involved in many

biological pathways including development and disease. A variety of computational LPI predictors exist, each

applying different strategies to achieve their goals, and are dependent on a few biological databases containing

subsets of experimentally validated LPI. Most modern lncRNA-protein interaction (LPI) prediction algorithms use

machine learning approaches, where algorithms are trained on large datasets with attributes of interest.

LPI  lncRNA  ncRNA  protein  transcriptomics  molecular docking

machine learning  deep learning  databases

1. Introduction

Transcriptomics is the study of a complete set of RNA transcripts in a cell, measuring variable expression levels of

the genome under different conditions. Modern transcriptomics is performed with high-throughput sequencing to

investigate the function of genes and biological pathways, commonly with bioinformatics methods applying

differential gene expression analyses, splice site identification, transcript variant identification or determining

alternative promoter usage for protein-coding transcripts . A large proportion of the genome generates RNA

transcripts which do not directly code for protein products . In this review, we specifically consider the long non-

coding RNA (lncRNA) category of ncRNA and their interaction with proteins, an important functional mechanism of

lncRNA.

LncRNA can act as gene regulators, and like other epigenetic mechanisms are involved in numerous biological

processes. They achieve their regulatory function with their ability to interact with a wide range of biological

molecules, such as other nucleic acids and proteins , as well as with small molecules . Among their more direct

modes of action are sequestering and releasing transcripts to modulate gene expression, stabilising transcripts and

binding to DNA to sterically hinder transcription initiation . More indirectly, they can recruit proteins and other

molecules to form a functional complex, or act as a scaffold for targeted chromatin formation  (Figure 1).

Figure 1: The importance and cycle of identifying long non-coding RNA-protein interactions.
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We illustrate the importance of LPI in developmental and abiotic stress pathways with several examples

encompassing multiple distinct species. In the plant Arabidopsis thaliana, LPI control alternative splicing within the

nucleus by selectively displacing existing transcripts and subsequently altering root development . Response to

abiotic stress is also governed by LPI, as shown by an lncRNA recruiting histone methylases to suppress

Arabidopsis thaliana flowering during cold conditions . Dario renio LPI are also observed to interface with

transcription factors and other RNA-binding proteins during embryonic development, although their exact

mechanism of action is not well known . LPI also act as mediators of other epigenetic mechanisms, for instance

as chromatin scaffolds to organise the three-dimensional structure of the genome in Mus musculus .

Due to the widespread involvement of LPI in epigenetics, dysregulation of certain LPI contributes to disease states,

particularly cancers. Severity of a human pancreatic cancer phenotype is driven by an lncRNA-protein complex,

which triggers a positive feedback loop of protein overexpression leading to poor patient outcomes . Similarly,

formation of an lncRNA-protein complex is associated with poorer prognosis in breast cancer , colon cancer 

and lymphoma  by blocking phosphorylation sites, stabilising other epigenetic factors and through an unknown

mechanism, respectively. Therefore, insight into LPI will be valuable in complex disease research, potentially

resulting in improved diagnosis and treatment procedures.

Multiple high-throughput laboratory assays were developed to investigate LPI, some of which will be briefly

discussed in this entry. Hence, computational methods are necessary to screen these high-throughput assays for

potential LPI which can then be subsequently experimentally validated, similar to transcriptomics workflows for

conventional protein-coding RNA A variety of these computational LPI predictors exist, each applying different

strategies to achieve their goals, and are dependent on a few biological databases containing subsets of

experimentally validated LPI. In this review, we will discuss recent bioinformatics resources for studying LPI, with

an emphasis on software and databases, together with their advantages as well as limitations.
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2. LncRNA-Protein Resource Databases

Starbase [39], POSTAR [40], RAIN [41], RNAInter [42], NPInter [43], ATtRACT [44] and oRNAment [45]  are

examples of databases that contain information associated with lncRNA-protein interactions obtained by the

previously discussed laboratory assays, computational analysis and literature mining. Two broad classes exist:

databases containing curated lncRNA-protein interactions and databases containing RNA-binding motifs (Table 1).

Table 1. A comparison of databases containing information on lncRNA-protein interactions. Important attributes of

these databases are listed (all weblinks are accessed on 27 May 2021).

Starbase, RNAInter, POSTAR, NPInter and RAIN all contain details of curated lncRNA-protein interactions, and

many additional attributes (including functional annotation) associated with the interactions, derived from a

combination of the laboratory assays discussed in the previous section (Table 1). These are not limited exclusively

to lncRNA, and contain various other pieces of interaction information, including interactions with other ncRNA,

other nucleic acids and proteins [36,37,38]. Starbase, POSTAR and RAIN contain LPI information from a small

number (two to four) of species, while RNAInter and NPInter host a wide range of species. To improve usability,

Starbase, RNAInter and RAIN feature third party tool integration to streamline bioinformatics workflows.

ATtRACT and oRNAment databases contain details of RBP (RNA-binding protein) motifs. While not directly

containing LPI, these can be applied to predict putative LPI and are a useful starting point or supplementary tool in

screening for LPI.

Database
names

Information
type

Information
available Species

Last
updated Links

ENCORI
(starBase) Interaction

RNA-RNA,
RNA-protein 23 2020 http://starbase.sysu.edu.cn/

POSTAR

RNA-protein
binding
motifs RNA-protein 6 2018 http://POSTAR.ncrnalab.org

RAIN Interaction
RNA-RNA,
RNA-protein 4 2017 https://rth.dk/resources/rain/

RNAInter Interaction

RNA-RNA,
RNA-protein,
RNA-DNA 154 2020 https://www.rna-society.org/rnainter/

NPInter Interaction

RNA-RNA,
DNA-DNA,
DNA-RNA,
RNA-protein,
DNA-protein 34 2019 http://bigdata.ibp.ac.cn/npinter4

ATtRACT

RNA-protein
binding
motifs RNA-protein 24 2016 http://attract.cnic.es

oRNAment

RNA-protein
binding
motifs RNA-protein 5 2019 http://rnabiology.ircm.qc.ca/oRNAment/
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We discovered that Starbase contains MALAT1–protein interactions supported by CLIP-seq evidence, whereas

POSTAR2 provides RNA- and RBP-centric information. RNAInter provides information associated with interacting

molecules, RNA editing, RNA structure, RNA localisation, RNA modification, evidence support (experimental

evidence) and references, interaction networks (the top 100 interactions) and dynamic expression for the major

lncRNAs. oRNAment consists of detailed information on transcripts and RBP along with numerous downloadable

graphical representations of the noted lncRNAs with multiple visualisation options. However, none of these

databases include any information on emerging lncRNAs such as Lassie and MaTAR25, further highlighting the

reliance of the community on these databases.

All databases feature at least mouse and human datasets, likely due to their status as model organisms relevant to

human disease, although some incorporate other model organisms as well. In summary, we discovered that there

is a surprising lack of specialised LPI databases, with most databases featuring combinations of other nucleic acid

and protein combinations. In a separate (unpublished) study we demonstrated that different isoforms of a lncRNA

genes can have different interactomes, and hence functions.

3. LPI Prediction Algorithms

Computational strategies for LPI prediction can be divided into two high-level categories, molecular docking and

machine learning. Lower-level subdivisions among the methods we surveyed include deep learning, tree-based

methods, graph-based methods, similarity networks, image segmentation, matrix factorisation and variants of the

Fourier transform. Within the past decade, a large number of prediction algorithms based on machine learning

have emerged. Instead, they exploit known interactions between lncRNA and protein and/or biomolecular

sequence information directly, although many also leverage known secondary structures to improve their

performance (Table 1, Table 2).

Before the current ecosystem of machine learning algorithms was established, molecular docking was the

dominant strategy used to predict and investigate LPI or RNA–protein interactions in general. Key factors

considered include docking pose, distance and area of interracial sites, energy-based criteria and selection of the

most structurally conserved docked complex . Several methods also account for sequence homology or

electrical charge between biological molecules . However, at a high level these strategies are applied in different

ways, and on different steric features.

Most of the molecular docking methods we reviewed use methods which incorporate at least two of the previously

discussed low-level methodologies (Table 2). To provide some context for the building blocks of these more

complex methods, we first present examples of methods that use an individual strategy together with a brief

discussion of their advantages and disadvantages, which include 3dRPC , HexServer , FireDOCK ,

HADDOCK  While FireDOCK focuses on exploiting side chain information, HADDOCK leverages ambiguous

interaction restraints, and is one of the few methods which has the advantage of being applicable to multi-body

problems as well as other biomolecular interactions. Among molecular docking tools, PatchDOCK takes a more
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unconventional strategy by summarising low-level geometric features into higher-level features, and has some

conceptual similarities to image segmentation.

Table 2. A comparison of molecular docking tools used to predict lncRNA-protein interactions. Important attributes

of these molecular docking tools, including their effectiveness and a link to their corresponding server, are listed (all

weblinks are accessed on 27 May 2021).

Sl:No Resource Resource
Type

Advantages
and

Disadvantages
Weblink Reference

Paper

1 P3DOCK

LncRNA–
protein
docking
server

(adapted
from

conventional
docking
servers)

Free docking
and template-
based docking
strategies in a

hybrid
approach,

results in an
accurate

classification

http://www.rnabinding.com/P3DOCK/P3DOCK.html

2 HDOCK

LncRNA–
protein
docking
server

(adapted
from

conventional
docking
servers)

Integrates
template-based

modelling as
well as ab initio
free docking,
with a scope

that extends to
both proteins
and nucleic

acids

http://hdock.phys.hust.edu.cn

3 PATCHDOCK

LncRNA–
protein
docking
server

(adapted
from

conventional
docking
servers)

Low-level
geometric

features into
higher-level

features,
FireDOCK and

PatchDOCK
both

complement
each other,

where
PatchDOCK can

feed output
directly into
FireDOCK.

https://bioinfo3d.cs.tau.ac.il/PatchDock/ /

4 FIREDOCK LncRNA–
protein
docking

Focuses on
exploiting side

chain

http://bioinfo3d.cs.tau.ac.il/FireDock/ /
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Sl:No Resource Resource
Type

Advantages
and

Disadvantages
Weblink Reference

Paper

server
(adapted

from
conventional

docking
servers)

information,
optimises the
minimum free
energy of the

lncRNA-protein
complex

5 NPDOCK

Exclusively
lncRNA-
protein
docking
server,

developed
for nucleic

acid docking
only

Chains multiple
methods into a

pipeline of tools,
which

implement
mostly FFT-

based methods.

http://genesilico.pl/NPDock /

6 HADDOCK

LncRNA–
protein
docking
server

(adapted
from

conventional
docking
servers)

It averages
ambiguous
interaction

restraints, and it
can generalise
to multi-body
problems as
well as other
biomolecular
interactions,
optimises the
minimum free
energy of the

lncRNA-protein
complex

https://wenmr.science.uu.nl/haddock2.4/

7 MPRDOCK

LncRNA–
protein
docking
server

(adapted
from

conventional
docking
servers)

Exploits protein
flexibility by

applying FFT
and considering

sequence
homology of the
target of interest

to generate a
repertoire of
structures for

“ensemble
docking”

http://huanglab.phys.hust.edu.cn/mprdock/

8 Hexserver LncRNA–
protein
docking

FFT-based
algorithm to

exploit shape

http://hexserver.loria.fr/
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MPRDOCK exploits protein flexibility by applying FFT and considering sequence homology of the target of interest

to generate a repertoire of structures for “ensemble docking”. P3DOCK’s authors claim that by complementing free

docking and template-based docking strategies in a hybrid approach, a more accurate classification is possible.

Finally, NPDOCK does not use a hybrid or ensemble strategy, but chains multiple methods into a pipeline of tools,

which implement mostly FFT-based methods. The main advantage of using such ensemble methods is a generally

improved performance over single-strategy methods as the limitations of each individual method are

complemented.

With the exception of one or two methods such as HexServer, many of these algorithms are computationally

expensive and time-consuming (hours to days of real time) to run. Some methods, such as HexServer, require

advanced hardware such as GPUs and specialised software engineering tools. Biological molecules are complex

and dynamic, with their wide range of possible conformations as well as orientations greatly increasing the search

space for algorithms. The molecular docking community is mindful of this, and provides their software on publicly

accessible and user-friendly web servers for users to run these programs remotely, although time remains a

bottleneck for these workflows.

Their strategies can be divided into several broad categories, including graph methods, ensemble learning, matrix

factorisation and deep learning. LPI are commonly formulated as similarity matrices, which can then be easily

formulated as a matrix factorisation problem. Broader strategies incorporating matrix factorisation, such as

ensemble learning and methods which leverage multimodal data, appear to have consistently robust performance

. Few deep learning models exist, but they both perform and generalise well in comparison to other methods,

and are likely to become more popular as they have become in other areas of biology.

Matrix factorisation is the most common way to formulate LPI for prediction algorithms, including LPI-FKLKRR

(lncRNA-protein interaction kernel ridge regression, based on fast kernel learning) , LPI-KTASLP (prediction of

lncRNA-protein interaction by semi-supervised link learning with multivariate information) , LPI-NRLMF (lncRNA-

protein interaction prediction by neighbourhood regularised logistic matrix factorisation) , LPI-INBRA (long non-

coding RNA–protein interaction prediction based on improved bipartite network recommender algorithm)  and

LPI-BNPRA (long non-coding RNA–protein interaction bipartite network projection recommended algorithm) .

These methods share a common theme of formulating lncRNA-protein interactions as a matrix factorisation

problem and using them in broader strategies, such as multiple kernel learning or recommender algorithms. In the

special case of LPI-FKLKRR, matrices are reformulated into kernels for direct optimisation with kernel ridge

Sl:No Resource Resource
Type

Advantages
and

Disadvantages
Weblink Reference

Paper

server
(adapted

from
conventional

docking
servers)

complementarity
as a feature for

optimisation
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regression, increasing performance in the common scenario of class imbalance. LPI-INBRA is robust against false

positives, and LPI-BNPRA is effective on closely related species other than humans.

Some graph-based methods for LPI prediction are PBLPI (path-based lncRNA-protein interaction) [PBLPI] and

PLPIHS (predicting lncRNA-protein interactions using HeteSim scores) . PBLPI takes into account both

functional and semantic similarity between proteins, while PLPIHS uses a custom distance metric to unify co-

expression, lncRNA-protein interactions and protein–protein interaction scores to construct a network which is then

provided to a SVM classifier. In the case of PBLPI, a disadvantage is that prediction accuracy may be reduced due

to technical limitations, while in PLPIHS performance is improved by preserving information regarding the biological

network, taking into account lncRNA-protein interactions similar to the target.

Examples of hybrid and ensemble learning approaches are IRWNRLPI (integrating random walk and

neighbourhood regularised logistic matrix factorisation for lncRNA-protein interaction prediction) IRWNRPLI uses

lncRNA-protein interactions and lncRNA/protein sequence similarity as the input into a hybrid approach of random

walk and neighbourhood regularised logistic matrix factorisation. An important distinction between these two

methods is that GPLPI is trained on known plant lncRNA, and plant non-coding RNA have different properties

(some ncRNA lose function even with 1–2 nucleotide changes) to those of animal non-coding RNA . For this

model to be effective on non-plant organisms, retraining is likely necessary but viable due to the relatively higher

volume of data associated with animals, in particular humans .

DeepBind was one of the first applications of deep learning to predict nucleic acid–protein binding, and is

applicable to LPI. By reformulating the classical position weight matrix  as a convolutional kernel, it operates on

raw sequence data to provide a simple prediction score for a nucleic acid–protein interaction . Meanwhile,

DeepLPI feeds co-expression, sequence and structural data to a neural network optimised by a conditional random

field. Using isoform data makes DeepLPI the only method to date with the ability to predict lncRNA interaction with

different protein isoforms.

LPI-SKF uses an integrative approach where verified lncRNA-protein interactions are used to build a network, and

similarity kernel fusion is used to integrate protein and lncRNA similarity scores before applying manifold learning.

PMKDN uses multiple features from lncRNA (nucleotide composition, expression levels) and protein (amino acid

subcategories) to build a similarity matrix for similarity network fusion with a nearest neighbour’s approach. Both

these methods have the advantages of being robust against noise and capable of interaction discovery, but like

most methods that express LPI as similarity matrices, they make a strong assumption that sequence homology

correlates with interactivity, which may not hold in all cases. While this gives LPI-MiRNA the ability to operate on

datasets without prior knowledge of lncRNA interactions, a different limitation is introduced of relying on known

miRNA–lncRNA and miRNA–protein interactions.

Although lncPro  and catRAPID  are older methods, these are featured in this manuscript because of their

historical significance. Although the authors noted limitations associated with data availability and computational

complexity at the time, this method became a template for many other machine learning methods, including those
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discussed in this manuscript. catRAPID does not apply machine learning, but instead constructs an interaction

matrix from known secondary structure and other molecular features. A major limitation of this approach is its

reliance on obsolete genomic data, which is expected to reduce prediction accuracy.

Not all methods can predict interactions for novel lncRNA or proteins, and few methods generalise across species

. LPI prediction for different protein isoforms is also not an active area of prediction algorithm development,

with only one method having this functionality. Another limitation observed is that some methods exploit sequence

similarity as an intermediate metric for LPI prediction, particularly methods which formulate LPI as similarity

matrices. At the same time, we consider that small nucleotide changes in biological molecules can cause major

functional changes, which can potentially cause improperly trained prediction algorithms to produce misleading

results .

4. Future Directions

Computational surveying is not a substitute for experimental validation. However, as the intention of computational

modelling is to generate a subset of the most likely testable hypotheses for laboratory biologists, we believe that

developments in both the laboratory and computational fields will complement each other. With computational

modelling reducing the quantity of experiments required, and with the experimentally validated data generated as a

result, more efficient algorithms can be developed which further reinforces the developmental cycle. As a result,

biologists interested in LPI will gain access to more refined tools, allowing them to streamline their experiments.

Additional reference:

[PBLPI]

Zhang H, Ming Z, Fan C, Zhao Q, Liu H. A path-based computational model for long non-coding RNA-protein

interaction prediction. Genomics. 2020 Mar;112(2):1754-1760. doi: 10.1016/j.ygeno.2019.09.018. Epub 2019

Oct 19. PMID: 31639442.
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