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Aquaporins (AQPs) are a family of membrane water channel proteins that control osmotically-driven water
transport across cell membranes. Recent studies have focused on the assessment of fluid flux regulation in relation
to the biological processes that maintain mesenchymal stem cell (MSC) physiology. In particular, AQPs seem to
regulate MSC proliferation through rapid regulation of the cell volume. Furthermore, several reports have shown
that AQPs play a crucial role in modulating MSC attachment to the extracellular matrix, their spread, and migration.
This review aims to describe the recent findings on AQPs role in MSCs physiology taking into account their
reflex for potential applicatio in regenerative medicine.

aguaporins water channel mesenchymal stem cells physiology

| 1. Introduction

Aquaporins (AQPs) are a family of transmembrane proteins that form water channels and work as regulators of
intra- and inter-cellular water transport L. To date, thirteen AQPs that are widely distributed in specific cell types of
various tissues have been characterised 2. The major roles of AQPs have been investigated in both physiological
and pathological conditions, and the results highlight their involvement in the transfer of water, gases, and small
solutes (urea and glycerol), to maintain cell homeostasis BI4I5, These proteins regulate many biological processes

through their intrinsic activity including cell proliferation, migration, apoptosis, and mitochondrial metabolism.

In addition, several studies have focused on the involvement of AQPs in intriguing aspects of cell biology and have

demonstrated that they are involved in a variety of physiological processes and pathophysiological conditions €]
81,

Here, we review the current understanding about the roles played by AQPs in mesenchymal stem cell (MSC)

functions and highlight their involvement in stem cell proliferation, migration, and differentiation.

Specific features of MSCs rely on their self-renewal ability, low immunogenicity, and the ability to migrate,
proliferate, and differentiate in different cell types 119, Notably, the biological activities associated with MSCs
migration and proliferation are of particular importance because they are involved in tissue regeneration. Following
tissue damage, MSCs are able to mobilise from the tissue of origin and migrate through the peripheral circulation to
the injured site, where they proliferate and differentiate, thus facilitating the healing process through the activation

of various mechanisms 111,
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Such processes require the orchestration of multiple signals induced by mechanical (hemodynamic forces applied
to the vessel walls through shear stress, vascular cyclic stretching, and extracellular matrix stiffness) and chemical
factors (chemokines, and growth factors), that can act simultaneously. MSCs can migrate through 3D tissue and
regulate forces that induce cell deformation and act on physical tissue constraints from the mechano-

microenvironment (2],

It has also been demonstrated that the tissue source, growth factors, ageing, the microenvironment, and hormones
can influence the MSC proliferation rate. In particular, in vitro and in vivo studies have shown that the tissue source
and aging affect the properties of MSCs, including their proliferative capacity, lifespan, and ability to differentiate
efficiently L3I14I15] |n addition, Zhu et al. observed that a hypoxic microenvironment can increase the proliferation
of placenta-derived MSCs via the mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase
(ERK) pathway 28], These aspects, along with the various growth factors, cytokines, exosomes, and microvesicles
secreted by MSCs 1718l should be taken into consideration when designing strategies to enable the efficient use

of MSCs for repairing dysfunctional organs.

| 2. AQPs

AQPs are a family of thirteen integral-membrane water channel proteins (AQPO to AQP12) found in humans,
animals, and plants. They can be classified into three main functional subfamilies based on their ability to facilitate
transport: AQPs, aquaglyceroporins, and a third family that is comprised of AQPs with uncharacterised functions
(191 (Table 1).

AQPO, AQP1, AQP2, AQP4, AQP5, AQP6, and AQP8 are considered as the classical water-specific channel
proteins. In contrast, AQP3, AQP7, AQP9, and AQP10, which belong to the aquaglyceroporins sub-family, are
characterised by their permeability to water, glycerol, urea, and a few small neutral solutes 22, AQP11 and AQP12
represent the most distantly related paralogs as they show low amino acid sequence identity with the other AQP

family members 21, These AQPs show non-canonical subcellular localisation and functions.

To date, two functional motifs, namely, Asn-Pro-Ala (NPA) [221[23124][25]) and the aromatic-arginine regions have
been identified in the AQP sequence. The NPA region, located in the middle of the channel, is involved in proton
exclusion and contributes to the localisation of AQPs to the plasma membrane (Figure 1). The aromatic-arginine
region acts as a selectivity filter on the extracellular side of the AQP channel and blocks the entry of molecules

larger than water.

AQPs are structurally organised as homotetramers, where each monomer (ranging from 26 to 34 kDa) is primarily
composed of six transmembrane domains such that both the amino- and carboxy-termini of the protein lie inside
the cell. The highly conserved NPA motifs are located in cytoplasmic loop B and in extracellular loop E 28, These
NPA motifs contribute to a monomeric pore structure that facilitates selective, bi-directional, and single-file transport

of water in the classical AQPs and water and glycerol in aquaglyceroporins 271,
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AQPs are mainly localised to the plasma membrane, and to a lesser extent in cytosolic compartments, where they
can be transported to the plasma membrane in response to hormones and kinase activation (28!, This localisation
allows AQPs to regulate distinct processes occurring in different cellular compartments. Studies performed in
humans and other animal species have shown that AQPs participate in a wide range of physiological functions,
including water/salt homeostasis, exocrine fluid secretion, and epidermal hydration. Moreover, AQPs contribute to
pathological conditions such as glaucoma, cancer, epilepsy, obesity in which water and small solute transport may
be involved. Of note, AQPs seem to act as modulators of adipocyte biology in obesity by facilitating glycerol
release from adipose tissue. Mechanisms associated with cell regulation as well as cell migration and signalling
have been linked to AQPs in cancer biology and metastasis development.

Molecular evidence has highlighted the importance of AQPs in facilitating multiple cellular processes such as (1)
transepithelial fluid flow regulated by osmotic water transport across cell membranes, (2) cell migration and
neuroexcitation, (3) cell proliferation mediated by glycerol transport, (4) adipocyte metabolism, and (5) epidermal

water retention 221,

In response to environmental stimuli, AQPs regulate the flow of water and small molecules including glycerol,

ammonia and urea in a tissue-specific manner to maintain their homeostasis (Table 2).

Figure 1. Schematic representation of the Asn-Pro-Ala (NPA) motif in the aquaporin (AQP) structure.

Table 1. Classification and permeability characteristics of AQPs.

Permeability

. NH; and/or .
AQP Classification Isoform H,O Glycerol NO H,0, ) Urea Uncertain
Ammonia
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AQPO + I I I + | 1
AQP1 + I + + + I /
AQP2 + / I I I I I
AQPs AQP4 + 1 + 1 1 1 !
AQP5 + I I + I I 1
AQP6 + + I I + + /
AQP8 + + I + + + I
AQP3 + + I + + + 1
AQP7 + + / 1 + + /
Aquaglyceroporins
AQP9 + + I + + + I
AQP10 + + I I + + I
AQP11 I I I I 1 1 +
Unorthodox-AQPs
AQP12 | I | | I ! +

Bold is refers to each subgroup of AQPs comprising a number of isoforms. The symbol + indicates that the specific

AQP isoform is permeable to the specific molecule indicated.

Table 2. Distribution and principal roles of AQPs in the main body tissues.
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Main
Tissue Localisation Aqp Isoform Main AQP Roles
References
- regulation of water homeostasis
Brain AQP1, AQP3, AQP4, AQP6 (20121
Q Q Q Q - control of osmotic pressure for
efficient axonal conductance
- water balance maintenance in
ocular tissues to ensure transparency
in cornea and lens, in corneal wound
Eye AQPO, AQP1, AQP3, AQP4,  healing (321[33]
AQP5,
- regulation of tear film osmolarity to
produce aqueous humor, and to
maintain retinal homeostasis
Reproductive Tract
- secretive (vagina) and
AQP1, AQP3, AQP4, AQP5,
absorptive processes (utero
Female AQP7, AQP8, AQP9, pave p (utero) (3411351
AQP10, AQP11 .
Q Q - maternal-fetal fluid exchange
AQP1, AQP2, AQP3, AQP6, - fluid regulation for
Male AQP7, AQP9, AQP11, spermatogenesis, spermatozoa (26][37]
AQP12 maturation and storage

- contribution to the transcellular

water flux across the endothelial

membranes
Heart AQP1, AQP3, AQP4, AQP6, [38][39]

AQP7, AQP9, AQP11 . . :
Q Q Q - involvement in the calcium
signaling machinery at level of the

cardiac and skeletal muscle
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- maintain normal urine
AQP1, AQP2, AQP3, AQP4, concentration function, tissue

Kidney [40][41]
AQP5, AQP6, AQP7, AQP11  development and substance
metabolism
Intestine
AQP1, AQP3, AQP4, AQP5, - involvement in fluid absorption o
Small _ [42]
AQPS8, AQP9, AQP10 and secretion

AQP1, AQP3, AQP4, AQPS5,

Large AQP6, AQP7, AQP8, AQP9, -regulation of water absorption [42]
AQP11

Liver AQP1, AQP3, AQP7, AQPS, - canalicular and ductal bile (43][44][45]
AQP9, AQP11 formation

- regulation via transcellular
pathway of water across the lung

Lung AQP1, AQP3, AQP4, AQP5 _ _ (48]
microvascular endothelium and

epithelia

. AQP1, AQP3, AQP4, AQPS5, ) )
Salivary glands AOPE -saliva secretion process [47][48]

AQP1, AQP3, AQP5, AQP9, -hydration, wound healing, and skin

skin , , , [49]
AQP10 epidermis homeostasis
AQP1, AQP3, AQP4, AQPS5, - contribution in secretion of

Stomach Q Q e Q ) ) 50]
AQP7,AQP11 gastric fluid

Bold indicates the tissue containing different Agp isoforms.
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Water and fluid transport across the cell membrane are an important prerequisite for maintaining cell homeostasis
and volume, which are factors that regulate several cell functions. Hoffmann and co-workers showed the
importance of AQPs in the biological processes associated with changes in cell volume such as migration,

inflammation, proliferation and cell death (1],

In particular, it has been observed that several factors (osmolality, modifications in the transmembrane ion

gradients that generate an osmotic imbalance) that regulate cell volume through AQPs also influence processes
that affect cell proliferation [B2I53]541[55][56]

Of note, many findings support the hypothesis that AQP expression correlates with the different phases of the cell
cycle BABEIBABABL The overexpression of AQP1 and AQP3 has been shown to affect the expression of essential
checkpoint proteins, such as cyclins, and modify the levels of transcription factors and cytokines (6283, Delporte et
al. B showed the involvement of AQP1 in the cell cycle regulation of an epithelial cell line. High levels of AQP1
MRNA and protein expression were found during the Gy/G; phase, whereas a significant decrease in mRNA and
protein expression was observed in the S and G,/M phases. Moreover, AQP2 expression has been shown to
accelerate the proliferation and cell cycle progression of the renal cortical collecting-duct cells by decreasing the

transit time through the S and G,/M phases, possibly by increasing the cell volume 69,

Additionally, the altered function of AQPs is often correlated with pathological conditions. Nephrogenic diabetes
insipidus and congenital cataracts are genetic diseases caused by loss-of-function mutations in AQPs [64163],
Pathogenic autoantibodies against astrocyte specific AQP4 contribute to the development of the neuroinflammatory
demyelinating disease, neuromyelitis optica 68 Recent studies have shown an association between AQP
polymorphisms and diseases such as cognition-related disorders, Alzheimer’s 82, and mesothelioma 881, While the
functional link between AQPs and these diseases needs to be investigated further, these data suggest that AQPs
can be used as potential biomarkers for severe and disabling diseases. Moreover, there is a great interest in the

development of therapeutic strategies using small-molecule modulators with the ability to target AQP function.

| 3. Physiological Roles of AQPs in Driving MSC Function

Research performed over the last decade has found that AQPs are expressed in several stem cell types, which
suggests their involvement in a variety of physiological processes BIlZ9 However, their exact functional role in
MSCs remains to be completely clarified, albeit some aspects of AQPs role in regulating MSC behaviour in certain
disorders (acute lung injury, hepatocarcinoma) have been studied using animal models of disease. These studies

have facilitated a better understanding of the molecular pathways underlying MSC involvement in these diseases
[71)[72][73]

The presence of AQPs in the apical membranes of different MSCs, their co-localisation with other systems such as
the Na*/K* ATP pump, and the effect of AQP inhibitors including HgCI2 and TEA suggest that AQPs may regulate
the migration and differentiation of MSCs 62, The involvement of AQPs in various aspects of stem cell biology is

related to their capacity to regulate the flux of fluids between the outer and inner cellular compartments to maintain
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homeostasis. Interestingly, the control of stem cell volume is an important prerequisite for the regulation of various

stem cell properties, including proliferation, migration and differentiation.

Experiments using human BM-MSCs demonstrated that the attachment, spread, and migration of stem cells are
accompanied by water efflux and cell volume reduction, which in turn, correlate with the strength of the attachment
(741 The introduction of the AQP1 gene increases the migration ability of MSCs. These results have been confirmed
by in vivo experiments showing that the injection of MSCs expressing AQPL1 in a rat tibia fracture model enhances
bone healing compared to the injection of non-transfected MSCs. This study suggests that the AQP1-mediated
improvement in MSC migration likely occurs through the modulation of B-catenin and FAK expression 2 (Table 3).
In addition, our recent findings highlight the crucial role played by AQP1 along with C-X-C chemokine receptor type
4 (CXCRA4) in regulating ovine MSC (oMSC) migration through the activation of the serine/threonine protein kinase

(Akt) and extracellular signal-regulated kinase (Erk) intracellular signal pathways 8 (Table 3).

Table 3. Involvement of AQPs in different aspects of stem cell biology in health and diseases.

Stem Cell Type Agp Isoform AQP Role Reference
AQP1 -Migration [Z5I[77]
MSCs
AQP1, AQP3, AQP4,
R R R . Differentiation [Z7](z8]
AQP7
progenitor MSC AQP3 - Differentiation [Z7]z9]
lioblastoma stem- - AQP9 involvement in the
g AQP4, AQP9 S 89
cell tumorigenicity process

roPa - Proliferation, migration and [81][82]

differentiation

NSCs - Mitochondrial volume .
AQP8 : . . - &
regulation during NSC differentiation

AQP9 . Differentiation (8]
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- Regulation of the balance -0
EPSCs AQP5 o _ o (9]
between proliferation and differentiation

- Proliferation and invasion

AQP3 [B4](85]
Q - Stemness, differentiation and
LCSCs apoptosis
- Possible role in inducin
AQP9 9 [86]
CSCs death
Lung CSCs AQP4 - Migration (87]
CSCs AQP4 - Migration (87]

Accumulating evidence has shown that AQPs are involved in the function of the brain and central nervous system
(CNS) by either maintaining water homeostasis or regulating cerebrospinal fluid secretion and absorption, as well
as fluid transport across neutrophils, cell volume regulation, and central osmo-reception B8, Among the AQPs,
AQP1 B AQp4 RUIBLI92] and AQP9 23194 play a central role in CNS-related diseases including cerebral oedema,

brain tumours and epilepsy.

More recently, further studies have demonstrated that alteration in AQPs expression is the main cause of water
balance dysregulation in the CNS at both the cellular and subcellular levels, and it is responsible for the
pathogenetic profile of different diseases such as focal oedemas, brain tumours, brain ischaemia, and traumatic
injuries [22IR8II97IB8] The prain water content and swelling of the astrocyte foot have been found to be significantly
reduced in a brain oedema mouse model that lacks AQP4 291,

AQPs seem to play a specific role during neurogenesis as neural stem cells (NSCs) are able to move considerable
amounts of water across the cell, thus rapidly changing the cell volume. La Porta et al. 3] (Table 3) showed that
AQP8 (localised in mitochondria) regulates water balance in adult NSCs (ANSCs) by mediating the osmotic
movement of water between the cytoplasm and the mitochondrial compartment. Interestingly, in vivo studies
carried out on rat models have reported similar localisation of AQP8 in other cells of the brain, which suggests a
possible role of this mitochondrial isoform in many physiological functions including metabolism and apoptosis, as
well as in the pathogenesis of neurological diseases such as Parkinson’s 199, Cavazzin et al. used molecular and
phenotypical characterisation to show that AQP4 and AQP9 expression is important in the differentiation of murine

ANSCs present in the subventricular zone (SVZ). In particular, immunohistochemistry analysis demonstrated that
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ANSC-derived glial cells express low levels of AQP4 and display high levels of glial fibrillary acidic protein (GFAP),
when astrocytes express high levels of AQP4 and low levels of GFAP. In contrast, while the occurrence of AQP9 is
limited to a few cells, those cells that express AQP4 and AQP9 also co-express GFAP. These differences in the
subcellular localisation of AQPs among the various ANSC-derived glial cells have led to the hypothesis that the
physiological activity of AQPs is cell-specific (Table 3). Li et al. 2% showed that AQP4 is involved in NSC
regulation and co-localises with gamma-aminobutyric acid A receptors (GABAARS) in the subependymal zone
(SEZ). This result is intriguing considering that the activation of GABAARs induces hyperpolarisation and osmotic
swelling in precursor cells, and thus promotes surface expression of the epidermal growth factor receptor and cell
cycle entry. Other studies have investigated the role played by AQP4 in the proliferation, migration, and
differentiation of ANSCs in vitro using AQP4-knockout mice. Evaluation of connexin 43 and Cav.1.2 expression
during the proliferation or differentiation of ANSCs showed that AQP4 in knockout mice causes significant
downregulation of the expression of these proteins, which highlights the involvement of AQP4 in the self-renewal,
migration and proliferation of ANSCs. In addition, the authors hypothesised that AQP4 regulates the migration of
ANSCs through a multi-step process involving: (1) Ca?* influx; (2) actin depolymerisation; (3) an increase in
cytoplasmic osmolality; (4) cell membrane expansion with subsequent protrusion formation, and (5) actin re-
polymerisation to stabilise the emerging protrusion. Taken together, these findings suggest that AQP4 can regulate

the fundamental properties of ANSCs through the Ca?*-related signalling pathway (Table 3).

The characterisation of the neural differentiation process of (Ad)-MSCs demonstrated the involvement of AQPs in
this process and suggested their role in helping the cells to achieve rapid regulation of the volume during
differentiation . In particular, immunohistochemistry, Western blotting, and RT-PCR-based data showed that
differentiated neuronal cells arising from sources other than Ad-MSCs, which express AQP1, also express AQP4,
and AQP7 based on the cell type, thus suggesting a correlation between neural differentiation and the AQP
expression profile during adult neurogenesis (Table 3). Ma and co-workers [292] underlined the importance of AQP5
in modulation of the BM-MSCs differentiation using a mouse model of bone fracture. Accordingly, they found that a
lack of AQPS5 significantly increases the levels of adipogenic, osteogenic, and chondrogenic differentiation markers
in mutant BM-MSCs. Notably, BM-MSCs derived from knockout mice treated with the apoptotic drug, paclitaxel
displayed an improvement in the bone healing process as well as a lower apoptosis rate, thus suggesting a
modulatory role of AQP5 in slowing down BM-MSC differentiation.

In a previous study, it was reported that AQP1 and AQP3 expression is modulated during human MSC
differentiation into chondrocytes. These studies showed that during MSC differentiation, AQP1 and AQP3
expression increases substantially and is associated with high concentrations of collagen type Il, aggrecan, and
lubricin, thus demonstrating the relationship between these channel proteins and chondrocyte- ECM adhesion and

migration (Table 3).

Recently, Chen et al. 2%showed that AQP1 is expressed in rat tendon stem/progenitor cells (TSPCs) and that this
expression is regulated during TSPC senescence through the JAK-STAT pathway. Similarly, Zhou J. et al. found
that AQP5 expression in human epidermal stem cells (EPSCs) decreases with skin ageing, suggesting that this

channel protein has a critical role in regulating the balance between proliferation and differentiation (Table 3).
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AQPs are also regarded as key modulators of cancer stem cells (CSCs). Recent studies have shown that high
levels of AQP expression in cancer cells and CSCs correlate with metastasis and resistance to therapies 194, |t
has been reported that AQP3 affects the Wnt/GSK-3[3/B-catenin pathway in liver CSCs (LCSCs), and modulates
their stemness, differentiation, and apoptosis. Other studies have identified AQP4 as the most abundant AQP in
nasopharyngeal and lung CSCs and have shown its involvement in the regulation of large volumetric changes
related to an increase in death rate 193 Using a novel electro-osmotic microfluidic system that controls cell
osmolarity gradients, AQP4 expression has been shown to be directly correlated with the speed of cell migration
(Table 3). In addition, when the expression of AQP4 is suppressed via siRNA, the CSC migration capability as well
as the expression of stemness biomarkers such as Sox-2 or Oct-4 are significantly reduced. Other studies have
shown that AQPO-AQP12 are highly expressed in human glioblastoma stem-like cell lines and primary tumours
[106][107] Fossdal et al. have described the involvement of AQP1, AQP4, and AQP9 in CSC function in glioblastoma
and observed an upregulation of AQP9 levels and a downregulation of AQP1 and AQP4 levels (Table 3). These

data indicate the specific role of AQP9 in facilitating CSC migration towards the surrounding normal tissues.
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