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Transforming growth factor beta (TGFB) is a pleiotropic cytokine known to be dysregulated in many neurodegenerative

disorders, including in amyotrophic lateral sclerosis (ALS). TGFB and its signaling pathway play multiple physiological

roles in the various cell types, which are affected in ALS pathogenesis. Data from literature and from our group also

demonstrated a crucial role of TGFB in the etiology and progression of ALS, leading us to hypothesize that an imbalance

of TGFB signaling, diminished at the pre-symptomatic stage and then increased with time, could be linked to ALS

progression. A reduced stimulation of the TGFB pathway at the beginning of the disease blocks its neuroprotective effects

and promotes glutamate excitotoxicity. At later disease stages, the persistent activation of the TGFB pathway promotes an

excessive microglial activation and strengthens muscular dysfunctions.
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Amyotrophic Lateral Sclerosis as a Non-Cell-Autonomous Disease

ALS is a disease affecting upper and lower motor neurons, with an incidence of 1–2/100,000 per year, and mean survival

of 3–5 years after diagnosis [1]. It is characterized by a progressive loss of motor neurons, but the precise pathological

mechanisms involved are not fully establishedas their complex interplay with neighboring and target cells. ALS is primarily

caused by the death of upper and lower motor neurons. Nevertheless, in the last 15 years, besides the main classical

“neuron-centric” view of ALS, a number of research studies evidenced that ALS could also be a non-cell-autonomous

disease [2,3]. Data have been mostly obtained using ALS mouse models, but they may also be linked to sporadic ALS

cases [4]. Glial and skeletal muscle cells demonstrated their ability to trigger or modulate ALS. The analysis of chimeric

mice indicated that the restricted expression of human mutant SOD1 (mutSOD1) in motor neuron is not sufficient to

induce a cell-autonomous degeneration of motor neurons [5]. Moreover, utilizing floxed mutSOD1 gene, it has been

demonstrated that the damaging process starts in motor neurons and determines the disease onset, with little influence

on its progression [2]. Conversely, mutSOD1 activates glial cells exacerbating the disease progression, while motor

neuronal mutSOD1 has little influence on the progression of ALS [2]. Astrocytes, microglia, oligodendrocytes, and

Schwann cells are all able to modulate ALS pathology, and gliosis is a hallmark of ALS (see, for review [6,7]). Activated

and proliferating astrocytes may no longer provide the metabolic support to motor neurons, and also become neurotoxic

by secreting cytokines or other toxic factors (among which is the TGFB) that are critical for determining the rate of disease

progression [8,9]. Furthermore, activated astrocytes reduce the expression of the excitatory amino acid transporter-2

(EAAT-2), that is mandatory for glutamate re-uptake from the synaptic cleft into astrocyte, leading to excitotoxicity in motor

neurons [10].The extent of microglia activation correlates with the severity of the upper motor neuron involvement [11].

Whether microglial cells are beneficial or detrimental to motor neurons is already an open question. In addition to

neighboring cells, motor neurons can also be influenced by their target, the skeletal muscle cells. It has been shown, at

least in familial ALS, a direct muscular toxicity and/or a functional impairment that has denervation and motor neuron

death as a consequence [12,13,14]. A contribution to the initiation and progression of muscle atrophy is given by altered

ALS satellite cell properties [15,16]. In addition, our previous works have indicated a dysfunctional protein quality control

system in ALS muscle cells, which seem more protected than motor neurons against the presence of accumulating

misfolded proteins [17,18,19].

TGFB Plasma Levels in ALS Patients
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TGFB1 plasma concentration in ALS patients is significantly higher than in the healthy controls, and it positively correlates

with the disease [20], but whether TGFB1 plasma level is a biomarker of ALS or not is still an open question.

TGFB and ALS-Nervous System

TGFBs have multiple functions in the CNS. They enhance synapse formation and synaptic transmission [21,22], regulate

synaptic plasticity and memory [23], increase the number and length of neurites [24], control neuronal migration [25], and

cerebral cortex angiogenesis [26]. CNS-TGFB1-deficient mice have reduced brain weight and loss of neurons in the CA1

hippocampal region.  These mice show a reduction of dendritic spine density, impaired long-term potentiation, and

facilitated long-term depression in the hippocampus, in addition to the loss of the astrocyte glutamate transporters GLT-1

(EAAT2) and GLAST (EAAT1), and decreased glutamate uptake, resulting in a higher sensibility to glutamate

excitotoxicity, that is one of the possible pathogenic mechanism in ALS [27]. Even if the comparative analysis of familial

ALS and sporadic ALS tissues indicates the existence of common and distinct biological mechanisms driving the different

forms of the pathology, an altered regulation of the TGFB1 pathway has been reported in motor neurons of most ALS

models and patients. Reduced Tgfb1 mRNA levels in the spinal cord of pre-symptomatic mutSOD1 mice could indicate a

lack of the TGFB neuroprotective effect in the early stages of the disease [28]. Indeed, levels of pSMAD2 in the nuclei of

lumbar motor neurons are significantly decreased at the pre-symptomatic stage, leading to the hypothesis of an aberrant

nucleo/cytoplasm transport [29,30]. The role of glia-derived TGFB1 in the spinal cord of ALS patients and mice has been

studied by Endo and colleagues [8]. They determined that astrocyte-derived TGFB1 accelerates disease progression in

ALS mice, preventing neuroprotective responses mediated by the microglia and T cells [8].

TGFB pathway in ALS skeletal muscle

In skeletal muscle, the expression of TGFB is related to normal processes such as growth, differentiation, regeneration,

and stress response. However, continuously elevated levels of TGFB are linked to impaired regeneration and atrophy.

TGFB blocks myogenic responses and stimulates fibrosis [31]. It inhibits the activation of MyoD and myogenin (two

transcription factors regulating muscle cell differentiation) through the signaling of SMAD3 or by inactivating cyclin-

dependent kinases [32,33]. Satellite cell activation is also prevented in the presence of TGFB, and muscle overexpression

of TGFB leads to muscle weakness and atrophy [34,35]. ALS muscle tissue is also characterized by alterations of the

TGFB pathway. We reported increased levels of the Tgfb1 mRNA in the muscle of mice expressing mutSOD1[36].

Notably, these changes are gender-related, since male mice present an increased TGFB expression in muscle already at

the pre-symptomatic stage, while in female animals, TGFB increases only at the symptomatic stage [28]. Tgfb mRNA

levels are further increased with the administration of an anabolic/androgenic steroid (nandrolone decanoate), indicating

that, at least at the muscular level, these molecules might exert a detrimental role in ALS, since it might exacerbate some

of the alterations induced by mutSOD1 [36,37]. Evidence in human confirmed the involvement of TGFB1 since we

reported an increased TGFB1 expression in muscle of female and male sporadic ALS patients with a significant gender

effect [28], and other authors also reported the increase of TGFB1, 2, and 3 in ALS patient muscles [38,39]. It must also

be highlighted that TGFB1 and TGFB3 mRNA show a negative correlation with muscle strength in ALS patients [39]. In

the same manner, the increase of TGFB1 correlates with disease progression in mutSOD1 mice [36].  It has also been

proposed that excessive oxidative processes may be a mechanism of activation of latent TGFB pool in ALS, as in other

neurodegenerative diseases, leading to an increased TGFB1 release from the complex [40].

TGFB and Neuro-Muscular Junction in ALS

Since the first histological studies, recurrent denervation and reinnervation have been observed in the NMJs of ALS

patients [41]. Because of that, it has been proposed to consider ALS also as a distal axonopathy, with pathological

changes occurring at the NMJs prior to motor neuron degeneration and muscle fiber atrophy (see, for review [42]). TGFB

pathway regulates the formation and stability of the NMJs. TGFB1 is capable of doubling the size of acetylcholine receptor

clusters increasing the percentage of nerve–muscle contacts. It has also been demonstrated that this synaptogenic effect

of TGFB1 might be ascribed to its ability to induce neuronal agrin expression [43]. Agrin is a proteoglycan important for

the maintenance of the architecture of the postsynaptic membrane and known to be down-regulated in the muscle of ALS

mice expressing mutSOD1 [13]. TGFB1 is highly concentrated at NMJs of pre-symptomatic mutSOD1 mice, and

represses the  expression of FGFBP1 (a factor that might potentiate the bioactivity of FGF family members during

reinnervation), indicating TGFB1 pathway as a potential target for preventing NMJ dismantling in ALS mice [44].

TGFB as a target for ALS treatment

The therapeutic potential of TGFB has been investigated. SB-431542, a selective inhibitor of TGFBRI kinase activity, has

been proven to extend the survival of mutSOD1 expressing mouse, even if administered after disease onset [8].

Moreover, the intraperitoneal injection of TGFB2 in the same mouse model is able to reverse initial muscle weakness,

permitting a better performance at rotarod test, probably through a marked trophic action on motor neurons, as can be



inferred by motor neuron nuclei and axonal enlargement. Unfortunately, this amelioration is transient, leading to an even

more rapid progression of the disease [45]. Antibodies neutralizing myostatin delayed the onset and the progression of the

disease in ALS mice, even if without extending their survival [46,47].

Conclusions

The imbalance of TGFB signaling has been linked to ALS progression and may have selective impact on different body

districts. In the CNS, there is a lack of the neuroprotective effects of TGFB at the first stages of the disease; later, the

strong increase of TGFB levels due to microglial stimulation shifts the CNS milieu toward a proinflammatory and

neurotoxic environment. In the skeletal muscle, the chronically increased TGFB signaling facilitates the development of

atrophy and fibrosis in skeletal muscle fiber, and the process of NMJ dismantling.  
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