Techniques for Dealcoholization of Wines

Subjects: Food Science & Technology | Microbiology

Contributor: Faisal Sam

To adapt to the trends in wine styles, and the effect of climate change on wine alcohol content, different techniques have
been used at the various stages of winemaking, among which the physical dealcoholization techniques, particularly
membrane separation (nanofiltration, reverse osmosis, evaporative perstraction, and pervaporation) and thermal
distillation (vacuum distillation and spinning cone column), have shown promising results and hence are being used for
commercial production.
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| 1. Introduction

Wine is an alcoholic beverage popularly produced from fermented grape juice. Wines can be classified as red, rose (pink),
or white based on their color, and they can also be classified as table (red, rose, or white), sparkling, or fortified based on
their alcohol level or carbon dioxide content . Table wines are wines that are neither fortified nor sparkling and are
typically served with food . Fortified wines are made by adding alcohol (usually between 16% and 23%) RE2IE! wines
can also be classified based on how much carbon dioxide they contain. Those that contain carbon dioxide (about 10 g/L
CO,) 4 are classified as sparkling wines, while those that do not contain carbon dioxide are classified as “still” wines &,
The carbon dioxide can be produced naturally during fermentation or added artificially. Based on alcoholic content, wines
can further be classified as alcohol-free (< 0.5% v/v), low-alcohol (0.5% to 1.2% v/v), reduced-alcohol (1.2% to 5.5% or
6.5% v/v), lower-alcohol (5.5% to 10.5% v/v), and alcoholic wines (> 10.5% v/v) B8l |n addition, wines are also classified
according to their sugar content: dry (maximum of 4 g/L sugar), medium dry (between 4 g/L and 12 g/L sugar), semi-sweet
(between 12 g/L and 45 g/L sugar), and sweet (minimum of 45 g/L sugar) 1. However, these classifications are not explicit
and may vary between most wine producing countries and the applicable legislations. In the UK, for example, wines with
an alcohol content of 1.2% alcohol by volume (ABV) or less are classified as low alcohol wines, while wines with an
alcohol content of less than 0.5% ABV are referred to as non-alcoholic wines. In contrast, China classifies low alcohol
wines as wines with 1.0% to 7.0% ABV and non-alcoholic wines as wines with 0.5% to 1.0% ABV (&,

From several studies (in vitro and in vivo), there is a positive consent of the beneficial impact of wine consumption on
neurological diseases, cardiovascular disease, osteoporosis, diabetes, and longevity [QIALUIL2AML314] \When consumed in
adequate amounts and together with a meal, wine plays a vital role in mitigating oxidative stress and vascular endothelial
damage induced by a high-fat meal 131, According to Boban et al. 18, red wine consumption may help prevent heart
diseases as well as type two diabetes, allowing consumers to enjoy better health and an increased lifespan as they age. A
Chinese study on alcohol and mortality in middle-aged men discovered a 19% reduction in deaths with no more than two
drinks per day 8. Furthermore, a study conducted by Buettner and Skemp X4 on blue zones revealed adequate wine
intake as one of the nine lifestyle habits in populations around the world that are known for their long lifespan and healthy
aging. Despite the benefits associated with wine consumption, some consumers perceive wine to be harmful to human
health because it contains alcohol 18!,

High concentrations of ethanol in wine increase the sensation of hotness and bitterness, while decreasing acidity and
masking the sensitivity of certain essential aroma compounds such as esters, higher alcohols, and monoterpenes 1220
(21, Furthermore, high alcohol wines are subject to higher import duties and taxes in some countries 22, For example, in
the United States, wine with 14% alcohol or less is taxed at USD 1.07 per gallon, while wine with 14.1% to 21% alcohol is
taxed at USD 1.57 per gallon 23], There is a common view all over the world that the consumption of alcoholic wine should
lessen in favor of low or non-alcoholic wines 2411231281 Thijs is currently being witnessed globally as there is a growing
popularity of low- or non-alcoholic wines and beverages, particularly in Europe and North America
(www.factmr.com/report/4532/non-alcoholic-wine-market, accessed on 1 September 2021). Consumer preferences are
shifting with consumers in the non-alcoholic wine market wanting new product offerings and alternatives. There is also an



increasing percentage of the adult population seeking lower alcohol wines and beverages more frequently, which has
boosted non-alcoholic wine sales. This trend has prompted producers to introduce new non-alcoholic wine products with
fruity and floral notes. Additionally, the global non-alcoholic wine market size is valued at USD 20 billion with a compound
annual growth rate (CAGR) of over 45% in 2018 and is projected to increase at a remarkable CAGR of over 7% during the
forecast period (2019-2027), reaching a value pool of over USD 30 billion 24, According to another school of thought
(www.factmr.com/report/4532/non-alcoholic-wine-market, accessed on 1 September 2021), the global market will continue
to grow steadily, with a CAGR of 10.4% from 2021 to 2031, up from an 8.8% CAGR from 2016 to 2020. Therefore, for
wine producers to meet consumers’ demands and adapt to the rising non-alcoholic wine market, they need to produce
high-quality alcohol-free or low-alcoholic wines (Figure 1).
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Figure 1. Techniques for alcohol reduction in wines and fermented beverages.

| 2. Techniques for Wine Alcohol Reduction

A summary of some techniques commonly used for the dealcoholization of wines at the various stages (pre-fermentation
stage, fermentation stage, and post-fermentation stage) of wine production and their extent of ethanol removal is shown in
Table 1.

Table 1. Different techniques to reduce wine alcohol content in the several stages of wine production.



_ Ethanol Alcohol
Stage of Wine
: Removal Technology Content References
Production ]
Process Reduction
Viticultural practices (leaf area
ducti h t irriqati [27][28][29][30][31][32][33][34][35]
reduction, pre-harvest irrigation, Upto 206 vy  BSISZIssIsslotazaslias
application of growth regulators; [45]
reduction in photosynthetic activity)
Early fruit harvest and blends with [46][47][48][49][50][51][52][53](54]
Up to 3% viv [55][56]
Reduction of mature harvest
Pre-
. fermentable
fermentation sugars [51][52]53][57][58][59][60][61][62]
9 Dilution of grape must Up to 7% viv [63]
[64][65](66][67][68][69](70][71][72]
Filtration of must Up to 5% v/iv [z3]
Addition of enzyme (glucose Up to 4% viv BI74][75I 7617778179
oxidase)
[80][81][82][83][84][85][86][87][88]
Use of Non-Saccharomyces [89][90][91][92][93][94][95][96][97]
- Upto 2% VIV [98)[99][100][101][102]103][104]
cerevisiae yeasts [105][106][107][108][109][110]
. - ) Upto3.6%  [111[112][113][114][115][116][117]
Reduction of Use of modified yeast strains / [118][119][120][121][122]
Fermentation alcohol viv
production
Biomass reduction Up to 4% viv [123][124](125]
High
Arrested fermentation g _ (5)[126]
reduction
Nanofiltration (NF) Up to 4% v/v [67][127][128][129][130][131][132]
Up to 0.5% [22][133][134][130][135][136][137]
Reverse osmosis (RO 138
(RO) vlv or less =
Upto 0.5%  [133][139][140]138][141][142][143]
Osmotic distillation (OD) VIV of less [144][145][146]
. , Upt00.5%  psrnaginasisoyisiszyisa)
Post- Separation by Pervaporation (PV)
) v/v or less
fermentation membrane

Up to 1% viv

Vacuum distillation (VD)
or less

Up to 0.3%

Spinning cone column (SCC) U

154][155][156

157][158][159][160][161][162



_ Ethanol Alcohol
Stage of Wine
: Removal Technology Content References
Production ]
Process Reduction
Multi-stage membrane-based Up to 0.5% [70][136][163][L64][165][166]
systems v/v or less

| 3. Impact of Dealcoholization Techniques on Wine Quality
3.1. Impact on phenolic composition

The phenolic composition of wine is made up of flavonoids and non-flavonoids 167, Flavonoids include flavones, flavanols
((+)-catechin and (-)-epicatechin), flavonols (quercetin, myricetin, kaempferol, and rutin), anthocyanins, and
proanthocyanidins while non-flavonoids are mainly resveratrol (3,4,5-trihydroxystilbene), hydroxybenzoic acids (p-
hydroxybenzoic, vanillic, syringic, gallic, gentisic, salicylic, and protocatechuic acids), and hydroxycinnamic acids (caffeic,
coumaric, and ferulic acids) 286NN Regarding wine quality, especially red wine, phenolic compounds play
a vital role by contributing to organoleptic properties such as astringency and color 123, Health-wise, phenolic compounds
can be effective in the prevention of cardiovascular diseases LAILAILTE] Although changes in alcohol content do not

generally affect basic wine parameters such as density, pH, titratable acidity, and volatile acidity L8477 these changes
have been reported to influence wine phenolic compounds 144159II164][178] |mportant findings from some studies on the
phenolic composition of wines dealcoholized by physical dealcoholization methods are summarized in Table 2.

Table 2. Some reported changes in wine phenolic compounds using different dealcoholization processes.

Alcohol
Reduction
) Dealcoholization . .
Wine Type Reported Effects on Phenolic Composition Reference
Process Co
Cf (%
(%
v/v)
vIv)
6.0 Reduction in wine alcohol volume by a factor of
Red wine NF 12.0 4 0 4 leads to 2.5-3 times more anthocyanins and 128
' resveratrol in the wine concentrates
No significant differences were observed in total
anthocyanins and phenolic compounds for both
Cabernet . . :
i original and dealcoholized wines. Colour
Sauvignon— . o .
4.0- intensity increased by around 20% in 179
Merlot— RO 12.7 ) ) )
) 2.0 dealcoholized wines (due to the concentration
Tempranillo red
] effect from the removal of ethanol as well as the
wine
retention of anthocyanins by the membrane),
while the tonality diminished by around 15%
The total phenolic index, total proanthocyanidins,
and percentages of procyanidins,
prodelphinidins, and galloylation of partially
Cabernet 13.8 dealcoholized wines and the control wine
Sauvignon red RO 14.8 12' 8 remains almost unchanged and did not differ. 22
wine ' Control wine and partially dealcoholized wines

have statistically similar total anthocyanin
concentrations with no observed color
differences between these wines



Wine Type

Dealcoholization
Process

Alcohol
Reduction

Co
(%
vIv)

Cf (%
VIV)

Reported Effects on Phenolic Composition

Reference

Grenache—
Carignan red
wine

Montepulciano
d’Abruzzo red
wine

Aglianico red
wine

Aglianico red
wine

Merlot red wine

RO

RO

OD/EP

OD/EP

OD/EP

15.1-
141

16.2

13.2 9.0

4.9-
0.4

12.8

13.5-
10.8

15.4

11.1-
8.9

13.8

The total phenolic index and total
proanthocyanidins of partially dealcoholized
wines and the control wine remain almost
unchanged and do not differ. Slight but
statistically significant differences were observed
in the percentages of procyanidins,
prodelphinidins, and galloylation during alcohol
reduction. Total anthocyanin concentrations of
partially dealcoholized wines were statistically
significantly higher than that of the control wine

Increase in total phenols and decrease in total
anthocyanins during ethanol reduction in wine
samples. Color intensity increases during
ethanol removal

Higher amount of total phenols in dealcoholized
wine samples compared to the original wine.
Color intensity decreased slightly at the end of
dealcoholization

The alcohol removal process did not affect the
content of vanillin reactive flavans and total
phenolics. A loss of 49% of total monomeric

anthocyanins was observed after
dealcoholization while total anthocyanins
remained almost unchanged with no significant
differences. Color parameters of dealcoholized
wines were not significantly different compared
to the original wine after alcohol removal

The alcohol removal process did not affect the
content of vanillin reactive flavans and total
phenolics. A loss of 57% of total monomeric

anthocyanins was observed after
dealcoholization while total anthocyanins
remained almost unchanged with no significant
differences. Color parameters of dealcoholized
wines were not significantly different compared
to the original wine after alcohol removal

138

144

144



Alcohol

Reduction
i Dealcoholization . -
Wine Type Reported Effects on Phenolic Composition Reference
Process Co
Cf (%
(%
VIV)
vIv)
The alcohol removal process did not affect the
content of vanillin reactive flavans and total
phenolics. A loss of 52% of total monomeric
o anthocyanins was observed after
Piedirosso red 11.5- o ) ) 144
) OD/EP 13.6 8.4 dealcoholization while total anthocyanins
wine .
remained almost unchanged with no significant
differences. Color parameters of dealcoholized
wines were not significantly different compared
to the original wine after alcohol removal
Adliani d No significant differences between base wine
ianico re
g , OD/EP 125 10.6 and dealcoholized wine in terms of total 146
wine
polyphenols and color intensity
Higher contents of total anthocyanins and total
flavonoids compared to the original wine. Color:
Barbera red wine OD/EP 152 5.0 the intensity increases and the hue decreases 155
(loss of orange notes) due to the increased
content of total anthocyanins
Higher contents of total anthocyanins and total
. flavonoids compared to the original wine. Color:
Langhe Rosé . T 155
) OD/EP 13.2 5.0 the intensity increases and the hue decreases
wine .
(loss of orange notes) due to the increased
content of total anthocyanins
Higher contents of total anthocyanins and total
Verduno flavonoids compared to the original wine. Color:
Pelaverga red OD/EP 146 5.0 the intensity increases and the hue decreases 155
wine (loss of orange notes) due to the increased
content of total anthocyanins
At different alcohol content levels of wines, the
Falanghina white 9.8- total phenols and flavonoids do not differ 140
_ OD/EP 125 o ,
wine 0.3 significantly as they remain almost unchanged
during the alcohol removal process
Both total phenols and total anthocyanins
Montepulciano 8.3 decrease in dealcoholized wines with no
d’Abruzzo red OD/EP 13.2 5 4 significant differences compared to the original 138]

wine

wine. The color intensity remains almost
unchanged during ethanol removal



Alcohol

Reduction
i Dealcoholization . -
Wine Type Reported Effects on Phenolic Composition Reference
Process Co
Cf (%
(%
VIV)
vIv)
Flavonoids and phenolic compounds remain
) almost unchanged in all dealcoholized samples
Montepulciano 8.3 d1othe b . ith ianificant
3— compared to the base wine with no significan
d'Abruzzo red OD/EP 132 P e wine g (139
) 2.7 differences. Color intensity (evaluated by
wine
flavonoids and phenolic compounds) decrease
slightly in all dealcoholized samples
Higher contents of total anthocyanins and total
R flavonoids compared to the original wine. Color
Langhe Rosé ] o [155]
) VD 13.2 5.0 the intensity increases and the hue decreases
wine
(loss of orange notes) due to the increased
content of total anthocyanins
Higher contents of total anthocyanins and total
flavonoids compared to the original wine. Color:
Barbera red wine VD 152 5.0 the intensity increases and the hue decreases 155
(loss of orange notes) due to the increased
content of total anthocyanins
Higher contents of total anthocyanins and total
Verduno flavonoids compared to the original wine. Color
Pelaverga red VD 146 50 the intensity increases and the hue decreases 155
wine (loss of orange notes) due to the increased
content of total anthocyanins
Increase in phenolic compounds, total phenolic,
. flavonol, tartaric ester, and anthocyanin contents 159
Red wine SCC 140 <0.3 . .
by approximately 24%. Higher content of
resveratrol than the original wine
Increase in phenolic compounds, total phenolic,
. flavonol, tartaric ester, and anthocyanin contents 159
Rose wine SCC 140 <0.3 . )
by approximately 24%. Higher content of
resveratrol than the original wine
) ) Increase in phenolic compounds content by [159]
White wine SCC 140 <0.3 )
approximately 24%
Montepulciano 71 Total phenols increase while total anthocyanins
d'Abruzzo red RO-OD/EP 13.2 5 5 decrease in the dealcoholized wine samples. (138]
wine (cv.) ' Color intensity increases during ethanol removal
Cabernet Significantly increase in color intensity due to
Sauvignon red RO-OD/EP 14.1 12,5 increased content of anthocyanins during alcohol 164

wine

reduction compared to the base wine



Alcohol

Reduction
i Dealcoholization . -
Wine Type Reported Effects on Phenolic Composition Reference
Process Co

Cf (%

(%
VIV)

vIv)

Increase in color intensity due to increased
Shiraz red wine RO-OD/EP 152 12.6  content of anthocyanins during alcohol reduction =41

compared to the base wine

Co = original alcohol content; Cf = final alcohol content; NF = nanofiltration; RO = reverse osmosis; OD = osmotic
distillation; EP = evaporative perstraction; VD = vacuum distillation; SCC = spinning cone column.

The dealcoholization of white, rose, and red wines by SCC distillation at pilot plant scale was reported to cause minimal
damage to phenolic compounds such as flavonols, tartaric esters, stilbenes (specifically trans- and cis- resveratrol),
flavonols (i.e., rutin, quercetin, and myricetin), flavan-3-ols (mainly (+)-catechin and (-)-epicatechin), anthocyanins (in
particular malvidin 3-glucoside), and non-flavonoids (including gallic, caffeic, and p-coumaric acids) 159, Additionally, the
technique increased the concentrations of these compounds in the wines after dealcoholization 222, Phenolic compounds
such as polyphenols and anthocyanins were not lost during the dealcoholization (at 5% v/v ethanol) of Rosé, Pelaverga,
and Barbera red wines using a membrane contactor and VD method 124, Recently, Liguori et al. 129 studied the main
quality parameters of white wine (cv Falanghina, 12.5% v/v) dealcoholized at different ethanol concentration levels
ranging from 9.8% to 0.3% by an osmotic distillation process. There were no significant differences in flavonoids, total
phenols, total acidity, and organic acids between the wine samples at different alcohol content levels. Similar results were
obtained in a red wine dealcoholized at different alcohol levels 139, Furthermore, when RO-EP treatment was used in the
partial dealcoholization (i.e., a reduction of 0.5% to 5.0% ABV) of red wine, it resulted in increased phenolics, color
intensity, and organic acids 84l In contrast, a significant change in the color of red wines dealcoholized by RO was
observed 179, The increase in phenolic compounds in wine, particularly anthocyanins, after dealcoholization noted in
most of these studies may be due to reduced precipitation of wine tartrate salts 22, as wine tartrate salts can absorb
polyphenols 81, |t has also been reported that dealcoholization at a low temperature (20 °C) can lead to higher retention
of polyphenols in wine (1281 |n addition, the increment can be attributed to the concentration effect produced by the

removal of ethanol from the wine 1391,

3.2. Impact on Volatile Composition

The composition of volatile compounds influences the overall aroma and flavor of wine [182I[183][184][185][186] \yjine contains
over 1000 volatile compounds of various chemical classes (alcohols, esters, fatty acids, aldehydes, terpenes, ketones,
and sulfur compounds), and wine fermentation produces approximately 400 volatile compounds (87 During
dealcoholization, the removal of alcohol from wine is usually accompanied by the removal of water and some volatile
compounds as well 188 Table 3 summarizes some findings regarding the volatile composition of wines during the
dealcoholization process. In the case of membrane contactor techniques such as RO, NF, PV, and OD that use a
membrane for ethanol removal, a greater pressure difference across the membrane than the osmotic pressure difference
causes ethanol and water from the wine to pass through the membrane 157,

Table 3. Some reported changes in wine volatile compounds using different dealcoholization processes.



Sampling and

Alcohol . L .
. Volatile Composition Analytical
Reduction
Method
Dealcoholization ) Operating
Wine Type Membrane . Reference
Process Mode/Conditions Estimated
Co
% Cf (% Volatile Average
’ Viv) Compounds Losses
viv)
(%)
Diethyl
Batch retentate— succinate 24
recycling mode _ _
White model 2-phenyl 2.9 HS/SPME- 130
) TORAY-UB70 120 84 ethanol
wine T=15 GC/IMS
12.6
_ cis—3—-hexenol
NF P=10 117
Isovaleric acid
Polyamide, T=30
- Total volatile
Red Wine NF9, Alfa 120 91 30.0 GC-FID 189
P=16 aroma**
Laval
Diethyl
. v 0.6-1.6
Batch retentate— succinate
recycling mode 2.5-8.5
_ _ yemns 2-phenyl- HS/SPME— 130
Model wine Osmonics—-SE T=15 120 84 ethanol 7.8-11 GCIMS
P =17-29 cis—3-hexenol 11.9—
o 18.1
Isovaleric acid
Cellulose T=30-C
RO Red Wine acetate, 120 84  Total aroma** 90.0 GC-FID [189]
CA995PE P=16
Alcohols 30.0
T=10 Acids 22.0
Montepulciano
RO membrane SPME- 138]
d’Abruzzo red P=ns 13.2 9.0 Esters 8.0
. (100 DA) GC/IMS
wine
Time = 40 Phenols 13.0

Lactones 14.0




Sampling and

Alcohol . L .
. Volatile Composition Analytical
Reduction
Method
Dealcoholization ) Operating
Wine Type Membrane . Reference
Process Mode/Conditions Estimated
Co
% Cf (% Volatile Average
’ Viv) Compounds Losses
viv)
(%)
OD/EP Qf = 0.053
Polyvinylidene Isoamyl
Y Y Qs =0.093 Y 44.0
Model wine ~ fluoride (PVDF) 130 81 alcohol GC-FID (100)
T=30 70.0
Memcor Ethyl acetate
Time = 60
49.5—
98.9
Higher
alcohols 60.5-
Qf =0.07 08.7
) Liqui—Cel 0.5 x Qs=0.14 Acids
Falanghina ' 9.8— 71.5— LE-GC/MS,
angn! 1, PP hollow 125 (140]
white wine X T=10 0.3 Esters 99.0 LE-GC/FID
fiber =
Time = 240 Ketones 67.1-
99.9
lactones
73.6—
98.2
Isoamyl
Qf =10 acetate
27.0
Ethyl
Qs =10
Xarelo white Liqui—Cel hexanoate 37.0 142
) ExtraFl T = room 11.5 101 SBSE-GC/MS
wine XxtraFlow Ethyl 28.0
temperature
octanoate
) 24.0
Time =20
Ethyl
decanoate
12.6—
32.2
Qf=0.2 Alcohols
5.6-16.4
PTFE hollow - i
Soave white . Qs=02 Acids [201]
i fiber (Teflon, ns * 34.0 SPE-GC/MS
wine Verona, Italy) T=20 Esters o
- aly 58.4
Time =ns Terpenes
22.0-

26.0



Sampling and

Alcohol . L .
. Volatile Composition Analytical
Reduction
Method
Dealcoholization ) Operating
Wine Type Membrane . Reference
Process Mode/Conditions Estimated
Co
% Cf (% Volatile Average
’ Viv) Compounds Losses
viv)
(%)
8.9-25.8
Qf=0.2 Alcohols
8.0-15.8
o PTFE hollow Qs=0.2 Acids
Verdicchio )
o fiber (Teflon, ns * 40.0- SPE-GC/MS [191]
white wine Verona, ltaly) T=20 Esters 54.1
Time = ns Terpenes 21.0-
28.0
8.4-31.8
Alcohols
42.9-
Esters 60.9
Qf = 0.583 .
Acids 12.5-
- Liqui-Cel Qs=0.183 17.1
Aglianico red ) 11.6— Terpenes )
g ) Extra—flow, PP 13.8 os P SPE-GC/MS [133)
wine .
hollow fiber T=20 Others: 13.8-
) 32.3
Time =283 Benzaldehyde
55.3—
7 65.9
Butyrolactone
4.5-13.6
Alcohols
9.2-13.7
Esters
33.8-
Acids
Qf=0583 50.6
- Terpenes _
Liqui—Cel - 11-18.5
Aglianico red . Qs=0.183 13.5- [133]
. Extra—flow, PP 155 Others: SPE-GC/MS
wine ) T=20 10.8 ers: 3.6-14.5
hollow fiber =
Benzaldehyde
Time = 283 v nf
7= 12.9
Butyrolactone
Unc

Vitispirane



Sampling and

Alcohol . L .
. Volatile Composition Analytical
Reduction
Method
Dealcoholization ) Operating
Wine Type Membrane . Reference
Process Mode/Conditions Estimated
Co
% Cf (% Volatile Average
’ Viv) Compounds Losses
viv)
(%)
57.9—
Alcohols 99.9
Acids 23.6—
78.9
Qf =0.07 Esters
12.8—
Liqui—Cel = Sulfur
Aglianico red d Qs=0.14 6.5- 89.9 LE-GC/MS, L
. 0.5x1, PP 13.0 compounds
wine . T=20 0.2 LE-GC/FID
hollow fiber = 2.1-78.7
Phenols
Time = 255 66.7-100
Ketones and
lactones 23.6—
97.9
Aldehydes
unc-100
Ethyl acetate
Isoamyl
acetate 37.4
Isoamyl 34.9
Qf=58 alcohol
13.7
Liqui—Cel Qs=8.1
Merlot red : Ethyl HS/SPME-
) Extra—flow, PP 13.4 113 Y 33.0 (14
wine ) T=20 hexanoate GC/MS
hollow fiber
67.8
Time = 60 Ethyl
octanoate 14.5
Linalool 13.6
2—Phenylethyl
acetate
Qf=1.6
Polypropylene Alcohols 63.9
hollow fibers =
Barbera red Qs=08 . 165
. (JU.CLASS. 146 5.0 Acids 17.4 SPE-GC/FID
wine -
LTD, Verona, T=10
Italy) Esters 23.8

Time = 360



Sampling and

Alcohol . L .
. Volatile Composition Analytical
Reduction
Method
Dealcoholization ) Operating
Wine Type Membrane . Reference
Process Mode/Conditions Estimated
Co
% Cf (% Volatile Average
’ Viv) Compounds Losses
viv)
(%)
Qf=5.8
Isoamyl
Qs=5.8
Tempranillo Liqui—Cel alcohol 210 142
) T = room 13.3 9.0 SBSE-GC/MS
red wine ExtraFlow Ethyl 20.0
temperature
hexanoate
Time = 60
Qf=5
Isoamyl
Qs=5 i
Garnacha red Liqui-Cel acetate 24.0 142
. | T = room 139 93 SBSE-GC/MS
wine ExtraFlow Ethyl 36.0
temperature
hexanoate
Time = 60
Qf=1.6
Polypropylene Alcohols 59.9
Verduno hollow fibers Qs=0.8
Pelaverga red (JU.CLASS. 146 5.0 Acids 23.6 SPE-GC/FID =
wine LTD, Verona, T=10
Italy) Esters 45.2
v Time = 360
56.0—
84.0
Alcohols
) 18.0—
. Acids 23.0
Recycling mode
Esters 64.0—
Qf=15 85.0
Montepulciano Liqui—Cel .
P! q 8.3 Lactones SPE— LE— -
d’Abruzzo red 0.5x1, PP Qs=05 13.2 )y 110 COMSIEID [139]
wine hollow fiber ' Phenols )
T=10 37.0
Others:
Time = 240 11.0-
Benzaldehyde 37.0
a—Terpineol 2.0-26.0

5.0-49.0



Sampling and

Alcohol . L .
. Volatile Composition Analytical
Reduction
Method
Dealcoholization ) Operating
Wine Type Membrane . Reference
Process Mode/Conditions Estimated
Co
% Cf (% Volatile Average
’ Viv) Compounds Losses
viv)
(%)
2.0-3.0
Recycling mode Alcohols
18.0-
— s Qf=1.5 Acids 25.0
Montepulciano Liqui-Cel mini 63 SPME
d'Abruzzored ~Medule 1.7x5.5 Qs=0.5 132 Esters 15.0— 138
. 5.4 19.0 GC/MS
wine .
Membrana T=10 Phenols
5.0-10.0
Time =120 Lactones
7.0-25.0
Pol | Qf=1.6
olypropylene Alcohols 60.4
hollow fibers -
Langhe Rose Qs=08 . 165
X (JU.CLAS. 13.2 5.0 Acids 30.9 SPE-GCI/FID
wine —
LTD, Verona, T=10
Italy) Esters 47.8
y Time = 360
“Carrier gas
Tokaji mode” under
PERVAP.Sulzer i Total volatile Distillation/LE—
Harsleveld 1060 POMS atmospheric 135 g1 " 70.0 oS 147
aroma
white wine pressure
T =40-70
PV 19.7—-
_ 39.5
PDMS JS Batch operation Alcohols
Cabernet WSM-8040
. e ’ 12.7- [192]
Sauvignon red (JiuSi High— T=45 125 05 Acids GCIMS

i g 28.2

Co = original alcohoVéntent; & "fﬁ“i‘&!‘%lcohol”ggq)tggt; T = temperature; R = pressure; VP = vacuum pressure; PP =
) 2

|

polypropylene; ns = not specified; %?3 cchio white wine 1 = sample 1 of 3; Cabernet Sau%?g%g‘on red wine A = sample 1 of

5; OD = osmotic distillation; EP = evaporative perstraction; SCC = spinning cone column; NF = nanofiltration; RO =

reverse osmosis; PV = pervaporation, PDMS = polydimethylsiloxane; unc = unchanged; nf = not found; *ethanol content
removal between 2% and 4% v/v; **no values of the individual volatile aroma compound losses were provided; SPE =
solid phase extraction; GC = gas chromatography; MS = mass spectrometry; LE = liquid extraction; FID = flame ionization
detector; SBSE = stir bar sorptive extraction; HS = headspace; SPME = solid phase micro extraction; — means not
applicable. Units: Concentration = (%v/v); Vacuum pressure/Pressure = bar; Rejection = %; T = °C; Flowrate = L/min;
Time = min.

Several studies have reported on the use of membrane techniques in wine dealcoholization and their subsequent effect
on the dealcoholized wine volatile compositions 147[133][139][140)[130][135][138][145][155][190] A |ow alcohol content apple cider
was produced by RO with a polyamide membrane AFC99 in both batch and diafiltration configurations 1351, The process
was operated at 15 °C and 45 bar with a feed flow of 200 L h™%. During the batch configuration process, 50% of ethanol
was removed with an estimated loss of 77% of total higher alcohols, 20% of total aldehydes, 25% of total acids, and 25%
of total esters. In the diafiltration configuration, estimated losses of 96% total higher alcohols, 43% total aldehydes, 18.5%
total acids, and 28% total esters accompanied the removal of 75% ethanol. However, losses in these volatile compounds
were deemed insignificant in both configurations 132, Takacs et al. 147 ysed PV in the total dealcoholization of a Tokaji
Harslevell wine (13.11% v/v), resulting in a 70% loss of the total aroma compounds, but the loss of individual aroma
compounds was not reported. When Sun et al. 122 ysed PV technology to reduce the alcohol content of a Cabernet
Sauvignon red wine from 12.5% to 0.5%, they discovered losses of volatile compounds, specifically alcohols (40%), acids
(28%), and esters (99%). After dealcoholization with a polyvinylidene fluoride membrane, Varavuth et al. 199 found losses
of 47% to 70% and 23% to 44% of ethyl acetate and isoamyl alcohol, respectively, in a model wine solution. Diban et al.
(141] ysed the same polyvinylidene fluoride membrane to measure the losses of eight volatile compounds in wine and wine
model solution after a 2% v/v ethanol reduction, but only losses were observed in model solution after a 5% v/v ethanol
reduction. Furthermore, Belisario-Sanchez et al. 158 found that after dealcoholization by SCC, the total volatile aroma



compounds of Tempranillo red wine, Cabernet Sauvignon rose wine, and Chardonnay whigmMiiygnwere lost by
Alcohol

approximately 18%, 4%, and 9%, respectively. Reduction Volatile Composition Analytical
Method

Dm@mmmo%gg s volatile compounds @rer#tisg in the same way as ethanol. As a result, their original conents are
Id2PHiFing dealcohollzatlon due to vaporizati$A*&T8"difRiSion, (1381190 n addition, somESIB¥ERS of 296 to 3% have been
attributed to their adsorption onto the membrane 121, This is @gue to \tlh/élr Vzljj'limnéty for/\t\f?raﬂ?embrane and high volatility,
which allows them to pass through the membrane more‘”‘éasny Through a non- c(g\falent interaction between the

polyphenols and the aromatic ring of aromatic compounds, the non-volatile matrix of wine, particularly polyphenols, can

also aid in the stability and retention of volatile compounds 23], This best gxpigias why € 50% reduction in the ethanol
content of a 13% Rdwdégliethico wine by a membranelé:ontactor technlque did not affect the a7moun§PoEf Zé)pl%nyleth@pl in
the dealcoholized wigell43l However, when higher ethanol concentratlons Were removed, a drastic decrease in the 2-
phenylethanol concentration was observed, which was attributed to weaker$=? stackih%BCaused by the decrease in
ethanol content (7% v/v) of the wine.

Alcohols 53.6
Verduno

The opgsating copglifiers wsed during the dealcohplizagion praaess aam also hayesan impact.on the sremeannations dkavine
volatile compounds. ¥itthange in some operating conditions of an OD procesgétggch as '0‘{V9¢§in9 the temperature from 20
°C to 10 °C and changing the positions of the feed and stripping streams from a previous study 142! helped to decrease
the loss of volatile aroma compounds by about 2.8% during the dealcoholizatjgip,gf a 12.5% y/v white wine 249, From the
findings, it is evidegpigteatdhie physical technologies us{ed in thlegcéiealg%hollzatlon of wines C%’}, result in sgnlflcant Io?js of
volatile compounds die to the reduction in alcohol levels. However, the S|gn|f|cance and extent of the changes can also
depend on the operating conditions applied, the type of membrane used, and ¥#&"hon-volafie®matrix of the wine.

3.3. Impact on Sensory Characteristics Aliphatic

alcohols 98.0
Ethanol is the most abundant of the volatile compounds in wine and its concentration can influence the perception of wine

aroma and flavor as well as several mouthfeel and fa$te sensations [L41][L77][Z90/196F ngher3é)chanol concentrations in wine
typically enhance semsitividy to body,-bitterness, and hiognessiwbereas lower Icorhtl:entratloma.@an redecedhveperceptidin to
aroma, flavor, acidity, and astringency [ﬂ[—]@r%“%] Some studies have/§€&n condugted to investigate the sensory
quality of wines or wine model solutions during ethanol removal [L471[1301141][144][159)[160)[178][190][180] The sensory profile of
wine after partial or total dealcoholization is primarily determined by the amoléjehgn%fs alcohol7r1eomaining in the dealcoholized
wine L57I[191][1991[200] Tahle 4 summarizes the key findings from some of these studies on the sensory changes caused by

dealcoholization. T=130

Chardonnay " PME-
Table SkcSummary, gf.the main resutts of some \§tadiéd on thessendbry cRaAEe EauUsed By’the rem@g%@f ethanbftrom

wine by various dealcoholization processes. Time = 60

T=30 Alcohol
Tempranillo HS/SPME-
bra - VP = 0.04 ns  REAUCHOR qroman _18.0 158
o red wine Fi ndlngs on GC/IMS
Dealcoholization . Operatlng
Wine Type Membrane Tim —_____ Sensory Reference
Process Mode/Condmons Co o
Cf (% Characteristics
_ (%
T=30 vIv)
Cabernet viv)
) HS/SPME- 158
Sauvignon - VP =0.04 ns ns Total aroma** 1.0-4.0
) GCIMS
TOSE WINE ]
Time = 60 Increase in
Polyamide astringency
NF97, =30 and

- unbalanced
NF Red Wine NF99 HF 120 91 [189]

Alfa P=16 aroma and

taste due to
Laval alcohol

reduction
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Dealcoholization
Process

Wine Type

Membrane

Operating
Mode/Conditions

Alcohol
Reduction

Findings on
Sensory
Characteristics

Reference

Aglianico red
wine

Aglianico red
wine

Aglianico red
wine

Liqui-Cel
Extra-flow,
PP hollow

fiber

Liqui-Cel
Extra-flow

Liqui-Cel
Extra-flow,
PP hollow

fiber

Qf =0.583
Qs =0.183
T=20

Time = 283

Qf=ns
Qs =ns
T=ns

Time =180

Qf =0.583
Qs =0.183
T=20

Time = 283

11.6—
8.8

4.9-
0.4

13.5-
10.8

Decrease in
cherry, red
fruits, and

sweet notes.
Increase in

flowers notes
only within 2%

v/v reduction.
Increase in
grass and

cooked notes

and increase in
astringency

within 5% v/v

reduction.
Increase in
bitterness and
acid
sensations

within 3% v/v

reduction

Decrease in
sweet and
solvent aroma
series (due to
alcohol
reduction)
which
characterize
the wine

Decrease in
cherry, red
fruits, flowers,
and grass
notes.
Increase in
acid and
astringent
sensations

133

180

133
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Cf (%  Characteristics
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vIv)
vIv)
Increase in
acidity, a
Recycling mode decrease in
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Montepulciano Liqui-Cel spices notes,
8.3— . [139]
d’Abruzzo red 0.5x1, PP Qs =05 13.2 27 astringency,
wine hollow fiber ' bitterness, and
T=10
sweetness,
Time = 240 resulting in
lower
acceptability
PDMS JS- ioh )
WSM-8040  Batch operation High retention
Cabernet o of fruit aroma,
. (JiuSi High- : : 192
PV Sauvignon red Tech T=45 12.5 0.5 producing wine
] ech, .
Co = original alcohol coftdnt; cf = finahahgohol contgnt; J g5 temperature; P = press\’\(ﬁg;bwg vacuum pressure; PP =

o . . smell and taste T
polypropylene; ns = not specified; Cati@nagt Sauvignon red wine A = sample 1 01[“5; OD = osmotic distillation; EP

evaporative perstraction; SCC = spinning cone column; NF = nanofiltration; RO = reverse osmosis; PV = pervaporation;

PDMS = polydimethylsiloxane; unc = unchanged; *ethanol content removal between 24-and 4% v/v. Units: Corcentration

= (%v/v); Vacuum pressure/Pressure = bar; Rejection = %; T = °C; Flowrate = L/min; di@alFafoma
Chardonnay 14.6—

scc o - ns 14.9 ' intensity and 202]
white wine 12.9
hot mouthfeel
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