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To adapt to the trends in wine styles, and the effect of climate change on wine alcohol content, different techniques have

been used at the various stages of winemaking, among which the physical dealcoholization techniques, particularly

membrane separation (nanofiltration, reverse osmosis, evaporative perstraction, and pervaporation) and thermal

distillation (vacuum distillation and spinning cone column), have shown promising results and hence are being used for

commercial production.
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1. Introduction

Wine is an alcoholic beverage popularly produced from fermented grape juice. Wines can be classified as red, rose (pink),

or white based on their color, and they can also be classified as table (red, rose, or white), sparkling, or fortified based on

their alcohol level or carbon dioxide content . Table wines are wines that are neither fortified nor sparkling and are

typically served with food . Fortified wines are made by adding alcohol (usually between 16% and 23%) . Wines

can also be classified based on how much carbon dioxide they contain. Those that contain carbon dioxide (about 10 g/L

CO )  are classified as sparkling wines, while those that do not contain carbon dioxide are classified as “still” wines .

The carbon dioxide can be produced naturally during fermentation or added artificially. Based on alcoholic content, wines

can further be classified as alcohol-free (< 0.5% v/v), low-alcohol (0.5% to 1.2% v/v), reduced-alcohol (1.2% to 5.5% or

6.5% v/v), lower-alcohol (5.5% to 10.5% v/v), and alcoholic wines (> 10.5% v/v) . In addition, wines are also classified

according to their sugar content: dry (maximum of 4 g/L sugar), medium dry (between 4 g/L and 12 g/L sugar), semi-sweet

(between 12 g/L and 45 g/L sugar), and sweet (minimum of 45 g/L sugar) . However, these classifications are not explicit

and may vary between most wine producing countries and the applicable legislations. In the UK, for example, wines with

an alcohol content of 1.2% alcohol by volume (ABV) or less are classified as low alcohol wines, while wines with an

alcohol content of less than 0.5% ABV are referred to as non-alcoholic wines. In contrast, China classifies low alcohol

wines as wines with 1.0% to 7.0% ABV and non-alcoholic wines as wines with 0.5% to 1.0% ABV .

From several studies (in vitro and in vivo), there is a positive consent of the beneficial impact of wine consumption on

neurological diseases, cardiovascular disease, osteoporosis, diabetes, and longevity . When consumed in

adequate amounts and together with a meal, wine plays a vital role in mitigating oxidative stress and vascular endothelial

damage induced by a high-fat meal . According to Boban et al. , red wine consumption may help prevent heart

diseases as well as type two diabetes, allowing consumers to enjoy better health and an increased lifespan as they age. A

Chinese study on alcohol and mortality in middle-aged men discovered a 19% reduction in deaths with no more than two

drinks per day . Furthermore, a study conducted by Buettner and Skemp  on blue zones revealed adequate wine

intake as one of the nine lifestyle habits in populations around the world that are known for their long lifespan and healthy

aging. Despite the benefits associated with wine consumption, some consumers perceive wine to be harmful to human

health because it contains alcohol .

High concentrations of ethanol in wine increase the sensation of hotness and bitterness, while decreasing acidity and

masking the sensitivity of certain essential aroma compounds such as esters, higher alcohols, and monoterpenes 

. Furthermore, high alcohol wines are subject to higher import duties and taxes in some countries . For example, in

the United States, wine with 14% alcohol or less is taxed at USD 1.07 per gallon, while wine with 14.1% to 21% alcohol is

taxed at USD 1.57 per gallon . There is a common view all over the world that the consumption of alcoholic wine should

lessen in favor of low or non-alcoholic wines . This is currently being witnessed globally as there is a growing

popularity of low- or non-alcoholic wines and beverages, particularly in Europe and North America

(www.factmr.com/report/4532/non-alcoholic-wine-market, accessed on 1 September 2021). Consumer preferences are

shifting with consumers in the non-alcoholic wine market wanting new product offerings and alternatives. There is also an
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increasing percentage of the adult population seeking lower alcohol wines and beverages more frequently, which has

boosted non-alcoholic wine sales. This trend has prompted producers to introduce new non-alcoholic wine products with

fruity and floral notes. Additionally, the global non-alcoholic wine market size is valued at USD 20 billion with a compound

annual growth rate (CAGR) of over 45% in 2018 and is projected to increase at a remarkable CAGR of over 7% during the

forecast period (2019–2027), reaching a value pool of over USD 30 billion . According to another school of thought

(www.factmr.com/report/4532/non-alcoholic-wine-market, accessed on 1 September 2021), the global market will continue

to grow steadily, with a CAGR of 10.4% from 2021 to 2031, up from an 8.8% CAGR from 2016 to 2020. Therefore, for

wine producers to meet consumers’ demands and adapt to the rising non-alcoholic wine market, they need to produce

high-quality alcohol-free or low-alcoholic wines (Figure 1).

Figure 1. Techniques for alcohol reduction in wines and fermented beverages.

2. Techniques for Wine Alcohol Reduction

A summary of some techniques commonly used for the dealcoholization of wines at the various stages (pre-fermentation

stage, fermentation stage, and post-fermentation stage) of wine production and their extent of ethanol removal is shown in

Table 1.

Table 1. Different techniques to reduce wine alcohol content in the several stages of wine production.
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Stage of Wine

Production

Ethanol

Removal

Process

Technology

Alcohol

Content

Reduction

References

Pre-

fermentation

Reduction of

fermentable

sugars

Viticultural practices (leaf area

reduction, pre-harvest irrigation,

application of growth regulators;

reduction in photosynthetic activity)

Up to 2% v/v

Early fruit harvest and blends with

mature harvest
Up to 3% v/v

Dilution of grape must Up to 7% v/v

Filtration of must Up to 5% v/v

Addition of enzyme (glucose

oxidase)
Up to 4% v/v

Fermentation

Reduction of

alcohol

production

Use of Non-Saccharomyces
cerevisiae yeasts

Up to 2% v/v

Use of modified yeast strains
Up to 3.6%

v/v

Biomass reduction Up to 4% v/v

Arrested fermentation
High

reduction

Post-

fermentation

Separation by

membrane

Nanofiltration (NF) Up to 4% v/v

Reverse osmosis (RO)
Up to 0.5%

v/v or less

Osmotic distillation (OD)
Up to 0.5%

v/v or less

Pervaporation (PV)
Up to 0.5%

v/v or less

Vacuum distillation (VD)
Up to 1% v/v

or less

Spinning cone column (SCC)
Up to 0.3%

v/v
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Stage of Wine

Production

Ethanol

Removal

Process

Technology

Alcohol

Content

Reduction

References

Multi-stage membrane-based

systems

Up to 0.5%

v/v or less

3. Impact of Dealcoholization Techniques on Wine Quality
3.1. Impact on phenolic composition

The phenolic composition of wine is made up of flavonoids and non-flavonoids . Flavonoids include flavones, flavanols

((+)-catechin and (−)-epicatechin), flavonols (quercetin, myricetin, kaempferol, and rutin), anthocyanins, and

proanthocyanidins while non-flavonoids are mainly resveratrol (3,4,5-trihydroxystilbene), hydroxybenzoic acids (p-

hydroxybenzoic, vanillic, syringic, gallic, gentisic, salicylic, and protocatechuic acids), and hydroxycinnamic acids (caffeic,

coumaric, and ferulic acids) . Regarding wine quality, especially red wine, phenolic compounds play

a vital role by contributing to organoleptic properties such as astringency and color . Health-wise, phenolic compounds

can be effective in the prevention of cardiovascular diseases . Although changes in alcohol content do not

generally affect basic wine parameters such as density, pH, titratable acidity, and volatile acidity , these changes

have been reported to influence wine phenolic compounds . Important findings from some studies on the

phenolic composition of wines dealcoholized by physical dealcoholization methods are summarized in Table 2.

Table 2. Some reported changes in wine phenolic compounds using different dealcoholization processes.

Wine Type
Dealcoholization

Process

Alcohol

Reduction

Reported Effects on Phenolic Composition Reference
Co

(%

v/v)

Cf (%

v/v)

Red wine NF 12.0
6.0–

4.0

Reduction in wine alcohol volume by a factor of

4 leads to 2.5–3 times more anthocyanins and

resveratrol in the wine concentrates

Cabernet

Sauvignon–

Merlot–

Tempranillo red

wine

RO 12.7
4.0–

2.0

No significant differences were observed in total

anthocyanins and phenolic compounds for both

original and dealcoholized wines. Colour

intensity increased by around 20% in

dealcoholized wines (due to the concentration

effect from the removal of ethanol as well as the

retention of anthocyanins by the membrane),

while the tonality diminished by around 15%

Cabernet

Sauvignon red

wine

RO 14.8
13.8–

12.8

The total phenolic index, total proanthocyanidins,

and percentages of procyanidins,

prodelphinidins, and galloylation of partially

dealcoholized wines and the control wine

remains almost unchanged and did not differ.

Control wine and partially dealcoholized wines

have statistically similar total anthocyanin

concentrations with no observed color

differences between these wines

[70][136][163][164][165][166]

[167]

[29][168][169][170][171][172]

[173]

[174][175][176]

[164][177]

[144][159][164][178]

[128]

[179]

[22]



Wine Type
Dealcoholization

Process

Alcohol

Reduction

Reported Effects on Phenolic Composition Reference
Co

(%

v/v)

Cf (%

v/v)

Grenache–

Carignan red

wine

RO 16.2
15.1–

14.1

The total phenolic index and total

proanthocyanidins of partially dealcoholized

wines and the control wine remain almost

unchanged and do not differ. Slight but

statistically significant differences were observed

in the percentages of procyanidins,

prodelphinidins, and galloylation during alcohol

reduction. Total anthocyanin concentrations of

partially dealcoholized wines were statistically

significantly higher than that of the control wine

Montepulciano

d’Abruzzo red

wine

RO 13.2 9.0

Increase in total phenols and decrease in total

anthocyanins during ethanol reduction in wine

samples. Color intensity increases during

ethanol removal

Aglianico red

wine
OD/EP 12.8

4.9–

0.4

Higher amount of total phenols in dealcoholized

wine samples compared to the original wine.

Color intensity decreased slightly at the end of

dealcoholization

Aglianico red

wine
OD/EP 15.4

13.5–

10.8

The alcohol removal process did not affect the

content of vanillin reactive flavans and total

phenolics. A loss of 49% of total monomeric

anthocyanins was observed after

dealcoholization while total anthocyanins

remained almost unchanged with no significant

differences. Color parameters of dealcoholized

wines were not significantly different compared

to the original wine after alcohol removal

Merlot red wine OD/EP 13.8
11.1–

8.9

The alcohol removal process did not affect the

content of vanillin reactive flavans and total

phenolics. A loss of 57% of total monomeric

anthocyanins was observed after

dealcoholization while total anthocyanins

remained almost unchanged with no significant

differences. Color parameters of dealcoholized

wines were not significantly different compared

to the original wine after alcohol removal
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Wine Type
Dealcoholization

Process

Alcohol

Reduction

Reported Effects on Phenolic Composition Reference
Co

(%

v/v)

Cf (%

v/v)

Piedirosso red

wine
OD/EP 13.6

11.5–

8.4

The alcohol removal process did not affect the

content of vanillin reactive flavans and total

phenolics. A loss of 52% of total monomeric

anthocyanins was observed after

dealcoholization while total anthocyanins

remained almost unchanged with no significant

differences. Color parameters of dealcoholized

wines were not significantly different compared

to the original wine after alcohol removal

Aglianico red

wine
OD/EP 12.5 10.6

No significant differences between base wine

and dealcoholized wine in terms of total

polyphenols and color intensity

Barbera red wine OD/EP 15.2 5.0

Higher contents of total anthocyanins and total

flavonoids compared to the original wine. Color:

the intensity increases and the hue decreases

(loss of orange notes) due to the increased

content of total anthocyanins

Langhe Rosè

wine
OD/EP 13.2 5.0

Higher contents of total anthocyanins and total

flavonoids compared to the original wine. Color:

the intensity increases and the hue decreases

(loss of orange notes) due to the increased

content of total anthocyanins

Verduno

Pelaverga red

wine

OD/EP 14.6 5.0

Higher contents of total anthocyanins and total

flavonoids compared to the original wine. Color:

the intensity increases and the hue decreases

(loss of orange notes) due to the increased

content of total anthocyanins

Falanghina white

wine
OD/EP 12.5

9.8–

0.3

At different alcohol content levels of wines, the

total phenols and flavonoids do not differ

significantly as they remain almost unchanged

during the alcohol removal process

Montepulciano

d’Abruzzo red

wine

OD/EP 13.2
8.3–

5.4

Both total phenols and total anthocyanins

decrease in dealcoholized wines with no

significant differences compared to the original

wine. The color intensity remains almost

unchanged during ethanol removal
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Wine Type
Dealcoholization

Process

Alcohol

Reduction

Reported Effects on Phenolic Composition Reference
Co

(%

v/v)

Cf (%

v/v)

Montepulciano

d’Abruzzo red

wine

OD/EP 13.2
8.3–

2.7

Flavonoids and phenolic compounds remain

almost unchanged in all dealcoholized samples

compared to the base wine with no significant

differences. Color intensity (evaluated by

flavonoids and phenolic compounds) decrease

slightly in all dealcoholized samples

Langhe Rosè

wine
VD 13.2 5.0

Higher contents of total anthocyanins and total

flavonoids compared to the original wine. Color

the intensity increases and the hue decreases

(loss of orange notes) due to the increased

content of total anthocyanins

Barbera red wine VD 15.2 5.0

Higher contents of total anthocyanins and total

flavonoids compared to the original wine. Color:

the intensity increases and the hue decreases

(loss of orange notes) due to the increased

content of total anthocyanins

Verduno

Pelaverga red

wine

VD 14.6 5.0

Higher contents of total anthocyanins and total

flavonoids compared to the original wine. Color

the intensity increases and the hue decreases

(loss of orange notes) due to the increased

content of total anthocyanins

Red wine SCC 14.0 < 0.3

Increase in phenolic compounds, total phenolic,

flavonol, tartaric ester, and anthocyanin contents

by approximately 24%. Higher content of

resveratrol than the original wine

Rose wine SCC 14.0 < 0.3

Increase in phenolic compounds, total phenolic,

flavonol, tartaric ester, and anthocyanin contents

by approximately 24%. Higher content of

resveratrol than the original wine

White wine SCC 14.0 < 0.3
Increase in phenolic compounds content by

approximately 24%

Montepulciano

d’Abruzzo red

wine (cv.)

RO–OD/EP 13.2
7.1–

5.5

Total phenols increase while total anthocyanins

decrease in the dealcoholized wine samples.

Color intensity increases during ethanol removal

Cabernet

Sauvignon red

wine

RO–OD/EP 14.1 12.5

Significantly increase in color intensity due to

increased content of anthocyanins during alcohol

reduction compared to the base wine
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Wine Type
Dealcoholization

Process

Alcohol

Reduction

Reported Effects on Phenolic Composition Reference
Co

(%

v/v)

Cf (%

v/v)

Shiraz red wine RO–OD/EP 15.2 12.6

Increase in color intensity due to increased

content of anthocyanins during alcohol reduction

compared to the base wine

Co = original alcohol content; Cf = final alcohol content; NF = nanofiltration; RO = reverse osmosis; OD = osmotic

distillation; EP = evaporative perstraction; VD = vacuum distillation; SCC = spinning cone column.

The dealcoholization of white, rose, and red wines by SCC distillation at pilot plant scale was reported to cause minimal

damage to phenolic compounds such as flavonols, tartaric esters, stilbenes (specifically trans- and cis- resveratrol),

flavonols (i.e., rutin, quercetin, and myricetin), flavan-3-ols (mainly (+)-catechin and (−)-epicatechin), anthocyanins (in

particular malvidin 3-glucoside), and non-flavonoids (including gallic, caffeic, and p-coumaric acids) . Additionally, the

technique increased the concentrations of these compounds in the wines after dealcoholization . Phenolic compounds

such as polyphenols and anthocyanins were not lost during the dealcoholization (at 5% v/v ethanol) of Rosé, Pelaverga,

and Barbera red wines using a membrane contactor and VD method . Recently, Liguori et al.  studied the main

quality parameters of white wine (cv Falanghina, 12.5% v/v) dealcoholized at different ethanol concentration levels

ranging from 9.8% to 0.3% by an osmotic distillation process. There were no significant differences in flavonoids, total

phenols, total acidity, and organic acids between the wine samples at different alcohol content levels. Similar results were

obtained in a red wine dealcoholized at different alcohol levels . Furthermore, when RO-EP treatment was used in the

partial dealcoholization (i.e., a reduction of 0.5% to 5.0% ABV) of red wine, it resulted in increased phenolics, color

intensity, and organic acids . In contrast, a significant change in the color of red wines dealcoholized by RO was

observed . The increase in phenolic compounds in wine, particularly anthocyanins, after dealcoholization noted in

most of these studies may be due to reduced precipitation of wine tartrate salts , as wine tartrate salts can absorb

polyphenols . It has also been reported that dealcoholization at a low temperature (20 °C) can lead to higher retention

of polyphenols in wine . In addition, the increment can be attributed to the concentration effect produced by the

removal of ethanol from the wine .

3.2. Impact on Volatile Composition

The composition of volatile compounds influences the overall aroma and flavor of wine . Wine contains

over 1000 volatile compounds of various chemical classes (alcohols, esters, fatty acids, aldehydes, terpenes, ketones,

and sulfur compounds), and wine fermentation produces approximately 400 volatile compounds . During

dealcoholization, the removal of alcohol from wine is usually accompanied by the removal of water and some volatile

compounds as well . Table 3 summarizes some findings regarding the volatile composition of wines during the

dealcoholization process. In the case of membrane contactor techniques such as RO, NF, PV, and OD that use a

membrane for ethanol removal, a greater pressure difference across the membrane than the osmotic pressure difference

causes ethanol and water from the wine to pass through the membrane .

Table 3. Some reported changes in wine volatile compounds using different dealcoholization processes.
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Dealcoholization

Process
Wine Type Membrane

Operating

Mode/Conditions

Alcohol

Reduction
Volatile Composition

Sampling and

Analytical

Method

Reference

Co

(%

v/v)

Cf (%

v/v)

Volatile

Compounds

Estimated

Average

Losses

(%)

 

NF

White model

wine
TORAY–UB70

Batch retentate–

recycling mode

T = 15

P = 10

12.0 8.4

Diethyl

succinate

2–phenyl–

ethanol

cis–3–hexenol

Isovaleric acid

2.4

2.9

12.6

11.7

HS/SPME–

GC/MS

Red Wine

Polyamide,

NF9, Alfa

Laval

T = 30

P = 16
12.0 9.1

Total volatile

aroma**
30.0 GC–FID

RO

Model wine Osmonics–SE

Batch retentate–

recycling mode

T = 15

P = 17–29

12.0 8.4

Diethyl

succinate

2–phenyl–

ethanol

cis–3–hexenol

Isovaleric acid

0.6–1.6

2.5–3.5

7.8–11

11.9–

18.1

HS/SPME–

GC/MS

Red Wine

Cellulose

acetate,

CA995PE

T = 30◦C

P = 16
12.0 8.4 Total aroma** 90.0 GC–FID

Montepulciano

d’Abruzzo red

wine

RO membrane

(100 DA)

T = 10

P = ns

Time = 40

13.2 9.0

Alcohols

Acids

Esters

Phenols

Lactones

30.0

22.0

8.0

13.0

14.0

SPME–

GC/MS
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Dealcoholization

Process
Wine Type Membrane

Operating

Mode/Conditions

Alcohol

Reduction
Volatile Composition

Sampling and

Analytical

Method

Reference

Co

(%

v/v)

Cf (%

v/v)

Volatile

Compounds

Estimated

Average

Losses

(%)

 

OD/EP

Model wine

Polyvinylidene

fluoride (PVDF)

Memcor

Qf = 0.053

Qs = 0.093

T = 30

Time = 60

13.0 8.1

Isoamyl

alcohol

Ethyl acetate

44.0

70.0
GC–FID

Falanghina

white wine

Liqui–Cel 0.5 ×

1, PP hollow

fiber

Qf = 0.07

Qs = 0.14

T = 10

Time = 240

12.5
9.8–

0.3

Higher

alcohols

Acids

Esters

Ketones

lactones

49.5–

98.9

60.5–

98.7

71.5–

99.0

67.1–

99.9

73.6–

98.2

LE–GC/MS,

LE–GC/FID

Xarelo white

wine

Liqui–Cel

ExtraFlow

Qf = 10

Qs = 10

T = room

temperature

Time = 20

11.5 10.1

Isoamyl

acetate

Ethyl

hexanoate

Ethyl

octanoate

Ethyl

decanoate

27.0

37.0

28.0

24.0

SBSE–GC/MS

Soave white

wine

PTFE hollow

fiber (Teflon,

Verona, Italy)

Qf = 0.2

Qs = 0.2

T = 20

Time = ns

ns *

Alcohols

Acids

Esters

Terpenes

12.6–

32.2

5.6–16.4

34.0–

58.4

22.0–

26.0

SPE–GC/MS
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Dealcoholization

Process
Wine Type Membrane

Operating

Mode/Conditions

Alcohol

Reduction
Volatile Composition

Sampling and

Analytical

Method

Reference

Co

(%

v/v)

Cf (%

v/v)

Volatile

Compounds

Estimated

Average

Losses

(%)

 

Verdicchio

white wine

PTFE hollow

fiber (Teflon,

Verona, Italy)

Qf = 0.2

Qs = 0.2

T = 20

Time = ns

ns *

Alcohols

Acids

Esters

Terpenes

8.9–25.8

8.0–15.8

40.0–

54.1

21.0–

28.0

SPE–GC/MS

Aglianico red

wine

Liqui–Cel

Extra–flow, PP

hollow fiber

Qf = 0.583

Qs = 0.183

T = 20

Time = 283

13.8
11.6–

8.8

Alcohols

Esters

Acids

Terpenes

Others:

Benzaldehyde

?–

Butyrolactone

8.4–31.8

42.9–

60.9

12.5–

17.1

13.8–

32.3

55.3–

65.9

4.5–13.6

SPE–GC/MS

Aglianico red

wine

Liqui–Cel

Extra–flow, PP

hollow fiber

Qf = 0.583

Qs = 0.183

T = 20

Time = 283

15.5
13.5–

10.8

Alcohols

Esters

Acids

Terpenes

Others:

Benzaldehyde

?–

Butyrolactone

Vitispirane

9.2–13.7

33.8–

50.6

11–18.5

3.6–14.5

nf

12.9

Unc

SPE–GC/MS
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Dealcoholization

Process
Wine Type Membrane

Operating

Mode/Conditions

Alcohol

Reduction
Volatile Composition

Sampling and

Analytical

Method

Reference

Co

(%

v/v)

Cf (%

v/v)

Volatile

Compounds

Estimated

Average

Losses

(%)

 

Aglianico red

wine

Liqui–Cel

0.5×1, PP

hollow fiber

Qf = 0.07

Qs = 0.14

T = 20

Time = 255

13.0
6.5–

0.2

Alcohols

Acids

Esters

Sulfur

compounds

Phenols

Ketones and

lactones

Aldehydes

57.9–

99.9

23.6–

78.9

12.8–

89.9

2.1–78.7

66.7–100

23.6–

97.9

unc–100

LE–GC/MS,

LE–GC/FID

Merlot red

wine

Liqui–Cel

Extra–flow, PP

hollow fiber

Qf = 5.8

Qs = 8.1

T = 20

Time = 60

13.4 11.3

Ethyl acetate

Isoamyl

acetate

Isoamyl

alcohol

Ethyl

hexanoate

Ethyl

octanoate

Linalool

2–Phenylethyl

acetate

37.4

34.9

13.7

33.0

67.8

14.5

13.6

HS/SPME–

GC/MS

Barbera red

wine

Polypropylene

hollow fibers

(JU.CLA.S.

LTD, Verona,

Italy)

Qf = 1.6

Qs = 0.8

T = 10

Time = 360

14.6 5.0

Alcohols

Acids

Esters

63.9

17.4

23.8

SPE–GC/FID

[145]

[141]

[155]



Dealcoholization

Process
Wine Type Membrane

Operating

Mode/Conditions

Alcohol

Reduction
Volatile Composition

Sampling and

Analytical

Method

Reference

Co

(%

v/v)

Cf (%

v/v)

Volatile

Compounds

Estimated

Average

Losses

(%)

 

Tempranillo

red wine

Liqui–Cel

ExtraFlow

Qf = 5.8

Qs = 5.8

T = room

temperature

Time = 60

13.3 9.0

Isoamyl

alcohol

Ethyl

hexanoate

21.0

20.0
SBSE–GC/MS

Garnacha red

wine

Liqui–Cel

ExtraFlow

Qf = 5

Qs = 5

T = room

temperature

Time = 60

13.9 9.3

Isoamyl

acetate

Ethyl

hexanoate

24.0

36.0
SBSE–GC/MS

Verduno

Pelaverga red

wine

Polypropylene

hollow fibers

(JU.CLA.S.

LTD, Verona,

Italy)

Qf = 1.6

Qs = 0.8

T = 10

Time = 360

14.6 5.0

Alcohols

Acids

Esters

59.9

23.6

45.2

SPE–GC/FID

Montepulciano

d’Abruzzo red

wine

Liqui–Cel

0.5×1, PP

hollow fiber

Recycling mode

Qf = 1.5

Qs = 0.5

T = 10

Time = 240

13.2
8.3–

2.7

Alcohols

Acids

Esters

Lactones

Phenols

Others:

Benzaldehyde

α–Terpineol

56.0–

84.0

18.0–

23.0

64.0–

85.0

11.0–

37.0

11.0–

37.0

2.0–26.0

5.0–49.0

SPE– LE–

GC/MS/FID

[142]

[142]

[155]

[139]



Co = original alcohol content; Cf = final alcohol content; T = temperature; P = pressure; VP = vacuum pressure; PP =

polypropylene; ns = not specified; Verdicchio white wine 1 = sample 1 of 3; Cabernet Sauvignon red wine A = sample 1 of

5; OD = osmotic distillation; EP = evaporative perstraction; SCC = spinning cone column; NF = nanofiltration; RO =

reverse osmosis; PV = pervaporation; PDMS = polydimethylsiloxane; unc = unchanged; nf = not found; *ethanol content

removal between 2% and 4% v/v; **no values of the individual volatile aroma compound losses were provided; SPE =

solid phase extraction; GC = gas chromatography; MS = mass spectrometry; LE = liquid extraction; FID = flame ionization

detector; SBSE = stir bar sorptive extraction; HS = headspace; SPME = solid phase micro extraction; – means not

applicable. Units: Concentration = (%v/v); Vacuum pressure/Pressure = bar; Rejection = %; T = °C; Flowrate = L/min;

Time = min.

Several studies have reported on the use of membrane techniques in wine dealcoholization and their subsequent effect

on the dealcoholized wine volatile compositions . A low alcohol content apple cider

was produced by RO with a polyamide membrane AFC99 in both batch and diafiltration configurations . The process

was operated at 15 °C and 45 bar with a feed flow of 200 L h . During the batch configuration process, 50% of ethanol

was removed with an estimated loss of 77% of total higher alcohols, 20% of total aldehydes, 25% of total acids, and 25%

of total esters. In the diafiltration configuration, estimated losses of 96% total higher alcohols, 43% total aldehydes, 18.5%

total acids, and 28% total esters accompanied the removal of 75% ethanol. However, losses in these volatile compounds

were deemed insignificant in both configurations . Takács et al.  used PV in the total dealcoholization of a Tokaji

Hárslevelű wine (13.11% v/v), resulting in a 70% loss of the total aroma compounds, but the loss of individual aroma

compounds was not reported. When Sun et al.  used PV technology to reduce the alcohol content of a Cabernet

Sauvignon red wine from 12.5% to 0.5%, they discovered losses of volatile compounds, specifically alcohols (40%), acids

(28%), and esters (99%). After dealcoholization with a polyvinylidene fluoride membrane, Varavuth et al.  found losses

of 47% to 70% and 23% to 44% of ethyl acetate and isoamyl alcohol, respectively, in a model wine solution. Diban et al.

 used the same polyvinylidene fluoride membrane to measure the losses of eight volatile compounds in wine and wine

model solution after a 2% v/v ethanol reduction, but only losses were observed in model solution after a 5% v/v ethanol

reduction. Furthermore, Belisario-Sánchez et al.  found that after dealcoholization by SCC, the total volatile aroma

Dealcoholization

Process
Wine Type Membrane

Operating

Mode/Conditions

Alcohol

Reduction
Volatile Composition

Sampling and

Analytical

Method

Reference

Co

(%

v/v)

Cf (%

v/v)

Volatile

Compounds

Estimated

Average

Losses

(%)

 

Montepulciano

d’Abruzzo red

wine

Liqui–Cel mini

module 1.7x5.5

Membrana

Recycling mode

Qf = 1.5

Qs = 0.5

T = 10

Time = 120

13.2
8.3–

5.4

Alcohols

Acids

Esters

Phenols

Lactones

2.0–3.0

18.0–

25.0

15.0–

19.0

5.0–10.0

7.0–25.0

SPME–

GC/MS

Langhe Rosè

wine

Polypropylene

hollow fibers

(JU.CLA.S.

LTD, Verona,

Italy)

Qf = 1.6

Qs = 0.8

T = 10

Time = 360

13.2 5.0

Alcohols

Acids

Esters

60.4

30.9

47.8

SPE–GC/FID

PV

Tokaji

Hárslevelű

white wine

PERVAP.Sulzer

1060 PDMS

‘‘Carrier gas

mode’’ under

atmospheric

pressure

T = 40–70

13.1 0.1
Total volatile

aroma**
70.0

Distillation/LE–

GC/MS

Cabernet

Sauvignon red

wine

PDMS JS–

WSM–8040

(JiuSi High–

Tech, Nanjing,

China)

Batch operation

T = 45

VP = 0.05

12.5 0.5

Alcohols

Acids

Esters

19.7–

39.5

12.7–

28.2

48.0–

99.9

GC/MS

[138]

[155]

[147]

[192]

[147][133][139][140][130][135][138][145][155][190]

[135]

−1

[135] [147]

[192]

[190]

[141]

[158]



compounds of Tempranillo red wine, Cabernet Sauvignon rose wine, and Chardonnay white wine were lost by

approximately 18%, 4%, and 9%, respectively.

During dealcoholization, volatile compounds are lost in the same way as ethanol. As a result, their original contents are

lost during dealcoholization due to vaporization and diffusion . In addition, some losses of 2% to 3% have been

attributed to their adsorption onto the membrane . This is due to their high affinity for the membrane and high volatility,

which allows them to pass through the membrane more easily. Through a non-covalent interaction between the

polyphenols and the aromatic ring of aromatic compounds, the non-volatile matrix of wine, particularly polyphenols, can

also aid in the stability and retention of volatile compounds . This best explains why a 50% reduction in the ethanol

content of a 13% v/v Aglianico wine by a membrane contactor technique did not affect the amount of 2-phenylethanol in

the dealcoholized wine . However, when higher ethanol concentrations were removed, a drastic decrease in the 2-

phenylethanol concentration was observed, which was attributed to weaker ?–? stacking caused by the decrease in

ethanol content (7% v/v) of the wine.

The operating conditions used during the dealcoholization process can also have an impact on the concentrations of wine

volatile compounds. A change in some operating conditions of an OD process, such as lowering the temperature from 20

°C to 10 °C and changing the positions of the feed and stripping streams from a previous study , helped to decrease

the loss of volatile aroma compounds by about 2.8% during the dealcoholization of a 12.5% v/v white wine . From the

findings, it is evident that the physical technologies used in the dealcoholization of wines can result in significant losses of

volatile compounds due to the reduction in alcohol levels. However, the significance and extent of the changes can also

depend on the operating conditions applied, the type of membrane used, and the non-volatile matrix of the wine.

3.3. Impact on Sensory Characteristics

Ethanol is the most abundant of the volatile compounds in wine and its concentration can influence the perception of wine

aroma and flavor as well as several mouthfeel and taste sensations . Higher ethanol concentrations in wine

typically enhance sensitivity to body, bitterness, and hotness, whereas lower concentrations can reduce the perception to

aroma, flavor, acidity, and astringency . Some studies have been conducted to investigate the sensory

quality of wines or wine model solutions during ethanol removal . The sensory profile of

wine after partial or total dealcoholization is primarily determined by the amount of alcohol remaining in the dealcoholized

wine . Table 4 summarizes the key findings from some of these studies on the sensory changes caused by

dealcoholization.

Table 4. Summary of the main results of some studies on the sensory changes caused by the removal of ethanol from

wine by various dealcoholization processes.

Dealcoholization

Process
Wine Type Membrane

Operating

Mode/Conditions

Alcohol

Reduction
Volatile Composition

Sampling and

Analytical

Method

Reference

Co

(%

v/v)

Cf (%

v/v)

Volatile

Compounds

Estimated

Average

Losses

(%)

 

VD

Barbera red

wine
– T = 15 15.2 5.0

Alcohols

Acids

Esters

50.4

13.7

19.8

SPE–GC/FID

Verduno

Pelaverga red

wine

– T = 15 14.6 5.0

Alcohols

Acids

Esters

53.6

2.3

19.5

SPE–GC/FID

Langhe Rosè

wine
– T = 15 13.2 5.0

Alcohols

Acids

Esters

51.4

2.5

22.9

SPE–GC/FID

SCC

White wine –

T = 25

VP = 0.08

Time = 60

10.6 0.3

Aliphatic

alcohols

Aromatic

alcohols

Acids

Esters

Ketones

98.0

3.0

20.0

53.0

71.0

LE–GC/FID

Chardonnay

white wine
–

T = 30

VP = 0.04

Time = 60

ns ns Total aroma** 1.0–9.0
HS/SPME–

GC/MS

Tempranillo

red wine
–

T = 30

VP = 0.04

Time = 60

ns ns Total aroma** 3.0–18.0
HS/SPME–

GC/MS

Cabernet

Sauvignon

rose wine

–

T = 30

VP = 0.04

Time = 60

ns ns Total aroma** 1.0–4.0
HS/SPME–

GC/MS

[155]

[155]

[155]

[160]

[158]

[158]

[158]

[133][190]

[141]

[133]

[145]

[145]

[140]

[141][177][194][195]

[19][20][196][197][198]

[147][130][141][144][159][160][178][190][180]

[157][191][199][200]
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Wine Type Membrane

Operating

Mode/Conditions

Alcohol

Reduction
Findings on

Sensory

Characteristics

Reference
Co

(%

v/v)

Cf (%

v/v)

NF Red Wine

Polyamide,

NF97,

NF99 HF

Alfa

Laval

T = 30

P = 16
12.0 9.1

Increase in

astringency

and

unbalanced

aroma and

taste due to

alcohol

reduction

[189]



Dealcoholization

Process
Wine Type Membrane

Operating

Mode/Conditions

Alcohol

Reduction
Volatile Composition

Sampling and

Analytical

Method

Reference

Co

(%

v/v)

Cf (%

v/v)

Volatile

Compounds

Estimated

Average

Losses

(%)

 

RO-OD/EP

Shiraz red

wine

Memstar AA

MEM–074 and

Liqui–Cel

2.5×8 Extra–

flow

PP hollow fiber

Qf = ns

Qs = ns

T = ns

P = ns

Time = ns

16.3
13.3–

10.4

Alcohols

Esters

Monoterpenes

C13–

Norisoprenoids

Lactones

Others:

Dimethyl

sulfide

14.9–

38.9

29.8–

49.5

9.2–20.8

9.4–14.5

17.1–

21.4

52.6–

71.9

HS–SPME–

GC/MS

Montepulciano

d’Abruzzo red

wine

RO membrane

(100 DA) and

Liqui–cel mini

module 1.7×5.5

Membrane

Recycling mode

Qf = 1.5

Qs = 0.5

T = 10

P = ns

Time = 120

13.2
7.1–

5.5

Alcohols

Acids

Esters

Phenols

Lactones

17.0–

27.0

19.0–

24.0

15.0–

22.0

16.0–

18.0

unc–14.0

SPME–

GC/MS

Barossa

Valley Shiraz

– Cabernet

Sauvignon red

wine

Spiral wound

4040 and

hollow fiber

perstractive

membrane (VA

Filtration,

Nuriootpa,

Australia)

Qf = ns

Qs = ns

T = 55

P = 30

Time = 90

14.1 12.5

Alcohols

Acids

Esters

15.5

10.0

5.1

SPME–

GC/MS

McLaren Vale

Cabernet

Sauvignon red

wine

Spiral wound

4040 and

hollow fiber

perstractive

membrane (VA

Filtration,

Nuriootpa,

Australia)

Qf = ns

Qs = ns

T = 55

P = 30

Time = 90

17.1 14.5

Alcohols

Acids

Esters

13.6

6.1

18.8

SPME–

GC/MS

[193]

[138]

[164]

[164]
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Operating

Mode/Conditions

Alcohol

Reduction
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Sensory

Characteristics

Reference
Co

(%

v/v)

Cf (%

v/v)

RO

Syrah red wine ns
T = ns

P = ns
12.7

11.1–

9.6

Decrease in

wine length in

the mouth and

increase in red

fruits and then

woody and

blackcurrant

perceptions

(using TDS

and attributed

to alcohol

reduction).

Decrease in

heat and

sweetness

intensity

(attributed to

alcohol

reduction) and

red fruit

intensity

(attributed to

RO)

Merlot red

wine
ns

T = ns

P = ns
13.4

11.8–

10.2

Decrease om

wine length in

the mouth and

increase in

astringent and

then of fruity

perceptions

(using TDS

and attributed

to alcohol

reduction).

Decrease in

heat and

texture

intensity

(attributed to

alcohol

reduction) and

increase in

acid intensity

(attributed to

RO)

[178]

[178]
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Wine Type Membrane
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Reduction
Volatile Composition
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(%

v/v)

Cf (%

v/v)

Volatile

Compounds

Estimated

Average

Losses

(%)

 

Adelaide Hills

Shiraz red

wine

Spiral wound

4040 and

hollow fiber

perstractive

membrane (VA

Filtration,

Nuriootpa,

Australia)

Qf = ns

Qs = ns

T = 55

P = 30

Time = 90

14.9 14.2

Alcohols

Acids

Esters

7.0

0.4

8.6

SPME–

GC/MS

Barossa

Valley Shiraz

red wine

Spiral wound

4040 and

hollow fiber

perstractive

membrane (VA

Filtration,

Nuriootpa,

Australia)

Qf = ns

Qs = ns

T = 55

P = 30

Time = 90

15.2 12.6

Alcohols

Acids

Esters

11.0

5.6

21.2

SPME–

GC/MS

McLaren Vale

Shiraz red

wine

Spiral wound

4040 and

hollow fiber

perstractive

membrane

Qf = ns

Qs = ns

T = 55

P = 30

Time = 90

14.7 12.3

Alcohols

Acids

Esters

7.1

2.5

9.7

SPME–

GC/MS

Cabernet

Sauvignon red

wine A

Spiral wound

4040 and

hollow fiber

perstractive

membrane (VA

Filtration,

Nuriootpa,

Australia)

Qf = ns

Qs = ns

T = 55

P = 30

Time = 90

17.0 14.5

Alcohols

Acids

Esters

8.2

15.9

17.4

 

Cabernet

Sauvignon red

wine B

Spiral wound

4040 and

hollow fiber

perstractive

membrane (VA

Filtration,

Nuriootpa,

Australia)

Qf = ns

Qs = ns

T = 55

P = 30

Time = 90

15.5 13.3
Alcohols

Acids

3.8

12.0
 

[164]

[164]

[164]

[165]

[165]
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Mode/Conditions
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Reduction
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Characteristics

Reference
Co

(%

v/v)

Cf (%

v/v)

Syrah red wine ns
T = ns

P = ns
13.4

11.4–

7.9

Decrease in

persistence,

complexity,

number of

aromas and

increase in

balance,

harmony, and

familiarity.

Decrease in

familiarity and

harmony after

4% v/v

reduction

[201]
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Cf (%
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Volatile

Compounds

Estimated

Average
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(%)

 

Cabernet

Sauvignon red

wine C

Spiral wound

4040 and

hollow fiber

perstractive

membrane (VA

Filtration,

Nuriootpa,

Australia)

Qf = ns

Qs = ns

T = 55

P = 30

Time = 90

14.9 13.3 Alcohols 16.4  

Cabernet

Sauvignon red

wine D

Spiral wound

4040 and

hollow fiber

perstractive

membrane (VA

Filtration,

Nuriootpa,

Australia)

Qf = ns

Qs = ns

T = 55

P = 30

Time = 90

14.5 13.2

Alcohols

Acids

Esters

7.1

4.7

76.5

 

[165]

[165]
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Wine Type Membrane

Operating

Mode/Conditions

Alcohol

Reduction
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Sensory

Characteristics

Reference
Co

(%

v/v)

Cf (%

v/v)

OD/EP

white wine

PTFE

hollow fiber

(Teflon,

Verona,

Italy)

Qf = 0.2

Qs = 0.2

T = 20

Time = ns

ns *

Floral, fruity,

and vegetable

notes, as well

as acidity,

saltiness, and

bitterness,

were not

significantly

influenced.

Decrease in

wine body,

persistence,

and honey

note.

Falanghina

white wine

Liqui-Cel

0.5x1, PP

hollow fiber

Qf = 0.07

Qs = 0.14

T = 10

Time = 240

12.5
9.8–

0.3

Decrease in

odor,

sweetness,

and body,

resulting in

unbalanced

taste and

overall

unacceptable,

with an

unpleasant

aftertaste

[191]

[140]



Dealcoholization

Process
Wine Type Membrane

Operating

Mode/Conditions

Alcohol

Reduction
Findings on

Sensory

Characteristics

Reference
Co

(%

v/v)

Cf (%

v/v)

Aglianico red

wine

Liqui-Cel

Extra-flow,

PP hollow

fiber

Qf = 0.583

Qs = 0.183

T = 20

Time = 283

13.8
11.6–

8.8

Decrease in

cherry, red

fruits, and

sweet notes.

Increase in

flowers notes

only within 2%

v/v reduction.

Increase in

grass and

cooked notes

and increase in

astringency

within 5% v/v

reduction.

Increase in

bitterness and

acid

sensations

within 3% v/v

reduction

Aglianico red

wine

Liqui-Cel

Extra-flow

Qf = ns

Qs = ns

T = ns

Time = 180

12.8
4.9–

0.4

Decrease in

sweet and

solvent aroma

series (due to

alcohol

reduction)

which

characterize

the wine

Aglianico red

wine

Liqui-Cel

Extra-flow,

PP hollow

fiber

Qf = 0.583

Qs = 0.183

T = 20

Time = 283

15.5
13.5–

10.8

Decrease in

cherry, red

fruits, flowers,

and grass

notes.

Increase in

acid and

astringent

sensations

[133]

[180]

[133]



Co = original alcohol content; Cf = final alcohol content; T = temperature; P = pressure; VP = vacuum pressure; PP =

polypropylene; ns = not specified; Cabernet Sauvignon red wine A = sample 1 of 5; OD = osmotic distillation; EP =

evaporative perstraction; SCC = spinning cone column; NF = nanofiltration; RO = reverse osmosis; PV = pervaporation;

PDMS = polydimethylsiloxane; unc = unchanged; *ethanol content removal between 2% and 4% v/v. Units: Concentration

= (%v/v); Vacuum pressure/Pressure = bar; Rejection = %; T = °C; Flowrate = L/min; Time = min.
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