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Albumin is a versatile protein being used widely for developing carriers for drugs and nucleic acids. It provides

biocompatibility, tumor specificity, the possibility for surface modification, and reduces toxicity.

albumin gene therapy cancer nanocarriers surface modification

| 1. Introduction

Cancer is one of the major public health problems and a leading cause of morbidity and mortality worldwide L2,
According to the data presented in Cancer Statistics, 2020, the 5-year relative survival rate for all cancers
diagnosed from 2009 to 2015 was 67% 2. Despite being one of the major causes of death, early tumor diagnosis
and efficient therapy are still a challenge. The current cancer therapy includes surgical intervention, radiation
therapy, and chemotherapy with the aim of tumor shrinking and cancer relapse reduction. However, chemotherapy
is often associated with side effects caused by the off-site toxicity due to the lack of drug specificity . Therefore,

the design of more efficient therapies with improved selectivity to the tumor sites is desired.

Currently, gene therapy in cancer is gaining increasing scientific and clinical interest because of various revelations
regarding the origin of cancers from genetic errors, either environmentally triggered or hereditary. Gene therapy is
aimed at treating or repairing the errors occurring in tumor suppressor genes, oncogenes, or DNA pathways by
substitution or addition of a functional gene into the living cell (4. However, its success is challenged by the high
molecular weight, enzymatic degradation, and anionic nature of nucleic acids B8, In this regard, nanostructures
are gaining increasing popularity as nucleic acids delivery vehicles due to low off-target effects, improvement of
current therapies, and protection of nucleic acids from enzymatic degradation I8, By modulating the chemical and
physical properties of nanostructures, their biological characteristics, including cellular uptake, toxicity,
immunogenicity, and efficacy, can be regulated &, Moreover, nanostructures can be accumulated in the tumor
sites due to leaky vessels caused by rapid and excessive angiogenesis, commonly known as the enhanced
permeability and retention (EPR) effect 29, In addition to passive targeting by the EPR effect, active targeting can
be achieved through the use of different targeting moieties, such as antibodies, aptamers, or small molecules that

interact with great selectivity with selected receptors in the cell surface [L112]13]

In the case of the application of gene therapy in cancer, nanocarriers based on polymers, lipids, and metals are
widely being investigated. However, their clinical application is limited because of their toxicity, scale-up

complications, and immunogenicity . In this regard, protein-based nanocarriers have shown promising use in
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cancer because of their unique features such as biocompatibility, safety, tumor targeting by surface modification,

ease of preparation, and broad stability profiles.

| 2. Nucleic Acids in Cancer Therapy

Gene therapy considers the molecular basis of the diseases and refers to the transfer of genetic material into cells
with the aim of a therapeutic response. The first human in-vivo gene transfer study was conducted by Rosenberg
and co-workers in 1990 in patients with advanced melanoma 4. The study showed the feasibility, safety, and
potency of using gene therapy in humans. This finding has revolutionized the field of gene therapy and from the
last two decades, multiple approaches have confirmed the potential of nucleic acids for the treatment of various
types of cancer 1326l The most widely used nucleic acids for cancer therapy include small interfering RNA
(siRNA), antisense oligonucleotides (ASOs), aptamers, micro RNAs (miRNA), and plasmid DNA (pDNA) [L7[18],
Their mechanism of action varies widely, ranging from mRNA regulation to protein binding, which can be designed
to promote the reduction in cancer cell proliferation, induction of apoptosis, enhancement of immune-stimulatory
responses, and inhibition of neoangiogenesis 19221 The small RNAs form an RNA-induced silencing complex
(RISC), which in turn silences the mRNA translation, whereas ASOs can act either by suppression of the
ribonucleoprotein activity or by activation of the enzymatic cascade that enhances mRNA degradation 22, The
great therapeutic potential of nucleic acids has been assessed in multiple experiments in cell culture or animal

models (22241 However, some challenges need to be addressed to ease their path to the clinic.

| 3. Albumin-Based Nanocarriers

3.1. Albumin

Albumin, with a molecular weight of around 67 kDa is the most abundant protein in human blood, which is
synthesized in the liver and has a circulation half-life of approximately 19 days [23. Albumin has an overall
negatively charged surface, which makes it highly water-soluble 28, It has various ligand binding sites, namely
Sudlow’s site |, which mainly binds the dicarboxylic acids and bulky heterocyclic molecules and, Sudlow’s site Il
(indole-benzodiazepine site), which has an affinity towards the aromatic carboxylic acids [ZZ. The high stability of
albumin is attributed to the disulfide bonds formed internally by 34 cysteine residues [28. In addition, it has one free
cysteine residue on the outer surface, which is responsible for the conjugation of ligands 231281 Albumin
transcytosis is mediated by various receptors such as GP60, also known as albondin, SPARC, also known as
osteonectin, GP18, and GP30. GP18 and GP30 receptors are mostly responsible for the lysosomal degradation of
deleterious albumin since these receptors have an affinity to the modified albumin such as oxidized or glycated
ones (2329 The unique properties of albumin, including long half-life, the ability of cellular receptor-mediated
transcytosis, and surface properties aiding in the conjugation of other moieties, make it a suitable candidate for the
preparation of nanocarriers. In this sense, the most commonly used albumins include ovalbumin, bovine serum

albumin (BSA), and human serum albumin (HSA) 2. Among them, BSA is most widely accepted because of its
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low cost, abundance, and ease of purification, whereas HSA is used to avoid any immunological response in
studies involving humans B4,

3.2. Albumin in Cancer Therapy

Albumin is being investigated extensively in cancer therapy due to its excellent properties as a selective carrier in
this type of disease. This is due to many factors that lead to a preferable accumulation of the albumin structures in
the tumor. For instance, the high concentration of albumin in the blood (40 mg/mL) compared to the interstitial
concentration of 14 mg/mL aids in the diffusional transport of albumin to tumor sites B2l |n addition, albumin is
preferentially internalized as the source of amino acids to cope with the enhanced cellular growth by the cancer
cells expressing oncogenic Ras, whose activation is associated with cancer 28, This property can be utilized to
deliver the cargo encapsulated in albumin to cancer cells. Moreover, the albumin-binding proteins, namely gp60
and SPARC, are overexpressed in the cancer cells, which provides specificity to targeting the tumor sites 3. The
protein Cav-1 responsible for the formation of caveolae is upregulated in cancer cells, and since endocytosis of
albumin is mainly mediated through caveolae, the accumulation of albumin in cancer sites is further enhanced 28
(34 Albumin is hence being used in pharmaceutical applications as a biocompatible and biodegradable carrier for
the delivery of anti-cancer agents, such as chemotherapeutics, biologics, and immunomodulatory drugs. So far, the
most studied albumin-based delivery systems for nucleic acids are nanoparticles, nanoconjugates and polyplexes
(Figure 1).
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Figure 1. Schematic representation of different albumin nanocarriers for gene therapy.
3.3. Albumin Nanocarrier for Gene Therapy in Cancer

In comparison to other nanocarriers, albumin-based nanocarriers provide various advantages including easy and
reproducible production, possible scale-up options, and in addition, do not show undesired interaction with the
serum 331381 Considering those advantages and its success in the delivery of chemotherapeutic agents, serum
albumin can also be utilized for the delivery of nucleic acids. A wide range of studies on albumin nanocarriers has
been conducted to efficiently deliver various genetic materials to the tumor sites (Table 1). In addition, albumin-

based nanocarriers are finding their promising application in cancer immunotherapy in recent years.

Table 1. List of albumin-based nanocarriers with nucleic acids for cancer therapy.
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self-assembly. Among all those methods, desolvation is the most practiced method using ethanol as a desolvating

agent and glutaraldehyde as a cross-linker 1EI48I49  The albumin nanoparticles protect the integrity of

encapsulated nucleic acids and prevent their enzymatic degradation. They enter the cells via an energy-dependent

mechanism, primarily through caveolae- and clathrin-mediated endocytotic pathways 8. Albumin nanoparticles

have been employed to deliver different nucleic acids, such as plasmids, oligonucleotides, and siRNAs.
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3.5. Polyplexes

Another type of nanostructure based on albumin employed in the delivery of nucleic acids are polyplexes. These
structures contain positively charged polymers that interact with the negatively charged nucleic acids, inducing their
condensation into smaller structures. The formation of this complex protects the nucleic acids against degradation
by nucleases and also increases their internalization, since the positive charges present in the surface of the
nanoparticle interact with the negatively charged cell membranes BUB1, Despite the excellent properties reported
for the transfection of nucleic acids, they present some toxicity, which has motivated the search for complementary
transfection systems or additives to mitigate this drawback. In this regard, several studies have reported that

albumin can enhance the transfection efficiency of polyplexes and improve cell viability EZ152],

For instance, in a study conducted by Syga and co-workers, the use of albumin in a PEI-pDNA polyplex
accelerated and enhanced the transfection in HeLa cells B2, They prepared two types of polyplexes, Type 1, where
BSA was placed between the plasmid pGFP and PEI, and Type 2 where albumin was added at the end, on the
surface of previously formed polyplexes (PEI + pGFP). The experiments revealed that transfection efficiency was
better with Type 1 polyplexes as the release of plasmid was easier from the loosely formed polyplexes compared to
the Type 2 polyplexes with strong interaction between PEI and plasmid. Similarly, in a study conducted by Nicoli
and co-workers, enhancement in cellular uptake was observed in metastatic breast cancer epithelial cells when

HSA was incorporated in branched polyethylenimine (bPEI)-siRNA polyplexes 3],

3.6. Nanoconjugates

Albumin nanoconjugates are obtained by the interaction of albumin with other moieties such as polymers, nucleic
acids, or metals. The interaction may be either non-covalent (hydrophobic and electrostatic) or covalent (thiol-
maleimide coupling, Michael addition reaction, and carbodiimide coupling reactions) 4. Nanoconjugates are
smaller (~10 nm) than the typical nanoparticles (~100 nm) and can overcome the limitations associated with the
nanoparticles, such as limited biodistribution and toxicity 2. However, these small conjugates are rapidly
metabolized, excreted in vivo, and less effective in exploiting the EPR effect to reach the tumor sites than

conventional nanoparticles 281,

In a study conducted by Carver and co-workers, HSA nanoconjugates with RGD-623 oligonucleotides having a
size of about 13 nm were prepared 7. Interestingly, the resulting HSA-RGD-623 conjugate could penetrate a 3D
tumor spheroid, whereas the conventional nanoparticles could deliver their payload only on the exterior cells of the
spheroid, limiting the induction of splice correction of both GFP654 and Luc705 reporter genes. Similarly, in a study
by Sarett and co-workers, serum albumin was used as a carrier in vivo for siRNAs modified with a diacyl lipid
moiety (SiIRNA-L,), which enhanced the pharmacokinetic properties of siRNA. This nanoconjugate showed 19-fold
more tumor accumulation and 46-fold cellular uptake compared to the commercial siRNA nanocarrier jetPEl, in a
mouse orthotopic model of human triple-negative breast cancer 28, Despite the various advantages of modifying
the nucleic acids to increase the stability, pharmacokinetics and pharmacodynamic properties, and enhancement of

internalization and endosomal escape, limited work has been done using albumin nanocarriers B2, Further studies
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integrating the advantages of albumin nanocarriers with the modified nucleic acids can be of great potential in

cancer therapy.

| 4. Albumin as a Coating Agent

Besides its use as a nanocarrier, aloumin can be used as a coating agent for a variety of nanostructures, thus the
advantages mentioned before on the use of albumin can be implemented to other nanostructures 446361 |n 5
study conducted by Xu and co-workers, a chitosan complex with siRNAs was coated with pH-responsive
detachable BSA to enhance recognition by human hepatocellular carcinoma cells and suppression of tumor cell
proliferation 8. In this case, the mRNA silencing obtained by the chitosan NPs was improved from 46.9% to
61.8% by the introduction of a BSA coating.

Albumin has been used as a coating agent in various lipid-based nanocarriers, to minimize their interaction with
serum proteins and improve their delivery to the target sites 4462 For instance, HSA was used to coat lipid
nanoparticles loaded with siRNA targeted against GFP (HSA-LNPs-siRNA) and their activity was evaluated in
breast cancer cells and the corresponding xenograft mouse model 4. In the cell experiments, the nanoparticles
containing HSA significantly reduced the GFP fluorescence, compared to uncoated lipid nanoparticles. This result
was also obtained in the animal model, where a 37% reduction in the GFP expression was achieved after systemic
administration of the HSA-coated nanoparticles. In another study, HSA was employed to coat lipid nanoparticles
loaded with an antisense oligonucleotide against Bcl-2, which were evaluated in KB human oral carcinoma cells
(621 |nterestingly, the authors reported that the efficiency of the Bcl-2 down-regulation depended on the molar ratio
of HSA employed. The optimum down-regulation was observed with an HSA to liposome ratio of 3:100 after which

the increment in HSA decreased the efficiency.

5. Nucleic Acid-Loaded Albumin Nanocarriers for
Immunotherapy

Cancer immunotherapy aims to exploit the patients’ own immune systems to treat cancer. Some of the approaches
to cancer immunotherapy include immune checkpoint blockade, cancer vaccines, adoptive cell transfer therapy,
and oncolytic virotherapy 3. Among all, immune checkpoint inhibitors have gained wide success in cancer
treatment, however, only a limited number of patients benefit from these therapies, where the induction of
resistance and toxicity are still huge problems 84, Interestingly, nucleic acid therapeutics are emerging as the
potential candidate for cancer immunotherapy, which may improve the therapeutic outcome in a wide range of
tumors, and even in the late stages [62l. These nucleic acids include immunostimulatory DNA/RNA, genome editing
nucleic acids, and mRNA/plasmid, which can be further translated to immunotherapeutic proteins (661 |n addition,
different genetic tools such as gene editing, gene silencing, or gene activating systems are also being studied
extensively in cancer immunotherapy 2!, Nonetheless, despite the tremendous potential of nucleic acids in cancer
immunotherapy, the major limitation in the implementation of these techniques in clinical practice is the lack of an

efficient delivery vehicle targeted to the cancer cells. In this context, albumin-based nanocarriers are being
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investigated in a variety of cancers. For instance, Cheng and co-workers developed HSA NPs complexed with
stearyl PEI (stPEI), which was non-covalently bound to plasmid (CRISPR/Cas9) and a siRNA that silenced the
expression of programmed cell death ligand-1 (PD-L1) for cancer immunotherapy [8l. This combined approach

produced a synergistic effect where the PD-L1 expression was inhibited by 21.2%.

In summary, immunotherapy against cancer mediated by nucleic acids has enormous potential, as highlighted by
the recent developments, such as chimeric antigen receptors (CARs), to treat leukemia (e.g., Kymriah EZ) or
CRISPR/Cas9 approaches employed to enhance T-cell mediated gene therapy [€&l. However, such systems can be

further improved by nanocarriers, such as those based on albumin.

| 6. Conclusion

In conclusion, albumin nanocarriers have been studied widely for gene therapy in cancer because of the unique
features of albumin, such as the ease of preparation, high stability, and biocompatibility. Furthermore, the surface
of those nanocarriers can be modified to enhance the therapeutic efficiency and selectivity, whereas reducing the
undesired off-target effects. Despite all those features, some limitations are still being reported and need to be
addressed properly, such as the albumin catabolism, which may be affected by various factors such as the levels
of corticosteroids. Therefore, further studies are required to ensure the safe use of those nanocarriers to ease their

way to the clinic.

In addition to the prevalent conventional gene therapy, which is mainly focused on the expression of a DNA
fragment or its random insertion into the genome, various specific gene-editing tools such as CRISPR/Cas9 have
been introduced. These gene-editing tools have promising potential for the introduction of personalized medicines
in cancer therapy. In a similar way, novel nucleic acid-based therapies such as chimeric antigen receptor (CAR) T
approaches are being developed as a promising therapeutic approach in immuno-oncology. The combination of the
advantages imparted by the albumin-based nanocarriers with powerful therapies including CRISPR/Cas9 and
CAR-T will revolutionize the treatment options in oncology. Though there are limited studies available on the
incorporation of these gene-editing tools in albumin nanostructures, the profound therapeutic application of these

vectors is on the near horizon.
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