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Antimicrobial peptides (AMP) are small cationic and amphipathic molecules that play a vital role in the host immune
system by acting as a first barrier against invading pathogens. The broad spectrum of properties that peptides

possess make them one of the best possible alternatives for a new “post-antibiotic” era.
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1. Antimicrobial Peptides as a New Tool to Tackle Antibiotic-
Resistant Infections

Antimicrobial peptides (AMP, also known as host defense peptides) are essential components of the innate
immune system and possess broad-spectrum activities such as antimicrobial, wound-healing, immunomodulatory
and antibiofilm. They have shown to be promising drug candidates for the treatment of microbial infections, either

as a monotherapy or in conjugation with other pre-existing drugs 218141,

Several models have been proposed to describe the pathways through which AMP exert their antimicrobial action
Bl and it is well known that AMP can act through different mechanisms (Eigure 1). This has a major impact on their
high efficacy and the broad spectrum of activity, including Gram-positive and Gram-negative bacteria, but also
fungi, viruses, unicellular protozoa, and cancer cells 8. For instance, AMP can disrupt the membrane through pore
and micelles formation, binding with specific receptors or through electroporation. Moreover, they can induce cell
death through interaction with internal cellular components, hijacking important processes vital to the pathogens.
They can also interfere with the cell wall through inhibition of its biosynthesis. Lastly, they are capable of exerting
antimicrobial activity without ever interacting with the pathogens, through modulation of the innate immune system
BIBI7IEIE, Remarkably, the paradigm of how peptides act is in constant change. It is now clear that several
peptides are capable of exerting activity through various mechanisms. Importantly, this may hinder the
development of anti-AMP resistance.
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Figure 1. Some of the bacterial molecular targets of AMP: (A) bacterial cell wall; (B) bacterial membrane; (C) DNA
synthesis; (D) DNA replication; (E) key bacterial protein synthesis. Some of the effects of AMP on host immune
cells: (F) induction of autophagy on infected cells; (G) Overexpression of pro- and anti-inflammatory cytokines; (H)

Chemotaxis’ induction L1211

| 2. Animal AMP with Anti-Tubercular Activity
2.1. Cathelicidins

Cathelicidins are a family of mammalian AMP with approximately 30 identified members. However, in humans,
rhesus monkeys, rats, mice, and guinea pigs, only a single cathelicidin is expressed, named LL-37, RL-37,
rCRAMP, mCRAMP, and CAP11, respectively in each species. The peptide is produced in different cells, most

notably in neutrophils, in response to an infection (22,

2.2. Human Defensins

Defensins are small cationic peptides with broad-spectrum activity against bacteria, viruses, and fungi,
predominantly expressed in epithelial cells and neutrophils. They inhibit bacterial growth through various
mechanisms, depending on the defensin itself and its target. Nonetheless, direct cell membrane disruption and
targeting of DNA are two pathways commonly observed. They also exert antibacterial activities through

neutralization of secreted toxins and are responsible for chemotaxis [£3I[141[15]

2.3. Protegrins

The protegrins family is composed of five native AMP sequences identified in porcine leukocytes (PG-1 to PG-5)
[16] These cationic peptides are 16 to 18 amino acids long, and adopt amphipathic B-sheet structure 1428 Against
axenically growing Mtb H37Rv, PG-1 displayed a 68.4% CFU reduction at 64 pg/mL and 96.7% 128 pg/mL,
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whereas against an MDR strain a significant decrease is only achieved at 128 ug/mL (Table 1). Nonetheless, the

peptide displayed a synergistic effect when administered alongside isoniazid 22!,

2.4. Hepcidin

Hepcidin is an AMP involved in iron homeostasis. Iron is extremely important for all living organisms, including
bacteria, participating in major biological processes such as gene regulation and DNA biosynthesis 22, |t is also

required to produce superoxide dismutase which protects them from the hosts’ oxygen radicals 24,

2.5. Lactoferrin

Lactoferrin (LF) is an 80 kDa iron-binding glycoprotein present in various mammalian secretions, such as saliva,
tears, and milk. Its affinity for iron is 300 times higher than serum transferrin [22. Possessing a wide array of
physiological functions such as antimicrobial and immunomodulatory, it plays a significant role in the innate
immune system, being associated with host defence against oral pathogens, given its presence in saliva. Several

peptides with antimicrobial activities are produced by the action of proteases on LF [23],

2.6. Ub2—A Ubiquitin-Derived Peptide

Ubiquitin is a protein that regulates proteasomal degradation, marking its target proteins to be destroyed in the 26S
proteasome 24 Moreover, ubiquitin is responsible for regulating the trafficking of proteins in the endocytic pathway
(23] During an infection, the fusion of the phagosome with the lysosome facilitates the killing of the invading
pathogen through both oxidative and non-oxidative mechanisms. Ubiquitin-derived peptides are the primary
mediators of those non-oxidative mechanisms 28, Ubiquitin itself has no antimycobacterial activity in lysosomal
extracts. However, some of its derived peptides produced by proteolytic degradation of ubiquitin, namely Ub2, are
active £,

2.7. Hcl2

Hcl2 is a fragment of the human mitochondrial protein COX3. It was reported to strongly bind ESAT-6 28, a protein
secreted by Mtb that plays a key role in the mycobacterial pathogenesis, by suppressing the antigen presentation

of macrophages 22,

2.8. Cathepsin G-Derived Peptides

Cathepsin G (catG) is a neutrophil serine protease (NSP) with antimicrobial properties. Stored within the acidic
granules, NSP become active only after being released into the phagocytic vacuole. Furthermore, they are also
components of neutrophil extracellular traps—extracellular fibrillary structures released by neutrophils. These traps

are composed of NSP alongside chromatin and facilitate pathogen arrest B231],

2.9. Venom-Derived Peptides
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Natural toxins can be used therapeutically against several diseases, due to their high specificity for certain cellular
components. Scorpion venom has been studied as a source of those toxins, as it is a mixture of polypeptides,
nucleotides, mucoproteins among other substances 2. Their AMP share relevant characteristics with the ones we
are typically familiar with, such as the presence of hydrophobic and cationic residues, a positive net charge, and

the ability to adopt an amphipathic structure 22!,

2.10. B1CTcub

B1CTcu5 is a 21-amino acids long AMP that belongs to the Brevinin-1 family, sharing a very similar sequence to its
parental peptide. Brevinins are known for their antimicrobial activities against Gram-positive and Gram-negative
bacteria. This cationic peptide was isolated from the skin secretion of the frog Clinotarsus curtipes 3433, Against
planktonic cultures of Mtb H37Rv this peptide was bactericidal, presenting a MIC of 12.5 pg/mL. Moreover, at its
MIC, the peptide was capable of completely inhibiting Mtb growing inside THP1-derived macrophages.

Furthermore, it was deemed as non-toxic against this cell line, proving to be a potential anti-tubercular lead 32!,

| 3. Non-Animal AMPs with Anti-Tubercular Activity
3.1. Bacterial Peptides

Nisin A and lacticin 3147 are two of the best characterized lantibiotics. Ribosomally synthesized peptides produced
by the Gram-positive bacteria Lactococcus lactis, lantibiotics have had their use well-documented in food, animal,
and human applications B8, Mutacin 1140, typically known as MU1140, is derived from Streptococcus mutans
JH1140, has 22 amino acids and presents low levels of toxicity, a high degree of stability, and good
pharmacokinetics [B7[38] | asso peptides are a subclass of ribosomally synthesized and post-translationally
modified peptides characterized by a stable structure. With a broad spectrum of bioactivity, lasso peptides have
been associated with antimicrobial action, including relevant anti-tubercular efficacy 2. Streptomyces has been a
bacterial source of peptides with antimycobacterial properties 9. Most importantly, these bacteria are the source

of streptomycin, the first approved antibiotic used to treat tuberculosis 411,

3.2. Fungal Peptides

Fungal defensins are potent AMP with low toxicity and high serum stability. Through the method of residue
substitution, several variants of plecstasin were generated such as NZX, with reported anti-tubercular activities and
high resistance to proteases’ action 42, Trichoderin A, the peptide with the highest efficacy, was found to exert this

potent antimycobacterial activity through inhibition of the mycobacterial ATP synthesis 43!,

3.3. Plant-Derived Peptides

Capsicum plants, specifically, have been considered as a possible research target in the search for new proteins
and peptides that help defend plants against invading pathogens, given their already described antibacterial

compounds 441451,
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| 4. Taking AMPs from Bench to the Clinic

However, despite their remarkable properties, AMPs still face major challenges to join the pharmaceutical industry.
The primary challenge is the susceptibility to proteolytic enzymes. When administered orally, AMP must overcome
enzymes that operate through the digestive tract, like pepsin, trypsin, and chymotrypsin. Intravenous administration
poses similar challenges, as there are many proteases in blood [“8l. Moreover, intravenous administration
translates into a shorter half-life due to hepatic and renal clearances 44, New design strategies have been applied
to overcome these challenges, with the incorporation of non-natural amino acids, backbone mimetics, conjugation
with fatty acids, and N and C-terminus modifications &, Furthermore, drug delivery systems, using different types
of vehicles such as nanoparticles, liposomes, or different gel formulations, have also been a strategy employed to
reduce proteolytic degradation 49,
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