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Recently, extracellular vesicles (EVs) and their contents have been revealed to play crucial roles in the intrinsic
intercellular communications and have received extensive attention as next-generation biomarkers for diagnosis of
diseases such as cancers. However, due to the structural nature of the EVs, the precise isolation and
characterization are extremely challenging. To this end, tremendous efforts have been made to develop bionano

sensors for the precise and sensitive characterization of EVs from a complex biologic fluid.

biosensors extracellular vesicle nanoparticle nanotechnology optical sensor

electrochemical sensor

| 1. Introduction

Recently, extracellular vesicles (EVs) (50-200 nm in diameter) have emerged as a new biomarker to diagnose
disease progression and monitor treatment efficacy because of their vital role in cell-cell communication and
molecular exchange WEZIE! These cell-derived membrane-enclosed vesicles are physically stable, abundant in
biological fluids (e.g., >101° EVs/mL of blood) and carry cell-specific cargos that are characteristic of their cells of
origin, including proteins and nucleic acids (e.g., micro RNA (miRNA), messenger RNA (MRNA) and DNA) EIBIEIT,
Typically, extracellular vesicles are enriched with a transport or fusion protein (e.g., caveolin-1), tetraspanins (e.qg.,
CD63, CD9, CD81) and heat-shock proteins (Hsp 60, Hsp 70 and Hsp 90) due to the endosomal formation of
vesicles . Most of the nucleic acids (approximately 76% of the total oligonucleotides) inside EVs are non-coding
RNAs (i.e., miRNAs), which are involved in many different roles and functions of cells as post-transcriptional gene
regulators 229 Furthermore, because EVs are actively secreted in large quantities by cells, they are promising
biomarker candidates for the early diagnosis of diseases and sub-sequential monitoring of the therapeutic

response from liquid biopsies in a minimally invasive manner (1],

Despite such clinical potential, the reliable isolation and analyses of EVs from complex biologic fluids are
enormously challenging because of the small size and low density of these biomolecules, thereby necessitating an
extensive sample preparation technique before measurements. Although ultracentrifugation remains the gold
standard for isolation of extracellular vesicles, it still requires expensive instruments, tedious steps and may
introduce some impurities B2, Meanwhile, conventional analytical methods, including western blotting, enzyme-
linked immunosorbent assay (ELISA) and flow cytometry, have also been facing technical hurdles owing to the
limited sample volume, low sensitivity, and/or requirement of specialized high-end equipment L3I14IISIA6ILT]  For

example, the quantification of EVs by ELISA has a limit of approximately 10* in 100-uL of the sample 18, To
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improve the efficiency and sensitivity of EV isolation from a complex biologic fluid, various nanotechnology-based

biosensors have been developed 19]20121],

2. Surface Plasmon Resonance-Based Analysis Methods for
EV Detection

The SPR-based analytical method is an efficient platform for detecting and characterizing molecular interactions
between biologic molecules [2211231241125](26] Thjs method monitors local refractive index changes generated by the
resonant oscillation of stimulated electrons near the sensing surface (i.e., nanoscale metal materials) upon the
binding of a ligand to a target molecule [Z1[28I2930]31] - Owing to this simple and distinctive phenomenon, SPR-
based biosensors have gained extensive attention to develop label-free and real-time biosensors with minimal
sample preparation procedures(22l33]34I35[36l] - Fyrthermore, as the dimension of EVs perfectly matches the
sensing depth of SPR (200 nm), SPR-based biosensors are effective for quantifying EVs from complex biologic
fluids BAE8IAMI | this section, recent studies related to SPR-based exosomal detection platforms are briefly

introduced.

Qiu et al. utilized a nano-thick titanium nitride (TiN) film as an alternative plasmonic material in the SPR biosensing
system for sensitive detection of EVs derived from malignant glioma cells (U251) (Eigure 1A) #1. Based on the
high affinity between the TiN film surface and biotin, the TiN film was functionalized by biotinylated anti-epidermal
growth factor receptor (EGFR) variant-Ill (EGFR vlll) antibodies or anti-CD63 to capture U251-derived EVs. Both
an in vitro cell culture condition and serum were tested to validate the performance of the biosensor in a real
sample condition (i.e., complex biologic fluid). The developed biosensor had a limit of detection (LOD) of 4.29 x
1073-pg/mL for a general EV marker (CD63) and 2.75 x 10~3-pg/mL for the glioma cell-specific marker, EGFR vlII.
Compared with well-known plasmonic metal materials, including gold (Au), TiN even demonstrated better

sensitivity, while having a tunable plasmonic property in the visible to near-infrared spectrum range as well.
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Figure 1. Surface plasmon resonance (SPR) biosensor for extracellular vesicles (EV) detection. (A) Schematic
illustration of TiN nano-thick film functionalized by the anti-CD63 antibody for the detection of EVs; (B) dual Au Np-
assisted signal amplification for the determination of EVs; (C) biophysical interaction of EV with self-assembled Au
NIs without functionalization; (D) Au nanoplasmonic array functionalized with the anti-CD63 antibody for LSPR
based digitalized detection of the EV. (reproduced with permission from ¥ published by WILEY-VCH 2019,
reproduced with permission from 2 published by Elsevier 2019, reproduced with permission from 22! published by

Elsevier 2017 and reproduced with permission from 4! published by Public Library of Science 2018).

3. ColorimetriclFluorescence-Based Analysis Methods for EV
Detection

During the past few years, various types of nanomaterials with unique optical properties have been extensively
applied to develop sensitive biosensors for EV analysis 2143 Among the optical techniques, a promising
nanotechnology-based colorimetric biosensor has been established to detect exosomal biomarkers with the naked
eye based on the extinction coefficient 481471148 | general, nanotechnology-based colorimetric biosensors can be
characterized into two groups based on their different properties of nanomaterials: catalytic properties (i.e.,
nanozymes) and inherent optical properties 9. As an example of the catalytic property, Chen et al. improved the
sensitivity of the traditional ELISA by fabricating a three-dimensional (3D) zinc oxide (ZnO) nanowires-coated

scaffold chip device (Figure 2A) B9 The presence of a hierarchical nanointerface, which was obtained by a 3D
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polydimethylsiloxane scaffold and free-standing ZnO nanowires, provides high capture efficiency of EVs as a result
of the large surface area, as well as a size exclusion-like effect. After the isolation, a colorimetric assay based on
horseradish peroxidase (HRP)-labeled antibody and 3,3',5,5'-tetramethylbenzidine was performed for the
guantitative analysis of EVs. Based on the improved sensitivity compared with a commercial ELISA, down to 2.2 x
10* EVs/uL was detected with a linear range of 2.2 x 10°-2.4 x 10’ EVs/uL. Likewise, Zhang et al. integrated a
microfluidic chip with self-assembled 3D herringbone nanopatterns to promote microscale mass transfer by
increasing the surface area for efficient EV isolation (51 Combined with a colorimetric method, the LOD achieved
was down to 10 EVs/mL. Moreover, the quantitative detection of circulating exosomal CD24, EpCAM and folate

receptor—alpha protein for diagnosing ovarian cancer was demonstrated using only 2 L of plasma.
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Figure 2. Colorimetric/fluorescence biosensor for EV detection. (A) Schematic diagram of the ZnO-nanowires-
coated three-dimensional (3D) scaffold chip for EV detection; (B) utilization of peroxidase-like activity of graphitic
carbon nitride nanosheets (g-C3N4 NSs); (C) fluorescence resonance energy transfer (FRET) biosensing system
based on aptamer and graphene oxide (GO); (D) multifunctional nanorods (NRs) based exosomal miRNA signal
amplification based on metal-enhanced fluorescence effect. (reproduced with permission from B9 published by
Elsevier 2018, reproduced with permission from 52 published by American Chemical Society 2017, reproduced
with permission from 23 published by American Chemical Society 2018 and reproduced with permission from 54

published by American Chemical Society 2019).

| 4. Conclusions and Future Perspective
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This review article focused on biosensors that integrate nanotechnology with diverse analytical methods, including
SPR-, fluorescence-, electrochemical- and Raman-based strategies for the effective measurement of EVs as
biomarkers in diagnosing several diseases. Due to the inherent properties of nanomaterials (high surface-to-
volume ratio, high reactivity and signal-enhancing effect), the precise and sensitive detection of EVs could be
demonstrated. In addition, specific properties and multifunctionalities of each nanomaterial could facilitate the
efficient measurement of EVs present in real samples. Most of the presented EV biosensors showed improved
sensitivity by using functionalized nanomaterials and unique strategies. Besides the four representative analytical
methods, others, such as field-effect-transistor [52l38] mechanical changes using a cantilever or quartz crystal
microbalance BZBEISY gnd giant magnetoresistance 9 could also be integrated with nanotechnologies to
measure EVs. In this context, nanotechnology-integrated detection systems could be expanded to diverse
analytical methods. In addition, label-free detection of EV can be developed by exploiting the high sensitivity of
nanomaterials. One study presented a nanogap-integrated plasmonic sensing platform for EV detection without a
Raman probe labeling step [1. For improving the sensitivity, they used nanogap combining sub-volt
dielectrophoretic trapping and Au NPs for real-time SERS imaging. Another study fabricated graphene-
functionalized Au nanopyramids on SiO, and successfully characterized EVs isolated from different biologic

sources using unbiased principal component analysis 62,

Besides detecting EVs by their specific surface proteins, encapsulated biomolecules, such as miRNA, mRNA and
protein, could be important biomarkers for the diagnosis of diseases. Some exosomal miRNAs have been utilized
as cancer biomarkers (631641651 However, the expression levels of one miRNA could not indicate the presence of
diseases precisely. Therefore, profiling of exosomal miRNA or other biomolecules will be more important for
obtaining precise and personalized information, as well as diagnostic information or drug sensitivity. To this end,
the isolation, rupture, and other pretreatment steps should be integrated into the sensing platform for collecting the
encapsulated biomolecules efficiently. A powerful tool to leverage the functionality of biosensors is artificial
intelligence-driven multi-technology bioprinting systems. On this wise, isolation, rupture, and other pretreatment
steps should be integrated on the sensing platform for collecting the encapsulated biomolecules efficiently, as well
as detection of the EV itself precisely. EV presents in diverse body fluids, such as blood, saliva, urine and
interstitial fluids. For efficient measurement of EV in several real samples, preparation steps are very important to
prevent pulse-positive signals and reduce trivial noise. Therefore, integrated platforms of sample preparation,
detection, and analysis modules will be further developed with various nanotechnology to improve their
performances. The concept of “organ-on-a-chip” is emerging for the etiology and drug screening of several
diseases. For efficient drug testing, EV biosensors as a sensing module can provide real-time monitoring and fast
response to the drugs on disease-emulated “organ-on-a-chip.” Currently, “organ-on-a-chip” operates as a proxy for

in vitro and in silico research.

In conclusion, nanotechnology can be combined with EV biosensors to improve sensing capabilities, such as high
selectivity, high sensitivity, straightforward and rapid detection, multi-detection and in situ monitoring. Here, we
report the present status in the integration of nanotechnology-based biosensor platforms and analytical methods
(SPR-, fluorescence-, electrochemical-based and Raman-based measurements) for detecting EVs. Each method

has unique properties and suitable nanotechnologies are effortlessly utilized to improve the sensing performances.
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On this wise, isolation, rupture, and other pretreatment steps should be integrated on the sensing platform for
collecting the encapsulated biomolecules efficiently, as well as detection of the EV itself precisely. EV presents in
diverse body fluids, such as blood, saliva, urine and interstitial fluids. For efficient measurement of EV in several
real samples, preparation steps are very important to prevent pulse-positive signals and reduce trivial noise.
Therefore, integrated platforms of sample preparation, detection, and analysis modules will be further developed
with various nanotechnology to improve their performances. In the immediate future, it is expected that micro total
analysis systems and advanced “organ-on-a-chip” platforms with nanomaterial-based sensing modules for EVs will
provide a robust in vitro drug development in platforms that can replace in vitro cell culture models and in vivo
animal models and enable in vitro personalized investigations. Recently, multifunctional nanomaterials have been
exploited to possess remarkable properties, such as enhancement of electron transfer reactions and improvement
of quantum vyield, for sensitive detection of optical properties. The development of nanotechnology will offer
innovative and creative directions to develop novel biosensing platforms for EVs to increase the full recovery rate

of diseases through the early diagnosis at a low level of exosomal biomarkers in real samples.
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