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Cisplatin is a highly effective, broad-spectrum chemotherapeutic drug, yet its clinical use and efficacy are limited by its

side effects. Particularly, cancer patients receiving cisplatin chemotherapy have high incidence of kidney problems.

Hypoxia-inducible factor (HIF) is the “master” transcription factor that is induced under hypoxia to trans-activate various

genes for adaptation to the low oxygen condition. Numerous studies have reported that HIF activation protects against

AKI and promotes kidney recovery in experimental models of cisplatin-induced acute kidney injury (AKI). In contrast, little

is known about the effects of HIF on chronic kidney problems following cisplatin chemotherapy. Prolyl hydroxylase (PHD)

inhibitors are potent HIF inducers that recently entered clinical use. By inducing HIF, PHD inhibitors may protect kidneys

during cisplatin chemotherapy. However, HIF activation by PHD inhibitors may reduce the anti-cancer effect of cisplatin in

tumors.
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1. Introduction

Cisplatin is an effective and broad-spectrum chemotherapeutic agent for various kind of tumors. Though being used

worldwide, the therapeutic efficacy of cisplatin is limited, to some extent, by its side effects in normal tissues including

ototoxicity, neurotoxicity, and nephrotoxicity . Among them, cisplatin-induced kidney injury or nephrotoxicity is life-

threatening and has attracted great attention with numerous studies focusing on its underlying mechanisms and potential

therapeutic strategies . Cisplatin can induce both acute kidney injury (AKI)  and the chronic kidney diseases (CKD)

following AKI .

Hypoxia is a common factor involved in the development of renal pathology in both AKI and CKD [10]. Hypoxia-inducible

factor(HIF) is generally considered as the core regulator for maintaining oxygen homeostasis due to its crucial role in

cellular sensing and adaption to hypoxia . As a transcription factor, HIF binds to DNA in a sequence-specific manner

to promote or repress the transcription of multiple genes. HIF is widely involved in various biological processes, such as

oxygen sensing, angiogenesis, vasodilation, erythropoiesis, metabolism, inflammation, and cell-cycle regulation .

Several studies have reported that HIF may participate in cisplatin-induced nephrotoxicity. However, most of these studies

focus on cisplatin-induced AKI and find that HIF activation may protect against tubular cell injury and promote kidney

recovery . The lack of information of HIF in AKI to CKD progression and chronic kidney problems following

cisplatin exposure make it an urgent need to study the regulation of HIF in these conditions.

Hypoxia is a known condition in solid tumors due to abnormal cancer cellular proliferation, expansion of tumor size and

disruption of angiogenesis. As such, HIF is activated in tumors for cellular adaptation, and studies have found that

inhibition of HIF may be an anti-cancer strategy under some circumstances . In cisplatin chemotherapy, the activation

of HIF for kidney protection may therefore antagonize the anti-tumor effects. Thus, when considering HIF activation as a

kidney-protective strategy in cisplatin chemotherapy, the effect on cisplatin's anti-tumor efficiency has to be taken into

consideration.

2. HIF in Cisplatin-Induced AKI 

Over the past few decades, several studies demonstrated the evidence for a reno-protective role of HIF in cisplatin-

induced AKI. These studies are summarized in Table 1.

Table 1. Summary of studies about the role of HIF in cisplatin-induced AKI.

[1]

[2][3] [3][4]

[5][6][7]

[8][9][10]

[11][12]

[13][14][15][16]

[17]



Number　 Model
Strategies for
HIF Regulation

Involved
HIF
Isoforms

Is HIF
Activated
or
Inhibited

Effects
Underlying
Mechanisms

Reference

1 Rats

cobalt

HIF-1 and

HIF-2,
activated

attenuate

AKI apoptosis

reduction via

regulating

mitochondrial

pathways　 IRPTC, HIF-1 activated

improve

IRPTC

survival

2 Rats;

Carbon

monoxide

preconditioning

HIF-1 activated
attenuated

AKI

apoptosis

reduction

　
HCK-8

cells
HIF-1 activated

reduced

apoptosis,

increased

proliferation

3 Mice;

PHD inhibitor

FG-4592

HIF-1 activated
attenuated

AKI apoptosis

reduction,

ameliorated

inflammation　
HK-2

cells
HIF-1 activated

reduced

apoptosis

4 Rats deferiprone HIF-1 activated
attenuated

AKI

reduce

apoptosis with

increased

Mcl1 and

survivin

expression

5 Mice
EC-specific

Phd2+/- mice

HIF-1,

HIF-2
activated

attenuated

AKI

induced

antioxidative

response

6
HK-2

cells

lentivirus-

mediated HIF-

1α-transfected

hASCs

HIF-1 activated

reduced

apoptosis

and

improved

cellular

morphology

reduced

apoptosis

7 Mice

lentivirus-

mediated HIF-

1α-transfected

hASCs

HIF-1 activated
attenuated

AKI

reduced

apoptosis,

ameliorated

inflammation

IRPTC, immortalized rat proximal tubular cells; HCK-8, human renal proximal tubular cell line; HK-2, human proximal

tubule epithelial cells; Mcl1, Myeloid cell leukemia-1; EC, endothelial cell; hASCs, Human adipose-derived stem cells.
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HIF induction in cisplatin-induced AKI has been reported by several studies though whether cisplatin can directly activate

HIF is still controversial. It is possible that in in vitro conditions, the existence of normal oxygen (21% O  level usually used

for cell cultivation) may prevent HIF activation with cisplatin injury. However, in in vivo conditions, cisplatin-induced

vascular damage and renal blood flow reduction may break the balance between low delivery and high consumption of

oxygen in renal tubules,  leading to severe local hypoxia . Though with some variations in different in vivo models, HIF

is likely activated due to this local hypoxia after cisplatin injury.

Consistently, the protective effect of HIF activation has been reported in several studies , The in vivo and in vitro evidence

implicates that HIF up-regulation can be an effective therapeutic strategy for preventing cisplatin-induced AKI. 

. Currently, the underlying mechanism for the reno-protection of HIF in cisplatin induced nephrotoxicity has been

explored but not completely understood (Figure 2). In most of the studies, the reduction of renal tubular apoptosis has

been reported . In addition, HIF activation is also associated with anti-oxidative effects, showing less lipid

peroxidation , which may be related to ferroptosis inhibition. Furthermore, HIF activation may protect endothelial cells

because angiogenesis-related genes such as VEGF may be induced . The anti-inflammation effect of HIF activation

may also contribute to its reno-protection. HIF upregulation by PHD inhibitor or HIF-1α overexpression can significantly

reduce multiple cytokine release after cisplatin injury, which can lead to less inflammatory cell infiltration and reduced

renal injury . Finally, HIF also interacts with other pathways that are involved in the development and progress of

cisplatin-induced AKI, like cell cycle arrest, autophagy. In conclusion, current evidence indicates that HIF activation is

beneficial to the kidney during cisplatin chemotherapy. Further investigation on HIF-1 and its interaction with other cellular

process may reveal deeper understanding and novel therapeutic targets of cisplatin-induced AKI.

Figure 2. The involvement of HIF in cisplatin-induced nephrotoxicity. During cisplatin chemotherapy, HIF may protect

kidneys from AKI and CKD by the inhibition of tubular cell death, the regulation of cell proliferation, the suppression of

kidney inflammation, and the attenuation of vascular damage.

 

3.HIF in Cisplatin-Induced AKI to CKD Progression

Numerous evidences have demonstrated that tubulointerstitial hypoxia is not only an essential contributor to AKI but also

a key player in CKD. Chronic hypoxia is considered as a common pathological condition in CKD . Though studies

have revealed that multiple pathophysiological mechanisms are related to cisplatin-induced AKI to CKD progression 

, the investigation focusing on the role of HIF in this field is lacking. Nevertheless, HIF is a potential player in

this process because of its essential role in hypoxia and its interactions with multiple pathophysiological procedures

involved in the progression of CKD such as as tubular cell proliferation, oxidative stress, inflammation and interstitial

fibrosis (Figure 2).

4.Therapeutic Potential of HIF in Cisplatin Chemotherapy

In view of the role of HIF in cisplatin-induced nephrotoxicity, targeting or activating HIF and its related pathways may be a

therapeutic strategy. PHD-pVHL pathway plays a vital role in HIF regulation, and pharmacological or genetic inhibition of

PHD activity is under intensive research in kidney diseases [18,45,167,168,181–185]. The role of

regulating HIF in cisplatin-induced nephrotoxicity is summarized in Table 1; besides the evidence that HIF accumulation
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by PHD inhibitors treatment protects against cisplatin-induced nephrotoxicity [ ], studies have reported beneficial effects

of PHD inhibitors in other kidney diseases including ischemic AKI , diabetic nephropathy , obesity related kidney

disease , chronic tubulointerstitial nephritis , and remnant kidneys models of CKD . A great breakthrough in this field

is that PHD inhibitors have been proved to have a therapeutic effect in anemia, a complication of CKD that contributes to

poor clinical outcome . 

Notably, although HIF activation may have protective effect on kidney during cisplatin chemotherapy, it may attenuate the

anti-cancer effects of cisplatin in tumors [195]. Studies have revealed HIF overexpression in multiple tumors  and

found that HIF is closely related to tumor resistance to cisplatin . More studies showing HIF's involvement in

cancers during cisplatin chemotherapy are summarized in Table 2. In general, inhibiting HIF has been shown as a

powerful strategy to reinforce anti-cancer efficiency of chemotherapeutic strategies including cisplatin . Thus, in

cisplatin chemotherapy, activating HIF is a double-edged sword. The failure to balance its effects on cisplatin’s anti-tumor

function and nephrotoxicity may limit its application in cisplatin-induced AKI or CKD.  Therefore, the clinical application of

PHD inhibitors to reduce the side-effect of cisplatin requires further investigation and evaluation.

In conclusion, when considering therapeutic strategies activating or targeting HIF in cisplatin-induced nephrotoxicity, more

comprehensive and rigorous work is still needed to identify novel chemicals or drug delivery techniques to achieve the

maximal reno-protective effect without diminishing the anti-tumor efficacy of cisplatin.

Table 2. Summary of studies about therapeutic potential of HIF in cisplatin chemotherapy.
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14

Tumor-bearing
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1-methyl-1, 9 PA, 1-methyl-1, 9-pyrazoloanthrone; ABCB1, ATP Binding Cassette Subfamily B Member 1; ABCB5, ATP

Binding Cassette Subfamily B Member 5; MDR1, multidrug resistance-1; MRP, multidrug resistance-associated protein;

ESCC, esophagus squamous cell carcinoma; NPC, nasopharyngeal carcinoma; EPAS1, Endothelial PAS Domain Protein
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