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ZnSnO  semiconductor nanostructures have several applications as photocatalysis, gas sensors, and energy harvesting.

However, due to its multicomponent nature, the synthesis is far more complex than its binary counter parts. The

complexity increases even more when aiming for low-cost and low-temperature processes as in hydrothermal methods.

Knowing in detail the influence of all the parameters involved in these processes is imperative, in order to properly control

the synthesis to achieve the desired final product. Thus, this paper presents a study of the influence of the physical

parameters involved in the hydrothermal synthesis of ZnSnO  nanowires, namely volume, reaction time, and process

temperature. Based on this study a growth mechanism for the complex Zn:Sn:O system is proposed. Two zinc precursors,

zinc chloride and zinc acetate, were studied, showing that although the growth mechanism is inherent to the material

itself, the chemical reactions for different conditions need to be considered.

Keywords: ZnSnO3 ; Nanowires ; Hydrothermal synthesis ; ZTO

1. Introduction

As a result of its impressive multifunctionality, ZnO-based thin-films and nanostructures have received a lot of attention in

the last decade . While ZnO on its own captured a large interest, doping or mixing with other binary compounds

brings a new level of possibilities, as the material properties can be improved/tailored to different applications depending

on the cationic ratio. This has been widely explored in oxide thin-films, for example with zinc-tin oxide (ZTO) . ZTO

structures crystalize by solid-state reaction in the stable inverse spinel ortho-stannate Zn SnO  phase or  in the

metastable ZnSnO  phase, either in perovskite (orthorhombic, orth, or face centered, fcc) or rhombohedral forms .

ZnSnO  is a ferro/piezoelectric material with a high polarization along the z-axis (~59 μC/cm ) which is much higher than

that of ZnO (~5 μC/cm ) . Its band-gap of 3.9 eV is higher than that of Zn SnO  .

While vapor phase processes can be used to synthesize high-quality ZTO nanostructures , these are expensive,

cumbersome and require high temperatures (>700 °C). The demand for low-cost processes compatible with flexible

substrates requires solution processes that allow for the synthesis of nanostructures at low-cost, using simple and easy

methods, ideally upscalable to industrial-scale quantities .

2. Seed-Layer Free Hydrothermal Synthesis of ZnSnO Nanowires

The multicomponent nature of ZTO makes the synthesis process quite challenging, given the different ionic sizes and

diffusivity of the cations. Furthermore, each ZTO structure has different nucleation and growth times and requires a

specific range of synthesis temperature . In literature it has been shown the possibility to control the shape and type of

the nanostructures and consequently the electrical, optical, and mechanical properties, by controlling the chemical and

physical parameters of the synthesis .

In this study, ZnSnO  nanowires were synthesized via hydrothermal method in a conventional oven . Briefly, the

ZTO hydrothermal synthesis was performed by dissolving zinc chloride, ZnCl , (or zinc acetate, ZnAc) and tin chloride

(SnCl ·5H O) separately in deionized water and then mixing these solutions. The surfactant ethylenediamine (EDA) was

then added and stirred for 30 min, after which the mineralizer sodium hydroxide (NaOH) was added. The solution was

then transferred into an autoclave and kept in an electric oven varying the temperature and the reaction time. The final

product comprising the nanostructures was alternately washed with deionized water and isopropyl alcohol and

centrifuged. After washed, the nanostructures were dried at 60 °C, in vacuum. Aiming to study the influence of the

chemico-physical parameters in the ZTO nanostructures growth, the conditions showed in Table 1 were tested. This work

was conducted without employing any seed-layer in the synthesis of ZTO nanostructures; hence, the obtained structures

depend exclusively on the chemico-physical parameters of the synthesis. Moreover, the obtained nanostructures are in

powder form, which through a variety of transfer methods allow for a higher degree of freedom for integration on different

substrates, without contamination from the seed-layer material .
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Table 1 – Conditions studied to optimize the hydrothermal synthesis of ZnSnO  nanowires.

3. Influence of Chemico-physical Parameters of the Synthesis in the
ZnSnO  Nanowires Growth

Two zinc precursors were used in this study and their solubility in the surfactant (EDA) showed to be one of the critical

parameters to optimize the synthesis of the ZnSnO  nanowires. Comparing the tin precursor solubility in EDA with the zinc

precursors’ solubility it was possible to conclude that the lower solubility of ZnAc favors tin-based structures while the

higher solubility of ZnCl  promotes zinc-based structures. This results in different optimal values of Zn:Sn molar ratios, for

each of these two precursors. Furthermore, using ZnCl as zinc precursor results in larger and significantly more

homogeneous nanostructures (less mixture of phases/structures) and more reproducible reactions, which is due to its

higher solubility, promoting a faster evolution of the species in synthesis. As directing growth agent, the surfactant has

crucial role to achieve the nanowire form. Similarly to what is observed for the NaOH concentration, the EDA

concentration influences the solution’s pH which favors the formation of either tin-based structures (lower concentrations)

or zinc-based structures (higher concentrations). The growth of ZnSnO  nanowires was achieved for intermediate values

only, proving that both EDA and NaOH optimal concentrations are a compromise between the role they play in the

synthesis and their influence on the pH .

ZnSnO  is achievable for more energetic syntheses, i.e., under higher pressure (higher volume), while for lower energetic

processes the more energetically stable phases (Zn SnO  and SnO ) are obtained. It was observed that at least 12 h of

synthesis at 200 °C were necessary to predominantly obtain nanowires, while very long synthesis (36 h), or at higher

temperatures (220 °C) result in the decomposition of the ZnSnO  phase into Zn SnO  and SnO  .

The optimal conditions to achieve the ZnSnO  nanowires were a Zn:Sn molar ratio of 2:1 (1:1) using ZnCl  (ZnAc) as zinc

precursor, a NaOH concentration of 0.24 M with a H O:EDA volume ratio of 7.5:7.5 mL:mL for syntheses at 200 °C for 24

h (Figure 1). This shows the viability of the hydrothermal process to achieve a metastable ZTO phase at low

temperatures, provided that proper control of the synthesis parameters exists.

Figure 1 – ZnSnO  nanowires produced using as zinc precursor (a) ZnCl  and (b) ZnAc. From reference .

4. Properties and Applications

The ZnSnO  nanowires achieved were characterized concerning their optical, electrical and piezoelectrical properties,

resulting in electrical resistivity (measured in vacuum inside SEM) of 1.4 kΩ·cm, optical band-gap of 3.6 eV and

piezoelectric constant of 23 pm/V . These properties allow to envisage application on numerous next-generation

nanoscale devices such as nanogenerators (reported in ), sensors, photocatalysis, solar cells, resistive switching

memories, and transistors .
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