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Radiomics is an emerging translational field of medicine based on the extraction of high-dimensional data from

radiological images, with the purpose to reach reliable models to be applied into clinical practice for the purposes of

diagnosis, prognosis and evaluation of disease response to treatment.
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1. Introduction

In the last few years, the inclusion of standard digital imaging among the possible sources of big data for precision

medicine has represented one of the new frontiers of research. Particularly, radiomics, the “omic” field related to

diagnostic imaging, has been viewed as a great opportunity for several medical fields, yielding the most interesting results

in oncology. Radiomic tumor analysis, including intra and inter-tumor heterogeneity, tumoral micro-environment and

infiltrating cells, aims to extract quantitative features from medical imaging that are potentially beyond the perception of

the human eye, in order to uncover novel features that are associated with treatment outcomes, disease molecular

expressions or patient survival.

Moreover, recent technological advances in the field of computation and artificial intelligence (AI) applied to radiomics,

hold promise in addressing challenges in its application . In breast cancer, radiomics has been recently applied to

identify molecular phenotypes and lymph node metastases, to evaluate treatment response and to predict disease

survival .

2. Why Do We Need Radiomics in the Breast Cancer Care?

Breast cancer (BC) is the tumor with the highest incidence worldwide . Although the screening and the advancements in

personalized treatments have improved survival, it is estimated that BC related deaths will increase 43% globally from

2015 to 2030 .

At present, the diagnosis of early BC is based on radiological evaluation and histopathological confirmation of malignancy

on biopsy samples . With such approach is possible to characterize molecular alterations safely and effectively but

have inherent limitations due to tumor heterogeneity and accessibility, as well as from procedure related risks .

Notably, the BC heterogeneity (which also undergoes temporal variation) is recognized as an important factor leading to

cancer treatment failure and poor prognosis . The quantification of heterogeneity relies on identification of various

biomarkers, by the use of either tissue biopsy or medical imaging features. While the image-guided biopsies offer

excellent spatial resolution for tissue analysis on a cellular scale and allow genetic and molecular sequencing ;

however, biopsy is limited by risks of invasive procedures and focal sampling errors and limitation by tumoral

characteristics such as small size, location or heterogenous necrosis .

Radiomics has the capability to analyze both temporal and spatial heterogeneities through quantitative serial data

evaluation and recent advancements in radiomics analysis provide the potential to retrieve useful incremental information

to characterize molecular alterations from standard imaging data in a non-invasive way . However, radiomics currently

suffers from lack of validation and standardization: further developments and improvements are needed to achieve

reliable and clinically applicable results .

Whatever the method, the accurate biological assessment of BC is crucial because each subtype has its own biological

and genetic profile with a subsequent different prognosis and treatment options. Subtypes are characterized by distinct

molecular profiles, proliferation rates, tumor receptors and grade. Due to their potential effect on prognosis and clinical
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management, four biomarkers are tested consistently in biopsies and excision specimens of BC: estrogen receptor (ER),

progesterone receptor (PR), human epidermal growth factor receptor 2 (HER2) and Ki67 antigen .

Prognosis for early-stage ER-positive/HER2-negative BC is usually excellent  and most of the invasive BCs hormone

receptor positive show a more indolent clinical course . Therefore, PR and ER status are considered as strong positive

predictive factors since the advent of targeted hormone therapy.

At present, tumors are often classified as “luminal-A” or “luminal-B”, human epidermal growth factor receptor 2 (HER2)-

overexpressing and triple negative (TN), based on immunohistochemical analyses . Luminal A are cancers with

ER+, PR+ and Ki67 < 20% and ER+, PgR+/− and Ki67 < 14%, and the best prognosis. Luminal B are cancers with ER+

but may have variable degrees of ER/PR expression, are higher grade and have higher proliferative fraction. HER2-

overexpressing BC are ER−, PR− and HER2+ and they have a poorer prognosis than luminal BCs while the TN cancers

(ER−, PR− and HER2−) have the poorest survival rate. These classifications could be used to inform adjuvant treatment

decisions. Specifically, either grading or Ki-67 could be used to distinguish between the Luminal-A- and B-like .

Accordingly, biomarkers are crucial to tailor treatment strategies to the individual patient in the paradigm of personalized

medicine . However, the only way to obtain the biological profile of BC is currently through a tissue sample via surgery

or biopsy. For this purpose, a new non-invasive technique based on imaging would be worthwhile. Radiomics, through the

conversion of standard digital imaging into mineable, quantitative data expressing different tumor properties, has gained

recognition as a new tool in the field of cancer care for non-invasively profiling of BC .

Particularly, the ultimate purpose of radiomics applied in BC care should be early diagnosis of BC and prediction of its

clinical course and biological aggressiveness in order to optimize treatment .

The imaging evaluation of BC through mammography, ultrasound (US) or magnetic resonance imaging (MRI) is currently

essentially qualitative. This includes subjective evaluations such as tumor morphology/structure, type of enhancement,

anatomic relationship to the surrounding tissues. However, to reach a truly personalized medicine, a quantitative

evaluation is demanded too . Data derived from radiomics investigation, such as the intensity, shape, textural related

features and wavelength related transforms, may provide valuable information to differentiate benign from malignant

lesions, to predict treatment response, to assess cancer molecular profile and to derive robust models that combine

multidisciplinary information .

3. The Workflow of a Radiomic Study

Most of radiomics studies concerns its application in the oncological field and the first step is generally to acquire the

appropriate images. The Quantitative Imaging Biomarker Alliance and Quantitative Imaging Network have defined

standardized imaging protocols and recommendations in the field of quantitative imaging  to improve the reproducibility

of radiomics studies, which remains one of the biggest drawbacks currently limiting their clinical application.

Radiomics features are generally extracted from routine medical images that decode information about a region of interest

(ROI) which are specified to limit the spatial extents of the analysis and can be delineated manually, semi-automatically or

automatically, with increased reproducibility for textural features extracted with automatic segmentation algorithms

compared to free-hand region delineation . Feature extraction from the ROIs is performed using specific algorithms and

are thus objective imaging features, with standard mathematical definition of the most common features .

An example of MRI-based radiomics workflow for features extraction is shown in Figure 1.
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Figure 1. Example of MRI-based radiomics workflow. The first phase is the image acquisition (i.e., by breast MRI with

contrast-enhancement sequences), then (orange arrow) the ROI segmentation could be performed manually or by

automatic or semi-automatic software, finally (orange arrow) the radiomic features are extracted and selected by

algorithms. An example of a semi-automatic segmentation by a threshold value method is shown in the three figures

below (blue arrows). ROI: region of interest, DCE-MRI: Dynamic contrast enhancement-Magnetic resonance imaging.

The features can be broadly classified into four categories: morphological, histogram-based, textural and related to the

gray level co-occurrence matrix and to transform-based features . Morphological features describe different aspects of

the lesion shape, such as volume, surface area, convexity or the borders heterogeneity. Histogram-based features

characterize the histogram of voxel intensities, including the average value, standard deviation and parameters related to

the histogram shape such as skewness and kurtosis. Textural features focus on the spatial arrangement of voxel

intensities, trying to capture different properties of their distribution in terms of heterogeneity, randomness, presence of

clusters or privileged signal directions. All these features can be calculated from the images as they are, or after applying

mathematical transforms, such as wavelet of Laplacian of Gaussian (LoG), resulting in the so-called transform-based

features. While hundreds or thousands of features may be computed, only a selection of fewer (and more specific)

features is required to compute a clinically useful radiomic signature. Features whose value is not stable when images are

repeatedly acquired under the same experimental condition (referred to as unstable or not repeatable features) should be

identified a priori, by means of phantom studies or, if feasible, test-retest acquisitions in the clinical setting and eliminated

. Usually, a big gap between the number of features extracted (p) within a study and the number of patients actually

recruited (n) remains, leading commonly to p>>n, with the risk to build radiomic models with high predictive accuracy in

the experimental dataset but with extremely poor generalizability of the results, due to precise modelling of dataset “noise”

instead of the true biological behavior. To overcome this problem feature selection and dimension reduction is of utmost

importance, and different approaches can be performed, including rigorous algorithms such as principal component

analysis, LASSO or Boruta . The desired response variable differs based on the study, and models are built using the

selected features to suit specific aims. For classification problems (e.g., benign vs malignant lesions), various classifiers

are used including support vector machine (SVM), random forest (RF) and XGBoost classifiers. To predict continuous

variables, such as the expression of biological markers, various regression methods including linear regression,

regularized linear regression and RF are commonly used. For prediction of survival, Cox regression models with or

without LASSO approach are finally performed.

Most radiomics studies involve a mixture of biomedical imaging specific techniques related to signal processing and

proper AI applications, a broad field of computational techniques which includes machine learning (ML) and deep learning

(DL) algorithms, the latter being often “black-box” and self-learning neural networks, with less dependence on human

input in the model building step . Given the high number of features obtained within radiomics studies and the often-

non-linear relationships involved, these techniques offer a better approach in clinical predictive modeling compared to

traditional inferential statistic and if properly applied, can limit model overfitting. Since a number of radiomics studies

focused on BC are limited to single-center data lacking external validation, cross-validation with a leave-one-out, k-fold

approach or with bootstrapping can be adopted using splits of the data into training and validation sets .

However, the optimal method of validation remains external dataset independent validation, which is typically

accomplished in multi-center studies. However, acquiring multi-center data is challenging, so the solution may be to

leverage an open database such as the cancer genome atlas program (TGCA), to acquire the external validation data.

As previously elucidated, reproducibility and standardization of radiomics analysis is currently the biggest issue. This

partly because of the intrinsic high number of different steps involved and partly because every one of each can be
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performed in several different ways. The retrospective nature of studies, the heterogeneity of software and the variability

of the radiomics features that can be extracted in the different studies raise legitimate concerns regarding the potential

lack of reproducibility in radiomics. It is good practice to acquire imaging data using standardized settings that should be

well documented in published papers, in order to be accurately evaluated during peer-review and be available to different

research teams working on the same field. Data obtained under such settings should be shared on public repositories in

order to receive appropriate external validation.

4. Radiomics Application in Breast Cancer

Even though there are studies about radiomics based on mammography, digital breast tomosynthesis (DBT), US and

even PET/CT, in BC imaging scenario the radiomics approaches have been investigated mainly with MRI and, in the very

last few years, with the contrast enhancement spectral mammography (CESM). However, results of most studies have

been derived from relatively pure study designs, with homogeneous patient populations where the MRI was sourced from

specific scanner systems and a single field strength. This limits their wider applicability and generalizability at present.

Table 1 and Table 2 summarize in our opinion the most relevant original studies and reviews, respectively, on radiomics in

breast imaging published in peer reviewed journals from 01/2018 to 01/2021. Results from other interesting studies are

briefly discussed only in the text.

Table 1. Original studies on radiomics in breast imaging published in peer reviewed journals from 01/2018 to 01/2021,

classified on modality/technique and ordered by newest first. Relevant papers were obtained with a scoping review

approach, using the following set of keywords and the relative controlled vocabulary terms (Mesh/Emtree): (radiomic* OR

textur*) AND (breast) AND (cancer* OR malign* OR neoplas* OR metast* OR tumor* OR tumour*). The same approach

was conduct for Table 2, which includes only review papers. ALN: axillary lymph node, AUC: area under the curve, BC:

breast cancer, CESM: contrast enhancement spectral mammography, DCE: dynamic contrast-enhanced, ML: machine

learning, NACT: Neoadjuvant Chemotherapy, pCR: pathological complete response, SD: standard deviation, TNBC: triple-

negative breast cancer, T1WI: T1 weighted imaging, T2WI: T2 weighted imaging, VOI: volume of interest.

Modality/Technique Author Purpose

Radiomics
Features
Category and
Purpose

Population Results Conclusion

CESM Lin et al.,
2020 

Identification of
benign and

malignant BC
lesions <1 cm

Radiomics
features

extracted from
low-energy and

recombined
images on CC

position

139 patients

The radiomics
nomogram

combined with
Radiomic-
score, BI-

RADS
category and
age showed

AUC of 0.940.

The radiomics
nomogram

incorporated
with CESM-

based
radiomics

features, BI-
RADS category
and age could
identify benign
and malignant

BC <1 cm

CESM Mao et al.
2020 

Pre-operative
prediction of

ALN metastasis

LASSO logistic
regression was
established for

feature selection
and utilized to

construct
radiomics
signature

394 patients

ROC curves of
0.774, 0.767

and 0.79 in the
training,
internal

validation and
external

validation
sets,

respectively.

Authors
identified the

cutoff score in
the radiomics
nomogram as
−1.49, which

corresponded
to a total point
of 49 that could
diagnose ALN

metastasis with
a sensitivity of

>95%.
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Modality/Technique Author Purpose

Radiomics
Features
Category and
Purpose

Population Results Conclusion

MRI

Tan et al.,
2020 

Value of
radiomics

feature
extracted on

the fat-
suppressed

T2WI for
preoperative

predicting ALN
metastasis in

BC

17 texture
features, 5 first-
order statistical
features, patient
age, tumor size,
HER2 status and

thrombus

329 BCs

Sensitivity,
specificity,

accuracy and
are under the
curve value of

radiomics
signature
65.22%,
81.08%,

75.00% and
0.819.

The MRI-based
radiomics

signature and
nomogram

could be used
as a non-

invasive and
reliable tool in
predicting ALN

metastasis.

Choudhery
et al., 2020

Assessment of
BC molecular
subtype, pCR
and Residual

Cancer Burden
in BC Patients
Treated with

NACT

Morphological
and three-

dimensional MRI
textural features
were computed,

including
unfiltered and
filtered image

data, with
different spatial
scaling factors

259 BCs

Differences in
minimum

signal
intensity and

entropy
among the

tumor
subtypes were

significant.
Sphericity in

HER2+ tumors
and entropy in

luminal
tumors were
significantly
associated
with pCR.
Multiple
features

demonstrated
significant
association

with
pathological

complete
response and

residual
cancer burden
in TNBC with

SD of intensity
achieving the
highest AUC

for pCR in
TNBC.

MRI radiomics
features are

associated with
different

molecular
subtypes of

breast cancer,
pathological

complete
response and

residual cancer
burden.

Hao et al.,
2020 

Contralateral
BI-RADS 4

lesion
assessment

1046 radiomic
features 178 BCs

DCE-T1WI and
T2WI imaging

features
signatures
yielded an

AUC of 0.77,
which was

better than the
AUC of each

signature
alone.

The MRI
radiomics-
based ML

model based
on T2WI and
DCE-T1WI
features
provided

complementary
information in
discriminating

benign and
malignant

contralateral
BI-RADS 4

lesions.
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Modality/Technique Author Purpose

Radiomics
Features
Category and
Purpose

Population Results Conclusion

Lo Gullo et
al., 2020 

Assessment of
sub-centimetric
breast masses

in BRCA
patients

Radiomics
features

calculated using
open-source

CERR software

96 BRCA
carrier

The ML model
combining 5
parameters
including
clinical
factors,

GLCM-based
correlation

from the pre-
DCE phases

and first-order
coefficient of
variation from
the 1st post-
DCE phase,
achieved a
diagnostic

accuracy of
81.5%.

Radiomics
analysis
improved
diagnostic
accuracy

compared with
qualitative

morphological
assessment

alone.

Demircioglu
et al., 2020

Molecular
subtype,
hormonal

receptor status,
Ki67- and

HER2-
expression,

metastasis of
lymph nodes

and lymph
vessel

involvement as
well as grading

13.118 radiomic
features

extracted with a
VOI-based
approach

98 BCs

PR and ER
status

predictions
yielded AUCs
of 0.67–0.69,
Ki67 0.81 and

HER2
Expressions

0.62.
Involvement
of the ALN
could be

predicted with
an AUC of
0.80, while

lymph node
metastasis
yielded an

AUC of 0.71.

A rapid
approach to
VOI-based

tumor-
annotations for

radiomics
provides

consisternt
results to other
studies in the

same field.

Zhang et
al., 2020 

Differentiation
between benign
and malignant

lesions

Radiomics
features

extracted from
T2WI, T1WI, DKI,
ADC maps and

DCE
pharmacokinetic
parameter maps

207 BCs

The AUC of
the optimal
radiomics

model,
including T2
WI, DKI and
quantitative

DCE-MRI
parameter
maps was

0.921, with an
accuracy of

0.833.

The model
based on
radiomics

features from
T2WI, DKI and
quantitative

DCE parameter
maps has a

high
discriminatory

ability for
benign and

malignant BC
lesions.

Zhou et al.,
2020 

Differentiation
between benign
and malignant

BC lesions

99 texture and
histogram

parameters
133 patients

The highest
accuracy of

91% was
achieved

when using
the smallest

bounding box
of peritumoral

tissues in
segmentation.

Using the
smallest

bounding box
containing
proximal
peritumor

tissue as input
had higher
accuracy

compared to
using tumor

alone or larger
boxes.
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Modality/Technique Author Purpose

Radiomics
Features
Category and
Purpose

Population Results Conclusion

Liu et al.,
2019 

Assess
lymphovascular
invasion status

Radiomic
signature

composed of
two features

149 BCs

The value of
AUC for a

model
combining

both radiomic
signature and

ALN status
(0.763) was
higher than
that for MRI
ALN status
alone and

similar to that
for the

radiomics
signature.

The DCE-MRI-
based

radiomics
signature in
combination

with ALN status
was effective in
predicting the

lymph and
vascular

invasion status
of patients with

BC before
surgery.

Xie et al.,
2019 

Subtype
classification of
breast cancer

2498 features
extracted from
the DCE and

DWI, together
with DCE
images,

changing over 6
time points and

DWI images
changing over 3

b-values

134 invasive
ductal

carcinoma

Highest
accuracy of

91% for
comparing

triple negative
to non-triple

negative
cancers.

Whole-tumor
radiomics on

MRI provides a
non-invasive
approach for
BC subtype

classification.

Liang et al.,
2018 

Preoperative
Ki-67 status

Radiomic
features based

on T2W and
DCE-T1WI

318 BC

The T2W
image-based

radiomics
classifier
showed

significant
discrimination

for Ki-67
status, with

AUC of 0.74 in
the validation

dataset.

The T2WI-
based

radiomics
classifier was a

significant
predictor of Ki-

67 status in
patients with
breast cancer

while DCE-
T1WI radiomic
features were

not able to
discriminate Ki-
67 status in the

validation
dataset.

Digital
mammography

Tan et al.,
2020 

Pre-operative
prediction of

ALN metastasis

Radiomic
signature

nomogram
combined with
receptor status
and molecular

subtype

216 BCs

The radiomics
nomogram,
comprising
PR status,
molecular

subtype and
radiomics
signature,
showed

excellent
calibration
and better

performance
for the

metastatic
ALN detection

(AUC 0.883
and 0.863 in
the primary

and validation
cohorts),

better than
each

independent
clinical feature
and radiomics

signature.

The
mammography-

based
radiomics
nomogram

could be used
as a non-

invasive and
reliable tool in
predicting ALN

metastasis.
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Modality/Technique Author Purpose

Radiomics
Features
Category and
Purpose

Population Results Conclusion

Digital
Mammography

Stelzer et
al., 2020 

Distinguish
malignant from

benign
classification

249 image
features from

gray-value
histogram, co-

occurrence and
run-length
matrices

226 patients

A high
sensitivity
threshold

criterion was
identified in
the training
dataset and
successfully
applied to the

testing
dataset,

demonstrating
the potential
to avoid 37.1-

45.7 % of
unnecessary

biopsies at the
cost of one

false-negative.

Combined
texture

analysis and
ML could be
used for risk

stratification in
suspicious

mammographic
calcifications.

Zhou et al.,
2019 HER-2 status 186 radiomic

features 306 l BCs

In the testing
set the AUC of
the radiomic

model in
assessing

HER-2 status
was 0.787.

Radiomics
features could

help in the
preoperative
evaluation of

HER-2 status in
patients with

BC.

Lei et al.,
2019 

Prediction of
benign BI-

RADS 4
calcifications

8286 radiomic
features

extracted from
the craniocaudal
and mediolateral

oblique scans

212
calcifications

Six radiomic
features and

the
menopausal

state included
in a radiomic
nomogram

could
discriminate
benign from
malignant

calcifications
with an AUC
of 0.80 in the

validation
cohort.

The
mammography-
based radiomic
nomogram is a
potential tool to

distinguish
benign

calcifications
from malignant
calcifications.

PET/CT Ou et al.,
2020 

Differentiating
breast

carcinoma from
breast

lymphoma

Radiomic
features

extracted with a
local software

44 BCs

AUCs of 0.867
and 0.806 for
PET radiomic
and clinical

model, AUCs
of 0.891 and
0.759 for CT

based
radiomic
model on

training and
validation

data.

Models based
on clinical, and

radiomic
features of 18
F-FDG PET/CT
images could

accurately
discriminate

BC from breast
lymphoma.

Table 2. Review studies on radiomics in breast imaging published in peer reviewed journals from 01/2018 to 01/2021,

ordered by newest first.
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Reference Modality/Techique Purpose

Radiomics
Features
Category and
Purpose

Population Results Conclusion

Reig et al.,
2020 MRI

Review
focused on

machine
learning

techniques in
breast MRI

Pre-processing,
neural networks,

deep learning,
machine
learning,

segmentation,
texture analysis

Breast malignant and benign
pathology.

The Author
discuss the

possible future
directions of

machine learning
in the current

workflow of breast
lesions assessed

with MRI.

Granzier
et al., 2019 MRI

Systematic
review,

response
prediction of
neoadjuvant

therapy

Various radiomic
feature models,
evaluated with
the Radiomics
Quality Score

(RQS)

Studies
ranging
between

35-414 BC

AUC values
ranged from

0.83 to 0.85. The
best performing

multivariate
prediction

model, based on
logistic

regression
analysis,

showed AUC of
0.94.

The systematic
review revealed

large heterogeneity
for each step of the

MRI-based
radiomics
workflow.

Consequently, the
results are difficult

to compare.
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