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Green and blue infrastructure (GBI) is defined as a network of landscape components, which include green areas and

water bodies. Such an infrastructure, available within an urban space, provides diverse environmental, economic, and

social benefits to people and other living organisms.
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1. Introduction

Concerning the flow of key resources for human survival, food, energy, and water can be interrelated with green and blue

infrastructure (GBI). This green-blue system can perform various functions, having the potential to produce multiple

services, such as food, water purification, temperature regulation, and others, which are crucial for urban adaptability .

Several developed countries implemented their GBI to reduce the urban heat effects (Germany, Australia), improve

carbon storage (South Africa), control surface runoff (Brazil, Netherland, USA), and increase local food production

(Singapore) .

From a human perspective, in parallel to ecosystem services (ES), GBI can also produce some dis-services . For

example, while the cultivation of vegetables generates food to support humans, it might require a huge amount of water.

For instance, 200 L of water is required to produce 1 kg of vegetables . Trees in the urban environment provide

regulating service, by cooling or shading effects in Summer and protection against the chilled wind in Winter .

Nonetheless, trees might need water in abundance . On the other hand, the cultivation of fruit trees, with known edibles

such as apples ( Malus spp.), cherries ( Prunus spp.), and pears ( Pyrus spp.), is prohibited in urban streets due to the

falling of their fruits on footpath and stroller injuries . Green roofs (GRs) are capable of reducing the fluctuation of indoor

temperatures in cold as well as warm weather conditions and minimizing the energy consumption of buildings .

Sometimes, the conservation of energy utilization can be induced, due to unexpected natural factors (e.g., the rainfall will

reduce the requirements of extra water) . Moreover, GRs reduce stormwater runoffs , which may include heavy

metals such as Fe, Zn, Cu, and Al . According to the authors’ observations, large amounts of metals can be upheld

(92% of Cd, 99% of Pb, 97% of Cu, and 96% of Zn), especially in summer. However, such heavy metals might

contaminate the vegetables .

Food, energy and water (FEW) are key inter-linked resources for the survival of individuals and human communities .

Such a mutual relation among different resources and their dynamics is synthesized through the nexus concept and

framework . For instance, energy is necessary for food production, landfill gas, and waste from food production and

consumption can be used for energy generation . Food production and consumption also use water and generate

wastewater . Energy is needed for water treatment processes, while energy production requires water and

generates wastewater .

However, FEW nexus should be further integrated with ecosystem . In fact, this integration would support the

achievement of sustainable development goals . GBI can act as a unifying spatial and functional (referred to provide

ecosystem services) framework, as well as a system within which flows of food, energy, and water exist and can be

quantified. Figure 1 illustrates the nexus structure. The food production practices drive energy use intensities and water

extraction rates. At the same time, energy is essential for food and water, and water safety is the key to electricity

generation and food production. Water is demanded to produce electricity, e.g., hydropower, and the harvesting of

biomass can be used for biofuel production. Birol and Das  reported that around 15% of global water extraction was

consumed for the production of energy. Energy is essential for the transport, pumping, and treatment of portable and non-

portable water, i.e., wastewater, for human utilization or vegetation irrigation. On the contrary, approximately 8% of energy

is used for water purposes worldly . Regarding power generation integration in the water cycle, some of the GBI, e.g.,

constructed wetlands, can provide opportunities to mitigate energy consumption, for instance, it generates humus as well

as nutrient-rich effluent water that can be utilized directly to irrigate energy crops and for short rotation vegetation through

fertigation process . Moreover, the treated water can be used for flush toilets, street vegetation, and washing the

roads, and also to reduce the extra energy burden that is required for wastewater treatment. This is why a “GBI–FEW”

nexus can be considered in the study of urban metabolism, with the purpose of a better management of resources,

supporting the transition to more sustainable energy systems.
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Figure 1. The sustainable “GBI-FEWN”

management framework in an urban settlement.

2. Positive and Negative Impacts of GBI on FEW

We describe the most important city GBI types and the associated FEW topics that are found in studies. We observed that

scientific studies on GBI–FEW nexus primarily focused on direct and indirect ES (e.g., food). Many studies on the direct

positive effects of urban farming on food generation in built-up places or food-associated topics are receiving attentions in

scientific literatures. Some GBI types (such as green roofs, urban gardens, urban forests, etc.) can be used for food

cultivation, as shown in Table 1. For example, the rooftop gardens are favored in dense urban cores with limited space,

and different kinds of vegetables can be produced, making people more self-reliant for local food. Nowadays, societies in

developed and developing countries normally depend on urban agriculture to meet their demands for food. Orsini et al. 

inquired about the production capability of rooftop farming in Bologna, Italy, finding that rooftop farming could provide

more or about 12,000 t/year of vegetables to Bologna, satisfying 77% of the city dwellers’ requirements. A Singaporean

annually consumes 82.6 kg average of vegetables . According to Singapore Statistics , the population of Singapore

is 4.8 million, Singapore requires 396,480 t/y of vegetables. Both traditional farms and rooftop gardening can satisfy

approximately 35.5% of Singapore’s vegetable requirements . Similarly, few authors observed that the urban gardens

played a crucial role in food security and food supply in several historical periods, and the importance of urban gardens for

food security was also stressed during political and economic crises . McClintock,  studied in the USA and Europe,

the provision of urban food production by gardens formed a part of adaptation approaches in times of battles. When

Sweden was influenced by a severe food shortage during World War II, 10% of the food utilized in the whole country

came from urban gardens . In addition, the contribution of city gardening to the urban food supply was evaluated in

Salzburg, Austria. The results indicated that out of 156 city gardeners, 76% cultivated their vegetables and fruits, the

majority of gardeners providing 44% and 10% of their annual vegetables and fruits respectively . Urban agriculture

practices can not only satisfy the vegetables and fruits requirements of the urban dwellers but decrease the food import

demands, with annual carbon emission footprint reduction as well. For instance, Lee et al.  demonstrated that for the

greater municipal area (51 km ) of Seoul, South Korea, the urban agriculture implementation would annually decrease

carbon dioxide emissions by 11.7 million kg. This offset amount is the same value of annual carbon dioxide sequestered

by 10.2 km  of 20-year-old oak forests and 20 km  of pine forests. Hence, there is a need to develop a sustainable policy

to maximize the positive effects and minimize the negative effects of urban agriculture.
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The scientific literature shows that GBI not only generates ES, but also ecosystem dis-services. However, the same urban

GBI may have positive and negative effects on, e.g., food (Table 1). On the one hand, food cultivation in metropolitan

areas ensure urban food supply especially for the poor people in developing countries. On the other hand, it also turned

out that food safety is a major concern because of environmental pollutions . For example, heavy metals pollution is

becoming a main problem sourced from gaseous atmospheric deposition . Furthermore, though wastewater reuse

for agricultural irrigation improves the efficiency of urban water system, it leads to significant concerns about food safety of

with pathogens moving from sewage water to food . Similar to another farming system, urban agriculture itself may also

contaminate water with pesticides and fertilizers . Hence, unintentional negative impacts of each GBI must be taken

into account, as this can offset the objectives that motivate the expansion of GBI in cities. Therefore, its existence as a

green infrastructure also helps control rainwater runoff to lessen the risk of flooding. Blue infrastructure studies are also

common as their green counterparts. We found that the effects of the urban rivers on reduced stormwater runoff, energy-

saving, and improved water supply are the topics (24%) mostly discussed in the literature, followed by CTW (17%) and

streams (15%) topics (Table 1). Some blue infrastructures (such as rivers, CTW, lakes, etc.) studied in the scientific

literature demonstrate associations to at least one subject in each of the FEW systems.

Isolated effects of various of GBI on FEW in cities, such as the direct urban ecological service (UES), are well understood

and documented in the literature. A conceptual integrated GBI-FEWN framework considering the direct and indirect effects

of GBI on urban FEWN beyond the city boundaries was developed . It presented the impact of main causal relationships

on the urban FEWN that result from the implementation of different types of GBI in cities, highlighting potential conflicts or

win-win situations. The comprehensive understanding of how GBI can affect food, water and energy systems

simultaneously and interactively in urban areas could assist the decision-making process in urban planning and

management, supporting the transition to more sustainable and resilient cities.
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3. Conclusions

The interactive flows in the energy, water, and food system as a food–energy–water (FEW) nexus are very important for

the sustainable development of cities, and they can be arbitrated via green-blue infrastructure (GBI) in the built-up area.

Here, our focus is on non-built “nature in cities” infrastructure. The GBI generates multiple ecological benefits (food

production, water and energy-saving, and microclimate regulation) in urban centers. The FEW flows also generate some

negative effects (dis-services) within the GBI, for example, food products within the green-blue system, but over-

application of pesticides and fertilizers, could generate a release of toxic substances, that might also improve water

quality. If water is extracted to produce energy, it might reduce the natural water flows of rivers, impacting on the

biosphere too. Well-planned urban construction can help to control the negative effects.

There is a need to make integrative and deliberate policy to link the GBI with each element in the urban FEW nexus. We

also focus on nexus modeling techniques in terms of their benefits, drawbacks, and applications. Moreover, guidance is

provided on the choice of an adequate modeling approach. Finally, water, energy, and food are linked physically, but

tradeoffs among them often increase when their management is put into practice. We must minimize the tradeoffs and

build up synergies between food, energy, and water by using a holistic approach. Therefore, the GBI-FEW nexus has

become a major approach to address the relation between three important individual resource components of

sustainability.
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