

Zirconia Implant-Prosthetic Components' Tissue Response

Subjects: **Materials Science, Biomaterials**

Contributor: Marcel Kunrath

Dental components manufactured with zirconia (ZrO_2) represent a significant percentage of the implant-prosthetic market in dentistry. However, during the last few years, we have observed robust clinical and pre-clinical scientific investigations on zirconia both as a prosthetic and an implantable material. Dental devices manufactured from ZrO_2 are structurally and chemically stable with biocompatibility levels allowing for safe and long-term function in the oral environment.

mucointegration

osseointegration

zirconia

biocompatibility

cell response

1. Introduction

The requirements for biomaterials are for them to be biocompatible coupled with high durability while exposed to the harshness of the oral environment. Additionally, they should not affect or interfere with the recipient's physiology and general health. Prosthetic components and implants made from zirconia (ZrO_2) reveal excellent biological and mechanical properties and superior aesthetic advantages when compared to other biomaterials available on the market [1][2][3]. With the ever increasing body of research conducted around zirconia, clinical use of zirconia implants is on the rise due to their biological, aesthetic and physical properties. [4]. Moreover, it presents itself as an excellent material in the manufacture of customized implants, prosthetic components and various other dental prostheses by means of 3D printing technology [5][6][7].

The challenge with products manufactured with ZrO_2 is their hardness and the complexity in the treatment of their surfaces [1][8]. However, current advanced manufacturing protocols have been able to develop nanoscale textures on this material by applying techniques such as anodizing, high-intensity lasers, acid etching and surface coatings [8][9][10][11][12]. Gniliitskyi and collaborators reported the use of high-speed femtosecond laser on ZrO_2 surfaces for surface nanotexturization, which has been proven to be of significant importance in terms of cell adhesion and osseointegration in an animal model [9]. Thus, the nano-interaction between ZrO_2 -based surfaces and cells reveals a new and promising path in research which needs more scientific investigation.

Studies on the biological interaction of ZrO_2 have become increasingly relevant and are following a path similar to other well proven materials such as titanium and its alloys [13][14]. Rottmar et al. demonstrated that zirconia surfaces had the best performance with regards to fibrinogen adsorption and thrombogenicity [15]. Furthermore, reports prove zirconia to have an advantage in terms of biological properties with soft peri-implant tissues thereby modulating fibers and cell attachment and behavior with greater effectiveness and biocompatibility [16][17]. Along

with the properties mentioned above, zirconia has a low surface energy [18][19], therefore it retains very low amounts of plaque and consequently has less bacterial colonization on its surface. In a study, Kunrath et al. showed by comparing surfaces with different morphologies which were exposed to the bacterium *Staphylococcus epidermidis* that there was less bacterial adhesion on ZrO₂ surfaces [18]. Moreover, Roehling et al., revealed a significant reduction in the formation of oral biofilm on zirconia surfaces after 72 hours [19].

2. Zirconia Applications and Variations

With the aim of offering an alternative to metal-based dental prostheses, structural ceramics have been improved and are now widely used in dentistry. Among all dental ceramics, zirconia has emerged as a versatile and promising material due to its biological, mechanical and optical properties which have contributed to its rapid and widespread adoption in dentistry. Zirconia has been a material of choice which, when used with CAD/CAM technology, has allowed the fabrication of various prosthetic components and customized implants for a broad range of treatment options. Zirconia-based ceramics are routinely used for structural applications in engineering such as in the manufacturing of cutting tools, gas sensors, refractories and structural opacifiers [20]. The ceramic composites that are currently in use in medical and dental devices originated from structural materials used in the aerospace and military industry. In order to meet structural demands, zirconia is doped with stabilizers to achieve high strength and fracture toughness [21]. These materials have been modified to suit the additional requirements of biocompatibility [22].

3. Surface Modifications Aiming at Improved Biological Responses

3.1. Sand Blasting

Sandblasting, which is also known as airborne particle abrasion, produces a surface topography that has micro-roughness. Various parameters affect the roughness that is created on the implant surface, this includes the size, shape and kinetic energy of the particles used in the sandblasting process [23]. During the process of sandblasting, compressed air pressure creates an impulse which ejects the particles toward the surface of the implant. Thus, the kinetic energy which is obtained by the particles depends on their density, volume and velocity. The main advantage of the process of sandblasting is that a homogenous and gentle anisotropic abrasion can be obtained on hard materials like ceramic, glass and silicon. Alumina particles are the generally preferred sandblasting materials because of their low cost, hardness and needle-like shape. The major disadvantage of using the sandblasting technique is that it may slightly change the surface chemistry because of inevitable alumina contamination and in the case of ceramics induce micro-cracks within the implant or the prosthetic part prior to any functional stresses [24]. Many studies have proven that although the sandblasted zirconia surfaces show slight enhancement in cell attachment, their metabolic activity is still inferior to that of etched zirconia surfaces [23][25].

3.2. Acid Etching

The process of acid etching is performed with either hydrofluoric acid, nitric acid or sulfuric acid. Acid etching treatment can also be used to overcome alumina contamination as it has been proven to remove the alumina residues (Table 1). Heat treatment follows thereafter, which helps smoothen the sharp edges made as a result of the etching process [26]. Advantages of acid etching include the homogenous roughening of the material, regardless of its size and shape [27]. This method presents no risk of delamination and does not exert stress on the material [28]. However, it might cause undesirable chemical changes which can be a disadvantage of the process [29]. The topography formed after acid etching depends on prior treatment, composition of acid mixture, temperature and the length of exposure to the etchant. Acid etching is generally used to generate a micro scale surface texture which has the ability to achieve interlocking between the implant and the bone [27]. Recent studies show that combining the sandblasting and acid etching techniques enhances the degree of micro-roughness of zirconia as well. Such a combination has been proposed and is currently used in some commercially available zirconia implants; the purpose is to optimize micro-roughness, which would also provide a more receptive surface for osteoblast cell attachment and proliferation [26][30].

Table 1. Summary of the current chemical and physical treatments for zirconia implant surface.

Zirconia Implants Surface Treatments				
Treatment	Procedure	Disadvantages	Characteristics	References
Sandblasting	High pressure alumina (Al_2O_3) release	Surface micro-cracks, Structural stress, contaminations	Low cost, hardness and needle-like shape	[23][25]
Acid etching	Combinations of: (1) ≈48% hydrofluoric acid (HF) (2) ≈70% nitric acid (HNO_3) (3) ≈98% Sulfuric acid (H_2SO_4)	Undesired chemical changes	Remove the alumina contamination. Micro scale surface texture for bone to implant contact interface	[27][28][29]
Selective infiltration technique	Coating and glass heating procedure	Extended only to the surface grains	Nano-porous surface	[31][32]
Polishing	Silicon carbide polishing paper with diamond or silica suspension	Smoother surface compared to acid etching and sandblasting	Average surface roughness between 8 and 200 nm. No surface chemistry modifications.	[32][33][34]
Laser treatment	(1) CO_2 laser (2) ER:YAG (3) Cr:YSGG	Disrupts chemical structure	No surface contamination. Improve material wettability	[35][36][37]
Ultraviolet light treatment (UVC)	UVC photons	No effects on surface roughness	Effect of superhydrophilicity	[38][39][40][41] [42][43][44]

Zirconia Implants Surface Treatments					
Treatment	Procedure	Disadvantages	Characteristics	References	
		and surface chemistry			
Coating	<p>Obtained by electrophoretic deposition (EPD) and plasma-spraying:</p> <ul style="list-style-type: none"> (1) Reinforced hydroxyapatite (HA) (2) Calcium Phosphate ($\text{Ca}(\text{PO}_4)$) (3) Bioglaze (RKKP) 	Coating-implant bond strength and modification of chemical structure	Low cost and a high deposition rate. Good biocompatibility, corrosion resistance, and bioactivity	[45] [46] [47] [48] [49] [50] [51] [52]	
Biofunctionalization	(1) Immobilized arginine—glycine—aspartate (RGD)	Structural chemical changes	Improved biochemical properties and biological responses	[39] [40] [41] [42] [43] [44] [45] [46] [47] [48] [49] [50] [51] [52] [53] [54] [55]	
Self-assembly	Self-assembled monolayers of active organic compound and terminal functionalization	Van der Waals layer interactions	Surface vapor deposition of active organic compound and molecule adhesion	[56] [57] [58] [59] [60]	

REFERENCES

1. Zhang, Y.; Lawn, B.R. Evaluating dental zirconia. *Dent. Mater.* **2019**, *35*, 15–23.

3.3. Selective Infiltration Technique

Wataha, J.C. Zirconia in biomedical applications. *Expert Rev. Med. Devices* **2016**, *13*, 945–963.

This technique involves coating the surface of the material with a specific infiltration glass and then heating it at a temperature higher than its glass transition temperature. This is followed by the infiltration of molten glass that occurs between the material grains ([Table 1](#)). This technique can be used for selective roughening because only the surface grains joined with the infiltration glass are involved in the process, thereby allowing control over the area requiring treatment. Traces of infiltration agent left behind can further be removed by immersion in a solution of 5% hydrofluoric acid and rinsing with water [\[31\]](#).

This selective infiltration etching technique is often used to create a nano-porous surface on zirconia implants [\[32\]](#). The major advantage of this technique is that the actual surface chemistry of material remains unchanged, and the nanoscale roughness of the surface can be enhanced [\[33\]](#).

Scarano, A.; Stoppacciol, M.; Casolino, T. Zirconia crowns cemented on titanium bars using CAD/CAM: A five-year follow-up prospective clinical study of 9 patients. *BMC Oral Health* **2019**, *19*, 286.

3.4. Polishing

Kunirath, M.F. Customized dental implants: Manufacturing processes, topography, osseointegration and future perspectives of 3D fabricated implants. *Bioprinting* **2020**, *e00107*. Polishing gives a comparatively smoother surface than acid etching and sandblasting ([Table 1](#)). It is known that the epithelial cells are more likely to attach to rough surfaces (acid etching and sandblasting) compared to smooth surfaces. *Wang, C., Xu, H., Liu, Y., Jiang, X., Gao, B. Surface roughness and bioactivity of zirconia and alumina glass-ceramic with smooth and polished surfaces. *J. Prosthet. Dent.* **2019**, *121*, 285–291* roughened and smooth surfaces [\[33\]](#). Polishing of a zirconia surface is performed by using a silicon carbide polishing paper and a diamond or silica

Susceptible to mechanical damage [24]. Mechanical modification of zirconia dental implants and a value of a change in the frontier of porosity on integration. *Med. Devices Sens.* 2020, 3, e10076. The average surface roughness of a polished zirconia biomaterial is between 8 and 200 nm [32][34]. Polishing also serves to clean the implant surface to a certain extent, along with giving it a smooth texture.

Mishchenko, O. Cell and tissue response to nanotextured Ti6Al4V and Zr implants using high-

3.5. Laser Treatment

2019, 21, 102036.

In contrast with sandblasting and acid etching techniques, laser treatment exerts zero risk of surface contamination as there is no direct contact between the laser and the biomaterial [35]. The laser surface treatments also tend to anodized zirconium implants on early osseointegration process in adult rats: A histological and improve the material wettability by altering the surface properties, which further plays a major role in cell adhesion. histomorphometric study. *Prog. Biomater.* 2019, 8, 249–260.

The test for wettability is conducted by putting one drop of the liquid on a flat solid surface of the material and the

10. De la Hoz, M.F.T.; Katunar, M.R.; González, A.; Sanchez, A.G.; Díaz, A.O.; Ceré, S. Effect of Pfeilnichter, B.; Bernigk, R.; the low Dette wettbarkeit der Zirkonimplantate im Vergleich zu Titanimplantaten. *Prog. Biomater.* 2019, 8, 249–260. cellular adhesions [36]. In plants and provides rapid bone integration. *Surf. Rep.* 2019, 9, 11–16.

11. Kunrath, M.F.; Díz, F.M.; Magini, R.; Galarraga-Vinueza, M.E. Nanointeraction: The profound influence of nanostructured and nano-drug delivery biomedical implant surfaces on cell behavior. However, the use of lasers on zirconia ceramic has been reported to disrupt its chemical structure with the potential

12. Kunrath, M.F.; Díz, F.M.; Magini, R.; Galarraga-Vinueza, M.E. Nanointeraction: The profound influence of nanostructured and nano-drug delivery biomedical implant surfaces on cell behavior. However, the use of lasers on zirconia ceramic has been reported to disrupt its chemical structure with the potential

13. Altmann, B.; Rabel, K.; Kohal, R.J.; Proksch, S.; Tomakidi, P.; Adolfsson, E.; Bernsmann, F.;

3.6. Ultraviolet Light Treatment

2017, 33, 241–255.

Various studies have shown that bone implant contact of the implants treated with ultraviolet (UV) light was deeply

14. Hanawa, T. Zirconia versus titanium in dentistry: A review. *Dent. Mater.* 2020, 39, 24–36.

enhanced because of the effect of superhydrophilicity (Table 1). A material is described to be superhydrophilic

15. Rottmar, M.; Müller, E.; Günther-Eischer, S.; Stephan, M.; Berler, S.; Manura-Weber, R. Assessing the osteogenic potential of zirconia and titanium surfaces with an advanced *in vitro* model. *Dent. Mater.* 2019, 35, 74–86.

16. Iinuma, Y.; Hirota, M.; Hayakawa, T.; Ohkubo, C. Surrounding tissue response to surface-treated the surrounding ions, amino acids and proteins in the tissue fluid. When compared to hydrophobic surfaces, zirconia implants. *Materials* 2020, 13, 30.

osteoblasts cultured on hydrophilic surfaces have shown to exhibit higher levels of differentiation markers,

17. Díz, F.M.; Kunrath, M.F.; Altmann, B.; Rabel, K.; Kohal, R.J.; Proksch, S.; Tomakidi, P.; Adolfsson, E.; Bernsmann, F.;

18. Kunrath, M.F.; Monteiro, M.S.; Gupta, S.; Hubler, R.; de Oliveira, S.D. Influence of titanium and

3.7. Coating

2020, 117, 104824.

Coating of yttrium stabilized zirconia (YSZ) with reinforced hydroxyapatite (HA) has shown positive results in the enhancement of adhesive strength and coating stability [42]. Because of their versatility, calcium phosphate

19. Roehling, S.; Astasov-Frauenhofer, M.; Hauser-Gerspach, I.; Braissant, O.; Woelfler, H.; Waltimo, T.; Kniha, H.; Gahlert, M. In vitro biofilm formation on titanium and zirconia implant surfaces. *J. Periodontol.* 2017, 88, 298–307.

drawbacks, this technique is said to provide low cost and a high deposition rate [45][46] (Table 1). For depositing CP-based coatings, new techniques are constantly being developed to address the issues associated with plasma

20. Rashad, A.M.; Majeed, B.; Alshayeb, A.; Alshayeb, M. Effect of the sintering temperature on the crystal structure and microstructure of zirconia nanocomposite powder produced by three different routes. *Mater. Process. Technol.* 2008, **195**, 170–185. The biocompatibility of these coatings has not been confirmed [47][48].
21. Kelly, J.R.; Denry, I. Stabilized zirconia as a structural ceramic: An overview. *Dent. Mater.* 2008, **24**, 289–298. Because of its simplicity and highly versatile nature, electrophoretic deposition (EPD) has been proposed as an alternative to traditional techniques. An approach that combines both plasma electrolytic oxidation and 22. *Zirkonoxiddepots für Knochenheilung* [Zirconia hydroxyapatite Part in Discovering the nature ofapatite among bioactive glass and ceramic]. *Eur. J. Dent.* 2009, **4**, 48–50. Through this process broadens the potential applications of EPD. Apart from HA, silica is also commonly used as a coating material for zirconia. The use of RKKP has also shown a positive cell response and osseointegration. Coating with RKKP was fabricated using either an enameling and firing technique or thermal treatment. AP40, another silica bioactive glass, was also determined to be comparable in terms of reactivity with RKKP [48]. Frandsen et al. sputter coated a commercial 23. *Hempel, U.; Hefti, T.; Kalbacova, M.; Wolf-Brandstetter, C.; Dieter, P.; Schlottig, F. Response of osteoblast-like SAOS-2 Cells to zirconia ceramics with different surface topographies. Clin. Oral Implants Res.* 2010, **21**, 174–181.
24. Strickstrock, M.; Rothe, H.; Grohmann, S.; Hildebrand, G.; Zylla, J.M.; Liefeith, K. Influence of zirconia implant with a film of titanium and conducted anodization to produce a coating of TiO_2 nanotubes on the surface roughness of dental zirconia implants on their mechanical stability, cell behavior and osseointegration. *BioNanoMaterials* 2017, **18**.
25. Roehling, S.K.; Meng, B.; Cochran, D.L. Sandblasted and acid-etched implant surfaces with or without high surface free energy: Experimental and clinical background. In *Implant Surfaces and Their Biologic and Clinical Impact*; Springer Berlin Heidelberg, Germany: 2015; pp. 103–136.
- 3.8. Biofunctionalization** *on the surface to change their biochemical properties and biological responses* [39]. Biofunctionalization also allows anchorage of organic components such as proteins, enzymes and peptides on the implant surface thereby determining the type of tissue that develops at the implant-bone interface (*Table 1*). Arginine-glycine-aspartate (RGD) is commonly used as an adhesive peptide [53]. Many other adhesive proteins are found to possess RGD as their cell recognition site, including fibronectin, fibrinogen and collagen. These RGD sequences are identified using at least one of the integrins [54]. Adhesion proteins and integrins form a pair to provide cell anchorage, differentiation and growth signal. The RGD peptide has shown to be successfully immobilized with physical-chemical modifications (surface polarization) or applying functionalized coatings on Y-TZP and thereby enhancing the biocompatibility of the material as well as cell attachment to its surface [53][55]. The existence of biomolecules at the surface of biomaterials simulates the native cellular micro-environment in control of cell behavior. For instance, composite resin to enamel surface with laser etching versus acid etching: An in vitro evaluation. *J. Conserv. Dent. JCD* 2014, **17**, 320–324. Fibronectin, has been extensively used because it encourages cell adhesion by enabling integrin receptors. RGD-containing peptides, in particular, the cyclic peptide Drosophila fibronectin, have different properties on different biomaterials [53][55].
- Kalchofner, K.; Nuss, K.; von Rechenberg, B. Comparison of chemically and pharmaceutically modified titanium and zirconia implant surfaces in dentistry: A study in sheep. *Int. J. Oral Maxillofac. Surg.* 2008, **37**, 1125–1132.
- An autonomous process by which the components are organized into patterns or structures without any external 31. *Abiotrofieball und Kieselerlan* [56]. (*Table 1*) Self-Assembly in layers (SAL) (*Figure 2*) is effected by the presence of additional deposition of resin elements of zirconia-based materials. *J. Prosthet. Dent.* 2007, **98**, 379–388. A solvent which may either be organic or aqueous, or the solid surface vapor deposition of an active organic compound or by aerosol spraying. The driving force for self-assembly is generally the specific interaction between the head group of the surfactant and substrate surface. Most of the surfactants consist of three distinctive

32. Abood, S.; Mira, O.; Smales, E.; Langford, M. Effect of functional groups which is located on the implant surface on the viability of human osteosarcoma cells. *Int. J. Prosthodont.* **2011**, *22*, 190–195.

33. Klinge, B.; Meyle, J. Working group 2 soft-tissue integration of implants. consensus report of monolayer [57]. Therefore, by carefully composing the mixture of substrate, SAM solution, and subsequent terminal working group 2. *Clin. Oral Implant. Res.* **2006**, *17*, 93–96.

34. Kimura, Y.; Matsuzaka, K.; Yoshinari, M.; Inoue, T. Initial attachment of human oral keratinocytes cultured on freshly prepared substrate is absorbed in a diluted 1/10 m solution of surfactant compound(s) in highly pure solvent for 12–48 h at room temperature. After this, the slides are vacated, cleaned with solvent and dried under a flow of nitrogen [57][59]. Nanoscale modifications of dental implants have been an active scientific research area, where new techniques such as SAMs are offering approaches to standardize tissue response and microbiota micro-environment in accordance with the conditions of bio-activity, anti-adhesion, anti-bacterial or combined effects (Table 1).

35. Yasuno, R.; Kakura, K.; Taniguchi, Y.; Yamaguchi, Y.; Kido, H. Zirconia implants with laser surface treatment per implant bone response and enhancement of osseointegration. *J. Hard Tissue Biol.* **2014**, *23*, 93–100.

36. Hao, L.; Lawrence, J. Effects of CO₂ laser irradiation on the wettability and human sin fibroblast cell response of magnesia partially stabilized zirconia. *Mater. Sci. Eng. C Mater. Biol. Appl.* **2003**, *23*, 627–639.

Terminal group (ii)
 $X = \text{CH}_3; \text{OH}; \text{NH}_2; \text{EG}; \dots$

37. Hao, L.; Ma, D.R.; Lawrence, J.; Zhu, X. Enhancing osteoblast functions on a magnesia partially stabilized zirconia bioceramic by means of laser irradiation. *Mater. Sci. Eng. C Mater. Biol. Appl.* **2005**, *25*, 496–502.

38. Ogawa, T. Ultraviolet photofunctionalization of titanium implants. *Int. J. Oral Maxillofac. Implant.* **2014**, *29*, e95–102.

39. Hsu, S.K.; Hsu, H.C.; Ho, W.F.; Yao, C.H.; Chang, P.L.; Wu, S.C. Biomolecular modification of zirconia surfaces for enhanced biocompatibility. *Thin Solid Films* **2014**, *572*, 91–98.

40. Sawase, T.; Jimbo, R.; Baba, K.; Shibata, Y.; Ikeda, T.; Atsuta, M. Photo-induced hydrophilicity enhances initial cell behavior and early bone apposition. *Clin. Oral Implant. Res.* **2008**, *19*, 491–496.

41. Tengvall, P.; Lundström, I. Physico-chemical considerations of titanium as a biomaterial. *Clin. Mater.* **1992**, *9*, 115–134. Reprinted with permission under Creative Commons Attribution 4.0 International License reference [57].

42. Zhao, G.; Schwartz, Z.; Wieland, M.; Rupp, F.; Geis-Gerstorfer, J.; Cochran, D.L.; Boyan, B.D. High surface energy enhances cell response to titanium substrate microstructure. *J. Biomed. Mater.* **2014**, *10*, 1–15.

4. Biological Responses

43. Sartoretto, S.C.; Alves, A.T.N.N.; Resende, R.F.B.; Calasans-Maia, J.; Granjeiro, J.M.; Calasans-Maia, M.D. The biological responses performed after the placement of a biomaterial in the oral environment are very important for tissues where there is a need for healing [51][52]. Surface modifications, functionalization of ZrO₂, as well as innovations in the base-material can induce individualized cellular responses promoting a better performance of the implants. *J. Appl. Oral Sci.* **2015**, *23*, 279–287.

44. Tuan, N.; Van, M.; Gwin, M.; Elsea, J.; Alt, M. Influence of ultraviolet photo-functionalization on the surface characteristics of zirconia-based dental implant materials. *Dent. Mater.* **2015**, *31*, 104–120. The surface characteristics of zirconia-based dental implant materials with different surface properties [Table 2] *Dent. Mater.* **2015**, *31*, 104–120 have consistently shown better biological reactions in periodontal

45. **Journal of Internal Medicine** 1988, 213, 60–67. defense and epithelial cells
 63 [64] [65] [66] [67] [68] [69] [70] [71] [72] [73] [74] [75] [76] [77] [78] [79] [80] [81] [82] [83] [84] [85] [86] [87] [88] [89] [90] [91] [92]. In addition, these cells are
 46. Yang, Y.; Kim, K.-H.; Ong, J.L. A Review on Calcium Phosphate Coatings Produced Using a
 crucial for the short and long-term success of biomaterials placed in the oral environment although their original
 Sputtering Process—an Alternative to Plasma Spraying. *Biomaterials* 2005, 26, 327–337.
 task is to protect against contamination from the external environment. Active *in vitro/in vivo* research is being
 47. Pardun, K.; Treccani, L.; Volkmann, F.; Streckhen, P.; Heiss, C.; Li Destri, G.; Marletta, G.;
 developed to discover the main ways to modify ZrO_2 for better modulation of cells found in soft tissues (Figure 3
 and Figure 4).
 Rezwan, K. Mixed zirconia calcium phosphate coatings for dental implants: Tailoring coating
 stability and bioactivity potential. *Mater. Sci. Eng. C Mater. Biol. Appl.* 2015, 48, 337–346.

48. Zhang, B.; Kwok, C.T.; Cheung, F.T.; Man, H.C. Fabrication of nano-structured HA/CNT coatings
 on Ti6Al4V by electrohydrostatic deposition for biomedical applications. *J. Nanosci. Nanotechnol.*
 2011, 11, 10740–10745.

49. Sandhyarani, M.; Rameshbabu, N.; Venkateswarlu, K.; Ramakrishna, L. Fabrication,
 Characterization and *in-vitro* evaluation of nanostructured zirconia/hydroxyapatite composite film
 on zirconium. *Surf. Coat. Technol.* 2014, 28, 58–67.

50. Stanic, V.; Aldini, N.N.; GPTFE-VZ; Kovarek, S.; Mazzocchi, R.; Krajewski, D.; Ravaglioli, A.;
 Mazzocchi, M.; Dubini, B.; Bosco, S.; Paganini, C.; et al. Osteointegration of bioactive glass-coated zirconia
 in healthy bone: An *in vivo* evaluation. *Biomater. Mater.* 2012, 23, 3833–3841.

51. Bosetti, M.; Vernè, E.; Ferraris, M.; Ravaglioli, A.; Morra, M. *In vitro* characterisation of zirconia
 coated by bioactive glass. *Biomater. Mater.* 2001, 22, 987–994.

52. Frandsen, C.J.; Noh, A.; Brønner, K.S.; Jonington, G.; Jin, S. Hybrid micro/nano-topography of a
 TiO_2 nanotube-coated commercial zirconia ceramic knee implant promotes bone cell adhesion in
 vitro. *Mater. Sci. Eng. C Mater. Biol. Appl.* 2013, 33, 2752–2756.

53. Morra, M. Biochemical modification of titanium surfaces: Peptides and ECM proteins. *Eur. Cells
 Mater.* 2006, 12, 1–15.

54. Schwarz, F.; Herten, M.; Sager, M.; Zipp, W.; Elsässer, M.; Dard, M.; Becker, J. Histological and
 immunohistochemical analysis of initial and early osseous integration at chemically modified and
 conventional SLA titanium implants: Preliminary results of a pilot study in dogs. *Clin. Oral Implants
 Res.* 2007, 18, 481–488.

55. Ruoslahti, E.; Pierschbacher, M.D. New perspectives in cell adhesion: RGD and integrins.
 Figure 3. Different ZrO_2 -surfaces morphologies modified by varied surface treatments (a–f). Microscopies using
 Science 1987, 238, 491–497.
 electron microscopy (SEM) and confocal microscopy showing the different responses of osteoprogenitor cells
 56. Whitesides, G.M.; Correa-Uribe, A.; Freitas, S.C.; Correa-Uribe, A.; Martínez, M.C.L.; Peláez-Vargas, A. Self-assembled monolayers for
 elongated morphology in some surfaces (g,h) and a flattened morphology in other topographies (i,j). Showing, as
 57. Freitas, S.C.; Correa-Uribe, A.; Martínez, M.C.L.; Peláez-Vargas, A. Self-assembled monolayers for
 reported in the study, that surface morphology characteristics in zirconia are more important for cell evolution and
 dental implants. *Int. J. Dent.* 2018, 2018, 4395460.
 consequent proliferation than properties such as roughness and wettability. Reprinted and adapted with permission
 58. Love, J.C.; Estroff, J.A.; Kriebel, J.K.; Nuzzo, R.G.; Whitesides, G.M. Self-assembled monolayers
 under Creative Commons Attribution 4.0 International License, reference [36].
 of thiolates on metals as a form of nanotechnology. *Chem. Rev.* 2005, 105, 1103–1169.

59. Ulman, A. Formation and structure of self-assembled monolayers. *Chem. Rev.* 1996, 96, 1533–1554.

60. Mastrangelo, F.; Quaresima, R.; Canullo, L.; Scarano, A.; Muzio, L.L.; Piattelli, A. Effects of Novel laser dental implant microtopography on human osteoblast proliferation and bone deposition. *Int. J. Oral Maxillofac. Implant.* 2020, 35, 320–329.

61. Aita, H.; Hori, N.; Takeuchi, M.; Suzuki, T.; Yamada, M.; Anpo, M.; Ogawa, T. The effect of ultraviolet functionalization of titanium on HGF cells with bone. *Biomaterials* 2009, 30, 1015–1025.

62. Shahramian, K.; Abdulmajeed, A.; Kangasniemi, I.; Söderling, E.; Närhi, T. TiO₂ coating and UV photofunctionalization enhance blood coagulation on zirconia surfaces. *BioMed Res. Int.* 2019, 2019, 8078230.

63. Traini, T.; Caputi, S.; Gherlone, E.; Degidi, M.; Piattelli, A. Fibrin clot extension on zirconia surface for dental implants: A quantitative in vitro study. *Clin. Implant Dent. Relat. Res.* 2014, 16, 718–727.

64. Mödinger, Y.; Teixeira, G.Q.; Neidlinger-Wilke, C.; Ignatius, A. Role of the complement system in the response to orthopedic biomaterials. *Int. J. Mol. Sci.* 2018, 19, 3367.

65. Campelo, C.S.; Chevallier, P.; Ybz, J.M.; Vieira, R.S.; Martoyan, D. Sulfonated chitosan and dopamine based coatings for metallic implants in contact with blood. *Mater. Sci. Eng. C Mater. Biol. Appl.* 2017, 72, 682–691.

66. Rahmati, M.; Mozafari, M. A critical review on the cellular and molecular interactions at the interface of zirconia-based biomaterials. *Ceram. Int.* 2018, 44, 16137–16149.

Figure 4. SEM micrographs demonstrating the different behavior and alignment of human gingival fibroblasts on different ZrO₂-modified surfaces developed for implant abutments submitted to three different polishing protocols (or titanium) on the crestal bone height in 1 year. *J. Oral Biol. Craniofacial Res.* 2020, 10, 372–374.

Figure 5. SEM micrographs demonstrating the different behavior and alignment of human gingival fibroblasts on different ZrO₂-modified surfaces developed for implant abutments submitted to three different polishing protocols (or titanium) on the crestal bone height in 1 year. *J. Oral Biol. Craniofacial Res.* 2020, 10, 372–374.

Figure 6. SEM micrographs demonstrating the different behavior and alignment of human gingival fibroblasts on different ZrO₂-modified surfaces developed for implant abutments submitted to three different polishing protocols (or titanium) on the crestal bone height in 1 year. *J. Oral Biol. Craniofacial Res.* 2020, 10, 372–374.

Figure 7. SEM micrographs demonstrating the different behavior and alignment of human gingival fibroblasts on different ZrO₂-modified surfaces developed for implant abutments submitted to three different polishing protocols (or titanium) on the crestal bone height in 1 year. *J. Oral Biol. Craniofacial Res.* 2020, 10, 372–374.

Figure 8. SEM micrographs demonstrating the different behavior and alignment of human gingival fibroblasts on different ZrO₂-modified surfaces developed for implant abutments submitted to three different polishing protocols (or titanium) on the crestal bone height in 1 year. *J. Oral Biol. Craniofacial Res.* 2020, 10, 372–374.

69. Najeeb, S.; Zafar, M.S.; Khurshid, Z.; Zohaib, S.; Almas, K. The role of nutrition in periodontal health: An update. *Nutrients* 2016, 8.

ZrO ₂ -Derivates Interactions					
Cellular and Tissular Response	Tissue	Cells	Effects	References	
7	7	Connective tissue cells	Fibroblasts Macrophages	-Increased cells migration and proliferation. -Fibronectin and vitronectin release. -Collagen and extracellular matrix proteins release.	[77][78][79][80][81][82][83] [84]

ZrO ₂ -Derivates Interactions			E.;
		-Better cellular activity with hydrophilic surfaces.	Mater.
Blood cells	Erythrocytes Platelets	-Fibrinogen cascade activation. -Plasma proteins activation.	[63][64][65][66]
Defense cells	Neutrophils, Leukocytes	-Histamine release. -Mast cell degranulation.	[63][64][65][66][67][68][69][70][71][72][73][74][75][76][77][78][79][80][81][82][83][84][85][86][87][88][89][90][91][92][93]
Epithelium tissue	Epithelial cells	-Increased differentiation and proliferation. -Faster healing process and protective scarring.	[85][86][87][88][89]
Osteoprogenitors	Osteoblasts	-Increased migration and proliferation. -Increased activity of osteopontin, osteocalcin, BMP-2 genes. Osteoprogenitors cells adherence and proliferation.	[69][70][71][72][73][74][75][76]
Oral biofilms cells	Bacteria cells	-Lower bacterial adhesion and proliferation. -Reduced bacteria activity.	[94][95][96][97][98][99][100][101][102]

fibroblasts on surface modified zirconia: A comparison between ultraviolet (UV) light and plasma. Dent. Mater. J. 2019, 38, 756–763.

79. Wang, Y.; Zhang, Y.; Sculean, A.; Bosshardt, D.D.; Miron, R.J. Macrophage behavior and interplay with gingival fibroblasts cultured on six commercially available titanium, zirconium, and titanium-zirconium dental implants. Clin. Oral Investig. 2019, 23, 3219–3227.

5. Clinical Benefits

5.1. Osseointegration of Zirconia Implants

80. Fischer, N.G.; Wong, J.; Baruth, A.; Cerutis, D.R. Effect of clinically relevant CAD/CAM zirconia Osseointegration is one of the most important criteria for the success of an implant treatment. Bone apposition that takes place on different types of implant surfaces depends on the surface properties of the implant [103][104].

81. Rohr, N.; Zeller, B.; Matthiesson, L.; Fischer, J. Surface structuring of zirconia to increase fibroblast viability. Dent. Mater. Off. Publ. Acad. Dent. Mater. 2020, 36, 779–786.

82. Nishimura, H.; Haro Adanlez, M.; Alt, W. Current status of zirconia implants in dentistry: Preclinical tests. J. Prosthodont. Res. 2019, 63, 1–14.

Regarding post-loading osseointegration evaluation, Akagawa et al. [106], found that there is no significant difference in clinical features between the loaded and unloaded zirconia implants. However, the bone-implant

83. Naveau, A.; Rignon-Bret, C.; Wulfman, C. Zirconia abutments in the anterior region: A systematic review of mechanical and esthetic outcomes. J. Prosthet. Dent. 2019, 121, 775–781.

84. Igarashi, K.; Nakamura, K.; Kobayashi, E.; Watanabe, F.; Haga-Tsumura, M. Hard and soft tissue responses to implant made of three different materials with microgrooved collar in a dog model.

free *Dent Mater* in 2018, 37, 964–972 aesthetics using partially stabilized zirconia implants [107]. These findings were in agreement with a report that compared the bone-implant contact (BIC) (after 4 weeks of healing) of 85. Rigolin, M.S.M.; Basso, F.G.; Hebling, J.; de Costa, C.A.S.; de Assis Mollo Junior, F.; Dorigatti de submerged zirconia implants, non-submerged zirconia implants and submerged titanium as the control [108] (Table 86. Avila, E. Effect of different implant abutment surfaces on OBA-09 epithelial cell adhesion. *Microsc. Res. Tech.* 2017, 80, 1304–1309. 87. Okabe, F.; Ishihara, Y.; Kikuchi, T.; Iwasa, A.; Kobayashi, S.; Goto, H.; Kamiya, Y.; Sasaki, K.; statistical difference was found between the BIC of all three types of implants when zirconia implants were compared to titanium and alumina [109]. Based on some studies, it was also suggested that the zirconia implants might withstand occlusal loads over a longer period of time [110].

87. Nothdurft, F.P.; Fontana, D.; Ruppenthal, S.; May, A.; Aktas, C.; Mehraein, Y.; Lipp, P.; Kaestner, L. Differential behavior of fibroblasts and epithelial cells on structured implant abutment materials: *Table 3. Summary of the hard tissues' response of the ZrO₂-based materials.*

A comparison of materials and surface topographies. <i>Clin. Implant Dent. Relat. Res.</i> 2015, 17, 1–319.			
Bone Tissue Response to ZrO ₂			
Effect	Author	Effectiveness	Reference
Implant Loading	Akagawa et al.	No bone-implant contact (BIC) with significant difference between the loaded and unloaded zirconia implants (BIC loaded: 81.9%; BIC unloaded: 69.8%).	[106][108]
	Stadlinger et al.	No BIC significant difference submerged zirconia and the non-submerged zirconia implants.	
Chemical Property	Gahlert et al.	No difference of bone formation pattern in direct contact with zirconia and surface-modified titanium implant surfaces.	[105][111]
	Noumbissi et al.	Zirconia oxide high resistance to corrosion and ions release.	[112]
	Sollazzo et al.	Higher BIC percentage of zirconia implant compared to titanium implant.	
Surface Treatments	Sennerby et al.	Sandblasted zirconia implants can achieve a higher stability in bone than machined zirconia implants.	[113]
Biocompatibility	Liagre et al.	No pseudo-teratogen effect.	
	Hisbergues et al.	No evidence of high cytotoxicity or inflammation.	[114][115]
	Helmer et al.	No evidence of local bone reaction associated to the alumina treatment.	[116]

91, 1213–1224.

93. Tetè, S.; Zizzari, V.L.; Borelli, B.; De Colli, M.; Zara, S.; Sorrentino, R.; Scarano, A.; Gherlone, E.;

5.2 Clinical Stability of Zirconia Implants

zirconia, lithium disilicate and feldspathic veneering ceramic in vitro. *Dent. Mater. J.* 2014, 33, 7–15. There are generally two types of modalities to assess osseointegration of dental implants. There are destructive

94. Singh, B.N.; Veeresh, V.; Mallick, S.P.; Jain, Y.; Sinha, S.; Rastogi, A.; Srivastava, P. Design and modalities such as resonance frequency analysis (RFA) and the Periotest. It should be noted that none of those techniques and modalities measure osseointegration per se, they rather assess implant stability. The Periotest engineering. *Int. J. Biol. Macromol.* 2019, 133, 817–830.

95. Kunkath, M.F.; Dos Santos, R.P.; de Oliveira, S.D.; Hubler, R.; Sesterhenn, T.; Texeira, E.R.

of implant stability. Torque and/or forces measured as a biomechanical measure for anchorage or osseointegration in which the greater force required to remove implants may be proportional to an increase in the strength of osseointegration [117] (Table 3).

95.3 Clinical Cytotoxicity and Soft Tissue Response to Zirconia Implants

- microvessel density, nitric oxide synthase expression, vascular endothelial growth factor expression, and proliferative activity in peri-implant soft tissues around titanium and zirconium lymphocytes, monocytes and macrophages where it was observed that zirconia had no cytotoxic effect on the bone oxide healing caps. *J. Periodontol.* 2006, **77**, 73–80.
97. Scarano, A.; Piattelli, M.; Caputi, S.; Favero, G.A.; Piattelli, A. Bacterial adhesion on commercially essential and structural proteins ⁶⁰. Zirconia is biocompatible as it does not induce any pseudo-teratogen effect ¹¹⁴ pure titanium and zirconium oxide disks: An in vivo human study. *J. Periodontol.* 2004, **75**, 292–296. ^{Table 3}. Laser modified zirconia has shown a better adhesion to the bone forming cells due to their high wettability. Furthermore, it does not activate the pathologic inflammatory pathways as reported by Liagre et al. ¹¹⁴.
98. Do Nascimento, C.; Pita, M.S.; Fernandes, T.H.N.C.; Pedraza, V.; de Albuquerque, R.P.; Jr.; Ribeiro, R.F. Bacterial adhesion on the titanium and zirconia abutment surfaces. *Clin. Oral Implants Res.* 2014, **25**, 337–343.
- lymphocytes, monocytes or macrophages, did not induce elevated cytotoxicity or inflammation compared to
99. Moritz, J.; Abram, A.; Čekada, M.; Gabor, U.; Garvas, M.; Zdovc, I.; Kocjan, A. Nanoroughening of titanium ¹¹⁵ ^{Table 3}. sandblasted 3Y-TZP surface by alumina coating deposition for improved osseointegration and bacteria reduction. *J. Eur. Ceram. Soc.* 2019, **39**, 4347–4357.
- During in vivo biocompatibility tests of zirconia, it was found that when it was implanted in the soft tissue, a thin layer of fibrous tissue encapsulated it, like what is seen with alumina. Furthermore, no cytotoxicity was observed in
100. Perez-Panoria, R.; Horwat, D.; Khanan, T.J.; Perez-Jorge, C.; Gomez-Barrena, E.; Mijot, S.; Esteban, J. Bacterial adhesion on biomedical surfaces covered by yttria stabilized zirconia. *J. Mater. Sci. Mater. Med.* 2016, **27**, 6.
- to hard tissue when tested in vivo. As compared to alumina, no difference in bone reaction was seen in case of
101. Han, A.; Tsoi, J.K.H.; Lung, C.Y.K.; Matinlinna, J.P. An introduction of biological performance of zirconia ¹¹⁶. In a study by Kohar et al., it was found that cell proliferation around zirconia was comparable to that of zirconia with different surface characteristics: A review. *Dent. Mater.* **J.** 2020, **39**, 523–530. ²⁶.
102. Han, A.; Tsoi, J.K.; Rodrigues, F.P.; Leprince, J.G.; Palin, W.M. Bacterial adhesion mechanisms on dental implant surfaces and the influencing factors. *Int. J. Adhes. Adhes.* 2016, **69**, 58–71.
103. Zechner, W.; Tangl, S.; Fürst, G.; Tepper, G.; Thams, U.; Mailath, G.; Watzek, G. Osseous healing characteristics of three different implant types. *Clin. Oral Implants Res.* 2003, **14**, 150–157.
104. Albrektsson, T.; Wennerberg, A. Oral implant surfaces: Part 2—Review focusing on clinical knowledge of different surfaces. *Int. J. Prosthodont.* 2004, **17**, 544–564.
105. Sollazzo, V.; Pezzetti, F.; Scarano, A.; Piattelli, A.; Bignozzi, C.A.; Massari, L.; Brunelli, G.; Carinci, F. Zirconium oxide coating improves implant osseointegration in vivo. *Dent. Mater. Off. Publ. Acad. Dent. Mater.* 2008, **24**, 357–361.
106. Akagawa, Y.; Ichikawa, Y.; Nikai, H.; Tsuru, H. Interface histology of unloaded and early loaded partially stabilized zirconia endosseous implant in initial bone healing. *J. Prosthet. Dent.* 1993, **69**, 599–604.
107. Akagawa, Y.; Hosokawa, R.; Sato, Y.; Kamayama, K. Comparison between freestanding and tooth-connected partially stabilized zirconia implants after two years' function in monkeys: A clinical and histologic study. *J. Prosthet. Dent.* 1998, **80**, 551–558.

108. Stadlinger, B.; Hennig, M.; Eckelt, U.; Kuhlisch, E.; Mai, R. Comparison of zirconia and titanium implants after a short healing period. a pilot study in minipigs. *Int. J. Oral Maxillofac. Surg.* 2010, 39, 585–592.
109. Dubruille, J.H.; Viguier, E.; Le Naour, G.; Dubruille, M.T.; Auriol, M.; Le Charpentier, Y. Evaluation of combinations of titanium, zirconia, and alumina implants with 2 bone fillers in the dog. *Int. J. Oral Maxillofac. Implants* 1999, 14, 271–277.
110. Kohal, R.-J.; Papavasiliou, G.; Kamposiora, P.; Tripodakis, A.; Strub, J.R. Three-dimensional computerized stress analysis of commercially pure titanium and yttrium-partially stabilized zirconia implants. *Int. J. Prosthodont.* 2002, 15, 189–194.
111. Gahlert, M.; Röhling, S.; Wieland, M.; Sprecher, C.M.; Kniha, H.; Milz, S. Osseointegration of zirconia and titanium dental implants: A histological and histomorphometrical study in the maxilla of pigs. *Clin. Oral Implants Res.* 2009, 20, 1247–1253.
112. Noumbissi, S.; Scarano, A.; Gupta, S. A Literature review study on atomic ions dissolution of titanium and its alloys in implant dentistry. *Materials* 2019, 12, 368.
113. Sennerby, L.; Dasmah, A.; Larsson, B.; Iverhed, M. Bone tissue responses to surface-modified zirconia implants: A histomorphometric and removal torque study in the rabbit. *Clin. Implant Dent. Relat. Res.* 2005, 7, S13–S20.
114. Liagre, B.; Moalic, S.; Vergne, P.; Charissoux, J.L.; Bernache-Assollant, D.; Beneytout, J.L. Effects of alumina and zirconium dioxide particles on arachidonic acid metabolism and proinflammatory interleukin production in osteoarthritis and rheumatoid synovial cells. *J. Bone Jt. Surg. Br.* 2002, 84, 920–930.
115. Hisbergues, M.; Vendeville, S.; Vendeville, P. Zirconia: Established facts and perspectives for a biomaterial in dental implantology. *J. Biomed. Mater. Res. B Appl. Biomater.* 2009, 88, 519–529.
116. Helmer, J.C.; Driskell, T.D. Research on Bioceramics: Symposium on Use of Ceramics as Surgical Implants; Clemson University: Clemson, SC, USA, 1969.
117. Klokkevold, P.R.; Nishimura, R.D.; Adachi, M.; Caputo, A. Osseointegration enhanced by chemical etching of the titanium surface. a torque removal study in the rabbit. *Clin. Oral Implants Res.* 1997, 8, 442–447.
118. Ito, A.; Tateishi, T.; Niwa, S.; Tange, S. In-vitro evaluation of the cytocompatibility of wear particles generated by UHMWPE/zirconia friction. *Clin. Mater.* 1993, 12, 203–209.
119. Christel, P.; Meunier, A.; Heller, M.; Torre, J.P.; Peille, C.N. Mechanical properties and short-term in-vivo evaluation of yttrium-oxide-partially-stabilized zirconia. *J. Biomed. Mater. Res.* 1989, 23, 45–61.

120. Ichikawa, Y.; Akagawa, Y.; Nikai, H.; Tsuru, H. Tissue compatibility and stability of a new zirconia ceramic in vivo. *J. Prosthet. Dent.* 1992, 68, 322–326.

Retrieved from <https://encyclopedia.pub/entry/history/show/25101>