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The influenza virus neuraminidase (NA) is primarily involved in the release of progeny viruses from infected cells—a

critical role for virus replication.
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1. Introduction

Vaccination remains the most effective countermeasure against influenza virus-associated morbidity and mortality 

. Current seasonal influenza vaccines target the immuno-dominant surface glycoprotein, the hemagglutinin (HA) (Figure
1A) , as HA is responsible for viral attachment to sialic acid receptors on the host cell and fusion of viral and host

endosomal membranes . However, HA has high plasticity and changes constantly due to polymerase error rate and

immune selection pressure, defined as antigenic drift . As a result of this, seasonal vaccine strains must be updated

annually, and, occasionally a mismatch between vaccine strains and circulating strains can result in seasonal epidemics

. Despite the necessity for the rapid production of seasonal influenza virus vaccines, the current process is time-

consuming and expensive . Hence, the investigation of new viral targets for influenza virus vaccines that are broadly

protective, and do not change as frequently as HA, is warranted.

Figure 1. Phylogenetic tree of influenza NAs. (A) Depiction of an influenza virion. There are two major surface influenza

glycoproteins: the hemagglutinin (HA) and neuraminidase (NA). (B) Phylogenetic tree of NA subtypes. Influenza A NAs

comprise Group 1 (N1, N4, N5, and N8), Group 2 (N2, N3, N6, N7, and N9) and bat-like (N10 and N11) NAs. Influenza B

NAs consist of Yamagata-like, Victoria-like and Hong Kong-like lineages. Wuhan spiny eel influenza virus (WSEIV) NA, a

close relative of influenza B NAs, is also included in the phylogenetic tree. The scale bar represents a 5% change in

amino acids. The phylogenetic tree was built using amino acids in Clustal Omega and then visualized in FigTree.

Neuraminidase (NA) (Figure 1A), the second surface glycoprotein of influenza virus, is a tetrameric type II

transmembrane protein that plays several important roles in the viral replication cycle due to its enzymatic activity .

Initially, when an influenza virion enters a host, the virion needs to penetrate heavily glycosylated mucosal barriers 

. These barriers act as decoy receptors for HA binding and neutralize the virion . Here, NA assists the virion by

releasing the virus particles from the decoy receptors, thus penetrating the mucus layer and gaining access to the

underlying respiratory epithelium . Upon entering and successfully replicating in the host cell, NA is crucial for

viral detachment from the host cell by cleaving off sialic acid receptors that have adhered to HA . Additionally,

influenza virions are also known to adhere to each other via interactions between HA and sialic acids on glycans of other

HAs, and between HA and other glycoproteins in the mucus layer . NA prevents this aggregation and allows for the

efficient spread of newly produced virions in the host and the subsequent transmission between hosts . Interestingly,

NA also plays a critical role in virus infectivity and HA-mediated membrane fusion .
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Shifting the immune response towards the second major glycoprotein, NA, is a promising option for the improvement of

seasonal vaccines. NA has a slower rate of antigenic drift, has fewer subtypes (Figure 1B), and lower immune selective

pressure . Hence, NA is an attractive target and anti-NA antibodies can inhibit the enzymatic activity of the virus

via direct binding or steric hinderance of the active site . Additionally, animal studies indicate that the induction of an

anti-NA antibody response can confer protection . Human challenge studies performed in the early 1970s

revealed that anti-NA antibody titers inversely correlated with virus shedding and disease symptoms . Recent

studies indicate that NA inhibition (NI) titers independently correlated with protection against influenza virus symptoms and

resulted in decreased viral shedding . Understanding the role of anti-NA antibodies in controlling influenza

virus infection can be improved through the generation of monoclonal antibodies (mAbs). In this review, we summarize

several studies that isolated and characterized anti-NA antibodies from humans, and we discuss how this information will

provide supporting evidence for the inclusion of standardized amounts of NA in future vaccine preparations.

2. NA-Based Immunity

Antibody responses towards influenza virus antigens typically target the two major surface glycoproteins, HA and NA

(Figure 1A) . Despite the importance of both anti-HA and anti-NA antibodies in preventing and controlling influenza

virus infection, HA usually exhibits immunodominance over NA following influenza vaccination . On the other

hand, natural influenza virus infection induces more balanced antibody responses towards HA and NA . Natural

infection results in high seroconversion rates against both HA and NA, as measured by enzyme-linked immunosorbent

assay (ELISA) . A study in H1N1 pandemic influenza virus-infected patients demonstrated that seroconversion to NA

could be observed at day 7 and peaked at day 28. However, NA antibodies began to decline by day 90 . In the case of

N2 antibodies, one study reported that N2 antibodies began to decline to undetectable levels within 5 months following

infection, while another study reported persistence of detectable N2 antibodies up to 4 years after infection . It

should be noted that, in general, N1 antibody titers are lower than N2 and influenza B NA antibodies . The lower titers

of N1 antibodies might be caused by the lower immunogenicity of N1 but could also be an artifact of the reagents used to

measure these antibody titers .

Several different types of influenza virus vaccines are currently in use to help protect against influenza virus infections.

Immunoglobin responses towards NA after vaccination are substantially reduced when compared to infection . Even

though there are several different vaccines against influenza virus, only a handful of the vaccines can induce an immune

response against NA, and several of the licensed vaccines contain little to no (e.g., Flucelvax) antigenic NA . Live-

attenuated virus vaccines (LAIV), whole inactivated influenza vaccine (IIV) and some split virus vaccines can induce NA

antibody responses of varying degrees . Similar to infection, antibodies in humans that developed post-

vaccination peaked at 2–3 weeks; however, they only persisted for one year . Additionally, route of

administration can also have an effect on the humoral response against NA . Unlike antibody responses to natural

infection, antibody responses to vaccination are short-lived, and antibody titers induced by vaccination may even decline

within a given influenza season . NA-specific human monoclonal antibodies (mAbs) that are induced by natural

infection and vaccination will be further discussed in the upcoming sections.

2.1. Human mAbs That Target NA

HA and NA-specific antibodies utilize different modes of action to control influenza virus infection. Anti-HA mAbs

predominantly bind to the globular head domain and inhibit virus attachment and entry into the host cell . Thus, HA-

specific mAbs have potent neutralizing activity . Additionally, some HA head-specific mAbs facilitate Fc receptor-

mediated cytotoxicity, such as antibody dependent cellular toxicity (ADCC) . Several studies have described human

mAbs that are directed against the receptor binding site of HA, which have neutralizing activity and are broadly protective

in mice . In contrast to the head-specific mAbs, mAbs that bind to HA stalk inhibit viral-endosomal fusion .

Although the titers of stalk binding mAbs in humans are typically low, they bind to HA from different subtypes and have

much broader neutralizing capacity and increased Fc-FcR activity when compared to mAbs targeting the head domain 

. Different to anti-HA mAbs, anti-NA mAbs play a major role at the later stages of viral replication,

specifically when the influenza virion buds off from the infected cells . During the final stages of viral replication, NA

enzymatically cleaves off sialic acid residues on the host cell surface, releasing virus progeny . It is at this point that

most of the anti-NA mAbs inhibit viral egress . Since NA mAbs are mostly effective during viral egress, virus titer is

not generally affected during infection in an in vitro plaque reduction assay . However, the plaque diameter is

significantly reduced in the presence of anti-NA mAbs . Therefore, most of the mAbs against NA are non-

neutralizing but are still able to inhibit the enzymatic activity of NA and prevent virion release and spread from the host cell

. Furthermore, some NA-specific mAbs also mediate ADCC, which in turn activates natural killer (NK) cells .
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Upon activation via effector cells (e.g., NK cells, macrophages), they can produce the antiviral cytokine IFN-γ and

degranulate or phagocytose infected cells, aiding in the clearance of virus-infected cells 

Influenza virus vaccination and natural infection have the ability to induce a broad immune response against NA

glycoprotein. This is demonstrated by the isolation of several human mAbs after both vaccination and natural infection.

Even though some of the isolated human mAbs have a narrow reactivity, several of the isolated human mAbs have very

broad reactivity spanning across both influenza A and influenza B strains (Figure 2 and Table 1). Below we describe

human NA mAbs that have been isolated and their exciting reactivity.

Figure 2. Mapping of NA-specific human monoclonal mAbs with known epitopes. (A) Top, bottom and side views of the

A/Hunan/02650/2016 N9 (PDB ID: 6Q1Z) showing the epitopes of NA-22 in orange, NA-45 in brown, NA-63 in pink, NA-

73 in teal, and NA-80 in salmon. (B) Top and side views of the A/California/04/2009 N1 (PDB ID: 6Q23) showing the

epitopes of 1E01 in blue, 1G01 in green, and 1G04 in red. (C) Alignment of A/Hunan/02650/2016 N9 with the epitopes of

1E01, 1G01, 1G04, NA-22, NA-45, NA-63, NA-73, and NA-80. Universally conserved sequence “ILRTQESEC” is

underlined. (D) Top and side views of the B/Perth/211/2001 NA (PDB ID: 3K38) showing the epitopes of NA-1G05 in

purple and NA-2E01 in light blue. (E) Alignment of B/Perth/211/2001 with the epitopes of NA-1G05 and NA-2E01.

Universally conserved sequence “ILRTQESEC” is underlined. For A, B and D overlapping epitopes between at least two

mAbs are show in olive. Light gray denotes the NA tetramer, with the monomer highlighted in black.

Table 1. Summary of NA mAbs isolated from humans.

Reactivity Ref. mAb Name Induced after

Group 1
NA

1000-3C05, 1000-2E06, 1000-3B04, 1000-3B06, EM-2E01, 1000-
1D05, 1000-1E02, 1000-1H01, 294-G-1F01, 294-A-1C02, 295-G-

2F04, 300-G-2A04, 300-G-2F04, 294-A-1C06
H1N1 infection

AG7C, AF9C Seasonal trivalent inactivated
vaccine

Group 2
NA

229-1D05, 235-1C02, 235-1E06, 294-1A02, 228-1B03, 228-3F04,
2291B05, 229-1F06, 229-1G03, 229-2B04, 229-2C06, 229-2E02 H3N2 infection

NA-97 A/British Columbia/1/2015 (H7N9)
natural infection

NA-22, NA-45, NA-63, NA-73, NA-80
A/Shanghai/2/2013 (H7N9)

monovalent inactivated influenza
vaccine

Influenza B
NA

NA-1A03, NA-1G05, NA-2D10, NA-2E01, NA-2H09, NA-3C01 Influenza B infection

1086C12, 1092D4, 1092E10, 1122C7 Quadrivalent inactivated influenza
vaccine

Pan NA  1G01, 1E01, 1G04 H3N2 infection
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3. NA Human mAbs Inform Vaccine Design

The development of NA vaccine antigens is complicated by several factors. The skewed antibody response towards HA is

mainly due the presence of approximately four times more HA than the NA on the influenza virion surface . As a result

of the immunodominance of HA over NA, HAs evolve more quickly than NAs. A H3N2 virus study showed that the globular

domain of HA evolves at a rate of 12.9 × 10 –14.9 × 10  amino acid/site/year compared to NA, which evolves at a rate

of 9.1 × 10  amino acid/site/year . While antibody responses against NA are the primary drivers of the antigenic

drift, antibody response and altered affinity for NA/HA receptors play a role in NA/HA antigenic drift . Furthermore,

immunization with the same amount of purified HA and NA resulted in similar increases in antibody titers to each of the

antigens, demonstrating that the two antigens have very similar immunogenicity . Due to the lower drift and

immunogenic properties of NA, there has been a concerted effort to use NA as a vaccine antigen .

As discussed in the above section, several broadly reactive human NA mAbs have been isolated either after natural

infection or post-vaccination. These human NA mAbs display a broad range of protection ranging from homologous

protection to different influenza subtypes. For example, human mAbs NA-22, NA-45, NA-63, NA-73 and NA-80 are only

active against N9 subtypes  (Figure 2A). NA-1G05 and NA-2E01 are reactive against all influenza B types 

(Figure 2D). Lastly, 1E01 and 1G01 are broadly reactive against all influenza A and B types  (Figure 2B). The

identification of broadly reactive mAbs indicates the presence of conserved epitopes on NA antigen which can be utilized

for future NA vaccine candidates (Figure 2C,E). Interestingly, children born after 2006 showed ELISA antibody titers

against the ancestral A/South Carolina/1/1918 and B/Lee/1940 influenza virus strains. The ELISA antibody titers

correlated positively with NAI titers . Additionally, a recent clinical study in which healthy young adults were challenged

with pandemic H1N1 demonstrated differences in the role of HA and NA-specific antibodies. While reduction in virus

shedding correlated with HA inhibition titers; fewer symptoms, reduced symptom severity score, reduced duration of

symptoms and reduced viral shedding correlated with NAI titers . It has also been shown that NAI titers are

independent predictors of immunity against the influenza virus and are an independent correlate of protection .

These protective mAbs against NA have three different mechanisms of inhibition: (i) direct inhibition of NA catalytic site, (ii)

indirect inhibition of NA catalytic site via steric hindrance, and (iii) mAb with little to no NAI activity utilize Fc-FcR-based

effector functions .

Antibodies against NA are not directly involved with preventing virus binding to the host receptors, similar to some anti-HA

antibodies. Thus, anti-NA mAbs are not expected to inhibit infection but limit viral spread within the host, reduce morbidity

and mortality, decrease viral shedding and reduce transmission to naïve hosts . Thus, vaccines containing

immunogenic amounts of both HA and NA would be optimal to provide complete protection against influenza virus

infection . HA and NA ratios are different for different subtypes and different strains within a subtype . Therefore, NA

content and HA:NA ratio in future vaccine candidates need to be standardized. Different assays such as mass

spectrometry (MS), isotype dilution MS and capture ELISA to measure the potency of NA in vaccine preparations are

under development . Induction of broadly cross-reactive mAbs has indicated that NA is immunogenic, and that

NA antigen contains broadly conserved epitopes.

These studies demonstrate the growing potential of using NA as a vaccine antigen. Advances in emerging platforms

(discussed below), a greater understanding of NA structural biology and mAb characterization can inform the design and

development of NA vaccine antigens that promote a broad antibody response. Even though the different studies

discussed here provide evidence for the use of NA as a vaccine antigen, a slew of questions remain unanswered. The

factors that drive long-lasting NA-specific immunity are not well understood. This knowledge could be beneficial in

designing NA-based vaccines. What makes natural infection provide a broader and long-lasting antibody response

compared to vaccination? Testing of the novel vaccine platforms that use NA as the primary antigen have, so far, been

mostly restricted to mice, with only limited platforms assessed in guinea pigs and ferrets (Table 2). Therefore, could a NA

vaccine platform that induces robust immune response in mice perform similarly in ferrets and guinea pigs? None of the

currently licensed vaccines have standardized amounts of NA. In future vaccine preparations, should NA antigens be

standardized to similar amounts or greater amounts than HA to produce a robust immune response? Current studies have

shown that NA antigenically drifts at a much slower rate compared to HA. How will the development of a vaccine targeting

NA potentially influence the evolution rate of NA? In addition, newly developed assays such as MS, isotype dilution MS

and capture ELISA to measure potency of NA in vaccine preparations have been great tools in propelling NA as a vaccine

antigen in future vaccine preparations . Future studies that try to answer the above-mentioned questions along

with several others are vital in the development of a future NA-based vaccines.

Table 2. Summary of emerging NA-based vaccine platforms against influenza viruses described in this review. + indicates

low immunogenicity, +++ indicates high immunogenicity, N.D. indicates not determined. AA indicates amino acid.
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Platform NA Antigen Subtype Animal Model Immunogenicity Protection Ref.

Inactivated vaccine 30 AA insertion in seasonal N1
15 AA insertion in N2 Mice +++

+++ N.D.

Recombinant NA vaccine

N2 Human + N.D.

Seasonal N1
N2

B/Yamagata/16/88-like B-NA
Mice

+++
+++
+++

Homologous
Heterologous

Avian N1
Pandemic N1 Mice + Homologous

Partial heterologous

N1 Mice +++ Homologous

N2 Mice +++ Homologous
Partial heterologous

B-NA Mice
Guinea pigs + Homologous

Heterologous

B-NA Guinea pigs +++ Homologous
Partial heterologous

Virus like particles

Avian N1 Ferrets +++ Homologous

Pandemic N1 Mice + Homologous
Heterologous

Avian N1
Seasonal N1 Mice +++ Homologous

Heterologous

Viral replicon particles Avian N1 Chicken +++ N.D.

Viral Vector vaccines

Avian N1
Pandemic N1 Mice +++

Homologous
Heterologous

Heterosubtypic

N3
N9 Mice +++ Homologous

Nucleic Acid-DNA

Seasonal N1 Mice + Homologous
Partial heterologous

N2 Mice + Homologous
Partial heterologous

Nucleic Acid-RNA Seasonal N1 Mice +++ Homologous

4. Emerging Platforms for the Development of NA-Based Vaccines

Vaccine candidates that target NA have been frequently revisited since the 1968 Hong Kong influenza A (H3N2)

pandemic. The first NA-based inactivated vaccine, which consisted of an irrelevant equine HA and a NA from A/Hong

Kong/1/1968 (H3N2), protected against challenge with a virus carrying an antigenically identical NA but a mismatched HA

. Despite these encouraging results, NA as a vaccine antigen has only received limited attention in the past. Early

immunogenicity studies did not frequently evaluate antibody responses against NA as it was difficult to perform the assay

safely, reproducibly and at high throughput . Furthermore, the amount of NA varied in different viruses and was

not easily quantified . Lastly the unstable nature of NAs resulted in conflicting immunogenicity studies . As a

result, the development of NA-based vaccines using traditional egg-based vaccine platforms has been relatively inactive

since 1998 . Emerging vaccine platforms, such as modified inactivated vaccines, recombinant NAs, virus-like particles

(VLP), virus replicon particles (VRP), viral vector platforms and nucleic acid vaccines (Table 2), could be used to

overcome previously unsuccessful attempts to develop NA as a vaccine antigen. Here we will describe these vaccine

platforms and how they have been used in a pre-clinical setting to induce NA antibody responses.
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