

Selenium and Chronic Diseases

Subjects: **Cell Biology**

Contributor: Wenli Hu

Selenium (Se) is an essential micronutrient for mammals, and its deficiency seriously threatens human health. A series of biofortification strategies have been developed to produce Se-enriched foods for combating Se deficiency. Although there have been some inconsistent results, extensive evidence has suggested that Se supplementation is beneficial for preventing and treating several chronic diseases. Understanding the association between Se and chronic diseases is essential for guiding clinical practice, developing effective public health policies, and ultimately counteracting health issues associated with Se deficiency. The current review will discuss the food sources of Se, biofortification strategies, metabolism and biological activities, clinical disorders and dietary reference intakes, as well as the relationship between Se and health outcomes, especially cardiovascular disease, diabetes, chronic inflammation, cancer, and fertility.

selenium biofortification

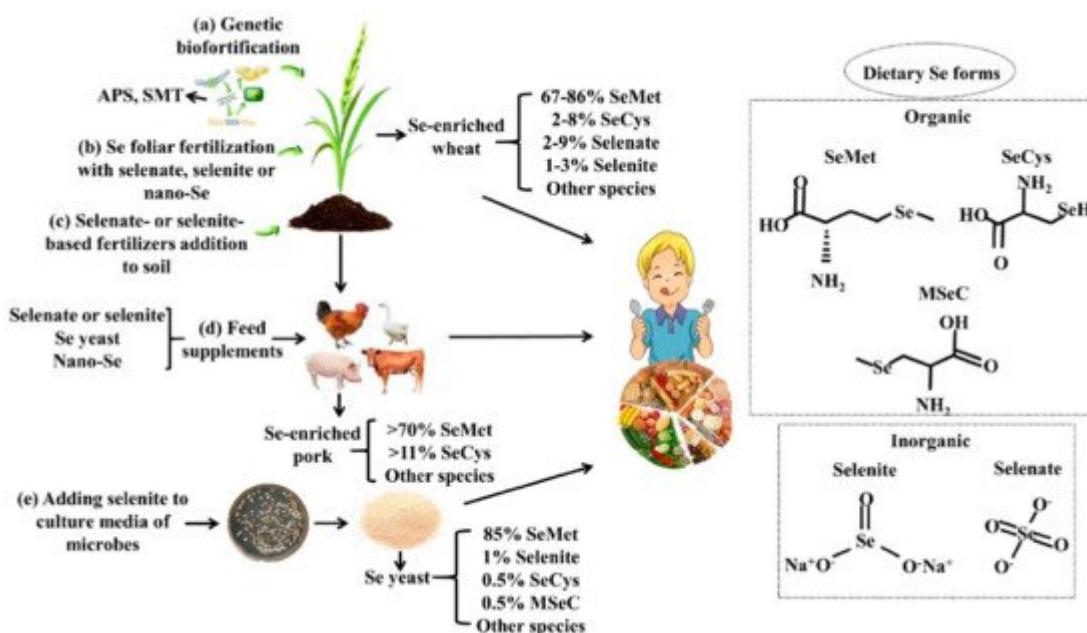
chronic diseases

baseline selenium status

methylated selenium compounds

1. Introduction

Selenium (Se) is essential for the maintained health of mammals, and its deficiency is common and a serious issue worldwide. The World Health Organization (WHO) shows that there are more than 40 countries and regions globally that suffer from Se deficiency ^[1]. Approximately 51% of the regions in China have soil that is Se deficient ^[1]. Se deficiency is a serious hazard to human health and prone to various chronic diseases, such as Keshan disease, Kashin-Beck disease, cardiovascular disease (CVD), diabetes, cancer, inflammatory diseases, subfertility, and viral infections. Therefore, the biofortification strategies to produce Se-enriched foods can help overcome Se deficiency and improve human health. Ample existing evidence has suggested that Se compounds have a protective impact against chronic diseases. Several factors affecting the beneficial activities of Se compounds have been identified, including the baseline Se status, the dosage and forms of Se. A better understanding of the relationship between Se and chronic diseases will help develop more precise solutions to combat the health problems caused by Se deficiency.


2. Food Sources of Se

2.1. The Overview of Se Contents and Forms in Different Foods

According to results of the ANIBES ("Anthropometry, Intake, and Energy Balance in Spain") study in Spain, the daily Se intake of the whole population is between 14 and 265 µg/day, with a mean level of 75 ± 1 µg/day [2]. Cereals and grains were the main contributors (46.5%) to Se intake, while animal foods provided the second portion of Se. Fish accounted for 16.7%, meat and meat products 14.9%, milk and dairy products 7.2%, and eggs 5%. All these groups provided more than 85% of the Se intake [2]. Finally, ready-to-eat meals, vegetables, pulses, fruits, sugars, sweets, and non-alcoholic beverages contributed to a small part of the dietary Se intake.

Generally, the Se concentrations in the different foods followed this descending order: animal-based foods > vegetables > cereals > fruits. In addition, the Se content in foods depends to a great extent on Se content in the soil where plants and animals grow. The mean Se content in cereals and animal foods, including meat, fish, milk, and eggs, respectively, ranges from 0.0021–2.11 mg/kg and 0.0042–2.46 mg/kg in China [1]. Vegetables contain a relatively small amount of Se, and its contents in the edible parts of different vegetables in China range from 0.0008 to 5.37 mg/kg, with a mean of 0.067 mg/kg [1]. The Se contents in the different vegetables are in the descending sequence: cruciferous vegetables > liliaceous vegetables > legumes > solanaceous vegetables > leafy vegetables. Cruciferous vegetables, garlic, and onions are considered high-Se-accumulating vegetables and can be Se-enriched from <0.5 mg/kg up to 140–300 mg/kg [3]. Brazil nuts rank at the top of ten products containing the largest quantity of Se [4].

The predominant dietary Se forms can be divided into inorganic Se, selenate and selenite, and organic Se, selenome-thionine (SeMet), selenocysteine (SeCys) and Se-methylselenocysteine (MSeC). For instance, MSeC is the main Se form in Se-enriched broccoli, garlic, and onions [5][6]. The predominant species of Se in cereals and bread are SeMet and SeCys [7]. The percent composition of Se species in Se-enriched wheat grains [8], Se-enriched pork [9], and Se yeast has also been identified [10]. The chemical structures of these dietary Se compounds and their percent compositions in Se-enriched foods are summarized in [Figure 1](#).

Figure 1. Se biofortification strategies, predominant dietary Se forms, and their percent compositions in Se-enriched foods. Plant-based biofortification mainly consists of (a) genetic biofortification and agronomic biofortification, including (b) and (c). Genetic biofortification approaches include breeding and genetic engineering, which can transfer the Se-enriched genes, such as ATP-sulfurylase (APS) and selenocysteine methyltransferase (SMT), to plants. Different sources of Se are available for feed supplements for domestic animals to produce Se-biofortified animal foods (d), including inorganic (mainly selenite or selenate), organic (mainly Se yeast), and nanoforms of Se; Adding Se, such as selenite, to culture media of microbes (e) to manufacture Se-enriched foods, such as Se yeast.

2.2. Se Biofortification

Considering the large-scale Se deficiency in the world, relying on only a few Se-rich regions to achieve the enrichment of natural Se resources, it is unable to meet the demand for Se supplementation. Therefore, people take advantage of a series of biofortification strategies to develop Se-enriched foods. Se biofortification is a biotechnological strategy that increases the Se content in agricultural products by plant breeding, genetic engineering, or agronomic practices [11]. Generally speaking, plant-based biofortification is the most effective and commonly used approach, especially in staple crops. In addition, Se-biofortified animal foods produced by animals fed Se-enriched feed may be another important way to increase dietary Se intake. Microorganisms can also be biological conversion factors for Se enrichment. Se biofortification not only increases the Se content but also enhances the nutritional value of foods. The overview of Se biofortification strategies is shown in [Figure 1](#).

2.2.1. Agronomic Biofortification

Agronomic biofortification is to increase the nutrient (such as Se) concentration in the edible parts of main crops via fertilizers [12]. Agronomic biofortification mainly includes Se addition to soil and Se foliar fertilization, while the fertilizers typically used are selenate- or selenite-based fertilizers. Applied inorganic Se is metabolized to various organic forms by plants, and the structures and amounts depend on the species of plants, and then these plant Se metabolites are consumed by humans and animals.

In general, selenate (SeVI) and selenite (SeIV) are easily transported through the plant cuticle, and metabolized by the sulfur assimilatory pathway. Firstly, catalyzed by ATP sulfatase and APS reductase, Se (VI) is reduced to Se (IV). Then, Se (IV) can be further converted to selenides (Se-II). Some selenides are metabolized to SeCys by cysteine synthase, which can be transformed into MSeC or SeMet, under the action of Se-methyltransferase or by trans-sulfurylase, respectively [10].

Most studies have shown selenate to be more effective than selenite, which may be because plants absorb more selenate, with the same Se supplementation amount [13]. For example, the total Se content in leek plants was 982 ± 159 mg/kg and 104 ± 33 mg/kg, respectively, grown on selenate and selenite-fertilized soil, showing a 10-fold difference [14]. The total Se concentration in 50 μ M selenate and selenite-treated broccoli sprouts was 179 and 98 mg/kg dry weight, respectively, showing an over 1.8-fold difference [15]. Foliar fertilization is more efficient than soil fertilization [16]. For instance, Se content in control lettuce leaves was 46 μ g/kg, while treating plants with 100 mg/L

Se achieved 784 µg/kg (for soil application), 1708 µg/kg (for foliar application) [17]. Moreover, some beneficial rhizosphere microbes can enhance the soil's Se phytoavailability [18]. The addition of beneficial rhizosphere microbes to soil might help to improve the Se biofortification of crops.

2.2.2. Genetic Biofortification

Genetic biofortification includes classical breeding and modern genomic approaches. The purpose is to select and develop plant varieties with high Se accumulation capacity according to the difference of Se absorption, which may be related to the differential expression and affinity for Se over S of root sulfate transporters [19][20]. Several genes with positive outcomes for Se biofortification have been targeted by genetic engineering, primarily consisting of sulfate transporters and S-assimilation enzymes, such as ATP-sulfurylase (APS) and selenocysteine methyltransferase (SMT), which is also the key enzyme to form MSeC [21]. The APS transgenics contained 2.5-fold higher shoot Se levels than wild-type Indian mustard [22]. The overexpression of SMT in tobacco plants increased the total Se and MSeC accumulation, and the total Se content in SMT-overexpressing tobacco (~3.8-fold higher) and control plants were 1.87 mg/kg and 0.49 mg/kg, respectively [23].

2.2.3. Se-Biofortified Agricultural Products

Foliar spray and soil application increased the total and organic Se content in cereals. Furthermore, Se-fortified cereals present various nutritional benefits, for example, antioxidants, amino acids, phenols, anthocyanins, and sugars increased [24]. The consumption of Se-biofortified wheat products increased Se intake by 12–35 µg/day, increased glutathione peroxidase activity in the blood, and the concentrations of lipid peroxidation products decreased in the serum of volunteers [25]. Although the statistical significance was not indicated, the risk factors of CVD improved slightly, with the overall cholesterol decreased by 10.3%, triglycerides decreased by 14.5%, and the low-density lipoprotein decreased by 15.1% [25][26].

In addition, the researchers also studied the Se fortification of vegetables. Spraying lettuce with Se improved its growth, antioxidant capacity, Se content and yield quality [17]. The application of Se significantly increased the antioxidant capacity, the total phenol, and rosmarinic acid content in basil leaves during harvest [27]. The content of antioxidant flavonoids, naringenin chalcone, and kaempferol increased, and cinnamic acid derivatives decreased in the Se-biofortified tomatoes [28]. Among the crops that can accumulate Se, the Brassicaceae family has received more attention since they are Se-hyperaccumulating plants. Se-fortified broccoli showed higher amounts of phenolic compounds, increased antioxidant and antiproliferative activity, presenting cytocidal activity for a glioma line, especially the seedlings [29].

The most commonly used Se biofortification technology in fruits was foliar spray. Spraying with Se enhanced the Se content and the nutritional quality in fruits and their derivates. Fruit Se concentration increased from 0.1 µg/kg to 242 µg/kg when Se was foliar sprayed at 1.5 mg/L, and meanwhile, the antioxidant enzyme activity, the fruit quality, and the storability of apples were also markedly amplified [30]. Se nanoparticles (Se NPs), as a foliar spray, significantly increased the total sugars, phenolic compounds, antioxidants, and anthocyanins in pomegranates [31]. The foliar Se fertilization of olive trees enhanced the Se content and the antioxidant compounds in extra virgin olive

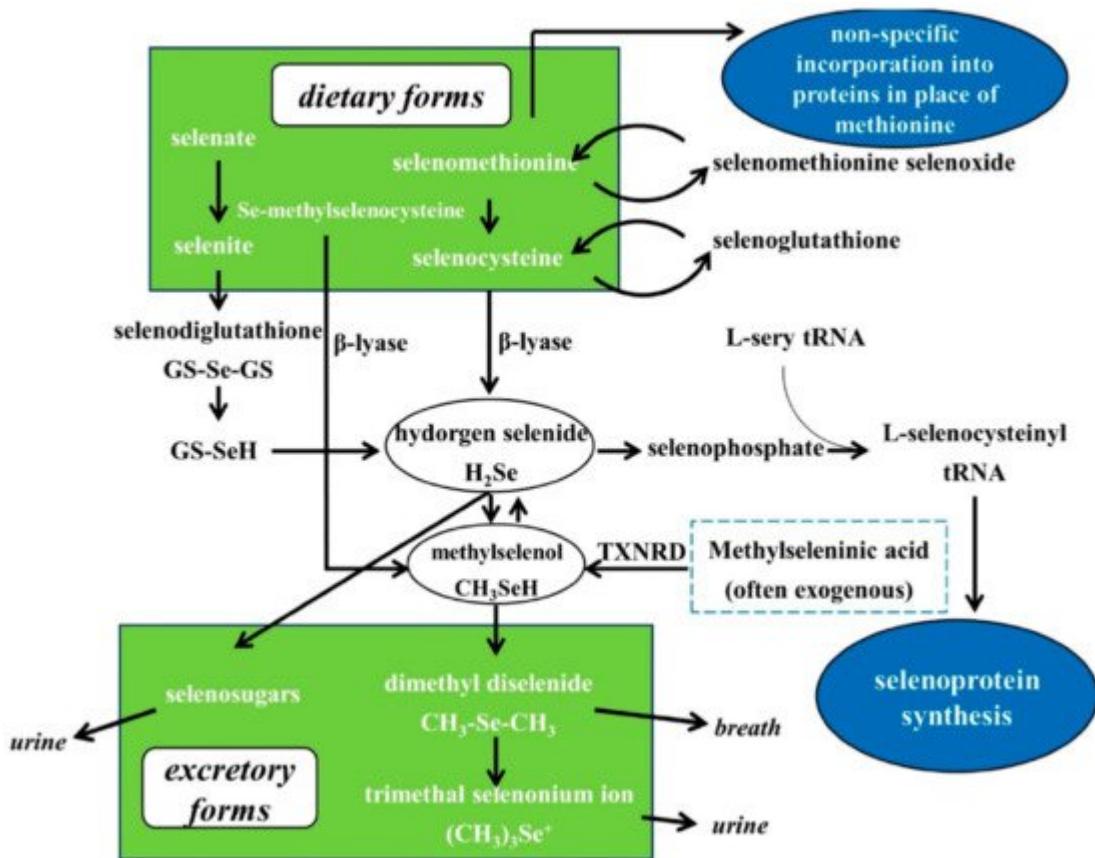
oil (EVOO), such as chlorophylls, carotenoids, phenols, and SeMet, which increased the oxidative stability and shelf-life of EVOO [32].

Various experiments have shown that dietary Se supplementation increased the Se concentration in meat and improved the meat quality, such as enhancing glutathione peroxidase activity and the oxidative stability [33], preserving its texture and sensory characteristics [34], altering the lipid metabolism, and decreasing the cholesterol content [35].

Se-enriched foods that rely on microorganisms to transform and produce Se elements include Se-enriched yeast, Se-enriched edible fungi, and Se-enriched probiotics, which are prepared by adding inorganic Se additives, such as sodium selenite, to their corresponding media. In addition, Se-enriched yeast and Se-enriched probiotics can be used for manufacturing food products such as beer, yogurt, or cheese.

2.3. Se Nutritional Fortifiers and Se Fortified Foods

In addition to Se in natural foods, Se can be also used as nutritional food fortifiers in formulating milk powder, rice, and its products, wheat flour and its products, cereal flour and its products, bread, biscuits, and milk beverages. The approved forms are sodium selenite, sodium selenate, selenoprotein, Se-enriched edible fungus powder, MSeC, selenized carrageenan, and Se yeast. There are strict requirements for additive amounts; for example, the United States Food and Drug Administration (FDA) recommends that the Se level in infant formula is 2–7 µg/100 kcal [36].


3. Se Nutritional Status Assessment, Metabolism, Bioavailability and Biological Functions

It is a challenging task to evaluate the Se nutritional status. Se exists in multiple locations of the body, including blood, hair, and nails. Although the Se content in the blood is used as a major biomarker, it only represents short-term exposure to Se [37]. Toenail Se content can reflect long-term external exposures, and compared with fingernails and hair, the possibility of exposure to external contamination is smaller [38]. Therefore, toenails have more potential for assessing Se's nutritional status in epidemiologic studies of Se and chronic diseases than other biomarkers.

Se content in foods does not represent the amount available to organisms, and the absorption of Se from foods depends on its bioavailability. The chemical form is a vital factor affecting Se bioavailability. Generally, organic Se compounds are more bioavailable for animals and humans than inorganic species. As for inorganic Se, selenite is more largely transformed into organic metabolites than selenate [39]. SeCys and MSeC are more easily digested by the gastrointestinal tract than SeMet [40]. Moreover, Se in plant foods is more bioavailable than Se in animal foods [41].

The metabolism of Se in the human organism is shown in [Figure 2](#). The predominant Se species in food can be divided into inorganic Se, selenate, and selenite, and organic Se, including SeMet and SeCys. All these forms of

Se can be metabolized to hydrogen selenide (H_2Se), which is involved in the selenoprotein synthesis and methylation excretion of Se [4][42][43]. SeMet can participate in synthesizing general proteins instead of methionine or being converted into SeCys via trans-sulfurization. SeCys can be transformed into H_2Se by β -lyase. Inorganic Se can be converted to H_2Se through reductive metabolism. H_2Se can be converted into Selenocysteinyl-tRNA, a crucial transport RNA, to synthesize selenoproteins. When the intake of Se exceeds the need for selenoprotein synthesis (higher than nutritional requirements), H_2Se is methylated to methylselenol, a key anti-cancer metabolite. With higher intake levels, methylselenol is methylated to dimethylselenide and trimethylselenium ion, which are excreted via respiration and urine, respectively. H_2Se can also be converted into selenosugars for excretion via urine. Different from the Se compounds mentioned above, MSeC can be directly metabolized into methylselenol by β -lyase [4]. Exogenous methylseleninic acid (MSeA) can be directly reduced by thioredoxin reductase (TXNRD) to methylselenol. Therefore, at supra-nutritional levels (higher than nutritional requirements), MSeC and MSeA are more promising anti-cancer agents.

Figure 2. Se metabolism. Most dietary Se can be metabolized to H_2Se , further involved in the synthesis of selenoproteins and methylated excretion. Methylselenol is a critical Se metabolite for anticancer activity. Se-methylselenocysteine and synthetic methylseleninic acid can be directly converted into methylselenol and bypass the H_2Se pool. Based on Nicastro and Dunn, 2013 [42].

Se exerts various biological functions primarily via selenoproteins, especially selenoenzymes, such as regulating thyroid hormone metabolism, antioxidant system, oxidative metabolism, and immune system. The antioxidant properties of selenoproteins are mainly due to some selenoenzymes, such as glutathione peroxidases (GPXs),

which catalyze reducing hydrogen peroxide, phospholipid peroxides, and lipid peroxides into harmless water and alcohols, protecting cells from oxidation damage. SeCys is considered the 21st amino acid participating in ribosome-mediated protein synthesis, and it is also an integral part of selenoprotein activity. The UGA codon mediates the specific incorporation of SeCys into selenoproteins [44]. Currently, about 25 selenoproteins have been found in mammals and humans [45]. Of these, the functions of some are clearly characterized, such as GPXs, TXNRDs, iodothyronine deiodinases (DIOs), methionine sulfoxide reductase B1 (MSRB1), and selenophosphate synthetase 2 (SEPHS2). The functionality of some non-enzyme members is also gradually better understood [46]. [Table 1](#) lists the mammalian selenoproteins, tissue distribution, and localization, as well as their functions. The selenoproteins are designated according to the official nomenclature [47].

Table 1. Mammalian selenoproteins with characterized functions. Based on Labunskyy et al., 2014; Davis et al., 2012; Avery and Hoffmann, 2018; Gladyshev et al., 2016 [44][45][46][47].

Selenoprotein (Abbreviation)	Tissue Distribution ^a	Localization	Functions
Glutathione peroxidase 1 (GPX1)	Blood, kidney, liver, placenta	Cytosol	Reduces cellular H ₂ O ₂ and lipid peroxides
Glutathione peroxidase 2 (GPX2)	Gastrointestinal tract, liver, mammary	Cytosol	Reduces peroxide in the gut
Glutathione peroxidase 3 (GPX3)	Epididymis, kidney, plasma	Plasma	Reduces peroxide in blood
Glutathione peroxidase 4 (GPX4)	Liver, testis	Cytosol; mitochondria; nucleus (testis-specific)	Reduces phospholipid peroxide
Glutathione peroxidase 6 (GPX6)	Embryos, olfactory epithelium	Cytosol	Reduces cellular H ₂ O ₂ in the olfactory epithelium
Thioredoxin reductase 1 (TXNRD1)	Heart, kidney, liver	Cytosol	Regenerates reduced thioredoxin
Thioredoxin reductase 2 (TXNRD2)	Adrenal gland, heart, kidney, liver	Cytosol	Catalyzes a variety of reactions, specific for thioredoxin and glutaredoxin systems
Thioredoxin reductase 3 (TXNRD3)	Testis, heart, kidney, liver	Mitochondria	Reduces the oxidized form of thioredoxin and glutaredoxin 2
Iodothyronine deiodinase 1 (DIO1)	Kidney, liver, thyroid	Plasma membrane	Important for systemic active thyroid hormone levels
Iodothyronine deiodinase 2 (DIO2)	Brain, brown adipose tissue,	Endothelial reticulum	Important for local active thyroid hormone levels

Selenoprotein (Abbreviation)	Tissue Distribution ^a	Localization	Functions
	pituitary		
Iodothyronine deiodinase 3 (DIO3)	Brain, placenta, skin	Plasma membrane	Inactivates thyroid hormone
Methionine sulfoxide reductase B1 (MSRB1)	Liver, kidney	Cytosol	Reduces methionine-R-sulfoxide residues in proteins to methionine
Selenophosphate synthetase 2 (SEPHS2)	Kidney, liver, testis	Cytosol	Synthesis of selenophosphate
Selenoprotein F (SELENOF)	Liver, prostate	Endoplasmic reticulum (ER)	Involved in protein folding
Selenoprotein H (SELENOH)	Unknown ^b	Nucleus	Involved in redox sensing and transcription
Selenoprotein I (SELENOI)	Unknown ^b	Membrane	Involved in phospholipid biosynthesis
Selenoprotein K (SELENOK)	Unknown ^b	ER membrane	Modulates Ca^{2+} influx that affects immune cell function; component of ER-associated degradation
Selenoprotein M (SELENOM)	Brain	ER	Protein folding in ER
Selenoprotein N (SELENON)	Brain, heart, liver, muscle	ER membrane	Proper muscle development
Selenoprotein O (SELENOO)	Unknown ^b	Mitochondria	Unknown ^c
Selenoprotein P (SELENOP)	Liver, plasma	Plasma	Se transport and antioxidant function
Selenoprotein S (SELENOS)	Unknown ^b	ER membrane	Involved in ER-associated degradation
Selenoprotein T (SELENOT)	Unknown ^b	ER and Golgi	Involved in redox regulation and cell anchorage
Selenoprotein V (SELENOV)	Testes	Cytosol	Unknown ^c
Selenoprotein W (SELENOW)	Brain, muscle, testes	Cytosol	Necessary for muscle function

.; Liang,

D. Selenium distribution in the Chinese environment and its relationship with human health: A review. Environ. Int. 2018, 112, 294–309.

2. Olza, J.; Aranceta-Bartrina, J.; González-Gross, M.; Ortega, R.M.; Serra-Majem, L.; Varela-Moreiras, G.; Gil, Á. Reported Dietary Intake and Food Sources of Zinc, Selenium, and Vitamins

^a Selenium in the Spanish Population: Findings from the ANSES Study. *Nutrients* 2017, **9**, 697. Expression is unknown. However, mRNA has been detected in several tissues. ^c Function is unknown. Discovered by in silico analysis.

3. Fairweather-Tait, S.J.; Bao, Y.; Broadley, M.R.; Collings, R.; Ford, D.; Hesketh, J.E.; Hurst, R. *Selenium in Human Health and Disease. Antioxid. Redox Signal.* 2011, **14**, 1337–1383.

4. Chronic Diseases

4.1. Cardiovascular Disease

5. Roberge, M.T.; Borgerding, A.J.; Finley, J.W. Speciation of selenium compounds from high CVD is currently the most prominent causative factor for human mortality and the greatest threat to human health worldwide. The earliest research on the role of Se in the cardiovascular (CV) system can be traced back to Keshan disease, a type of congestive cardiomyopathy that occurred in regions in China suffering from Se deficiency before 1980.

Whanger, P. Selenium compounds in Plants and Animals and Their Biological Significance. *Environ. Cell. Nutr.* 2003, **21**, 223–232. U-shaped relationship between the baseline Se status and CVD incidence.

Within a narrow blood Se range of 55–145 µg/L [49][50] the Se concentration exhibited a significant negative association with CVD risk. Several meta-analyses of previous randomized controlled trials (RCTs) demonstrated that Se supplementation was not effective on CVD prevention [50][51].

8. Wang, M.; Ali, F.; Wang, M.; Dinh, Q.T.; Zhou, F.; Banuelos, G.S.; Liang, D. Understanding the relationship between selenium accumulation in wheat (*Triticum aestivum* L.) following foliar selenium application at different stages, forms and doses. *Environ. Sci. Pollut. Res.* 2020, **27**, 717–728. increasing the risk of pregnancy-induced hypertension, while Se treatment as selenized yeast (60 µg/day) greatly reduced the risk of pre-eclampsia and pregnancy-induced hypertension [52]. According to another study on Swedish elderly citizens, long-term supplementation with Se yeast (200 µg/day) and coenzyme Q10 reduced CV mortality and increased cardiac function [53]. Subsequent analysis of whether the functions of Se and coenzyme Q10 with different selenium supplements. *Food Chem.* 2020, **302**, 125371.

9. Zhang, K.; Guo, X.; Zhao, Q.; Han, Y.; Zhan, T.; Li, Y.; Tang, C.; Zhang, J. Development and application of a HPLC-ICP-MS method to determine selenium speciation in muscle of pigs treated and increased cardiac function [53]. Subsequent analysis of whether the functions of Se and coenzyme Q10 supplementation depends on the baseline Se status showed that supplementation played a role in protecting the heart in people with low baseline Se levels (<85 µg/L) [54]. Possible related mechanisms involved in the protective effects of Se on the CV system include reduced oxidative stress and inflammation [55][56]. Additionally, plenty of laboratory studies suggested that optimal Se intake could prevent atherosclerosis, the pathological basis of CVD, by reducing oxidative stress, infection, endothelial dysfunction, vascular cell apoptosis, and vascular calcification [48].

10. Ip, C.; Birringer, M.; Block, E.; Kotrehai, M.; Tyson, J.F.; Uden, P.C.; Lisk, D.J. Chemical speciation of Se in people with low baseline Se levels (<85 µg/L) [54]. Possible related mechanisms involved in the protective influences comparative activity of selenium-enriched garlic and yeast in mammary cancer prevention. *J. Agric. Food Chem.* 2000, **48**, 2062–2070.

11. Ewu, Z.; Banuelos, G.S.; Lin, Z.-Q.; Lin, Y.; Yuan, L.; Eyn, X.; Eyn, M. Biofortification and phytoremediation of selenium in China. *Front. Plant Sci.* 2015, **6**, 196.

12. Broadley, M.R.; Alcock, J.; Alford, J.; Cartwright, P.; Foot, I.; Fairweather-Tait, S.J.; Hart, D.J.; Hurst, R.; Knott, P.; McGrath, S.P.; et al. Selenium biofortification of high-yielding winter wheat. In summary, the results of randomized controlled experiments so far are inconsistent, and the protective effect of Se on CVD is still inconclusive, but it was found that subjects with low baseline Se concentrations could benefit from Se supplementation. To determine whether Se is beneficial for CVD prevention, larger and more extensive clinical trials are needed. Some factors, such as the dose and forms of Se, the baseline Se status, and the selenoprotein genotype of the target population [48], should be considered when designing a prevention strategy.

13. Lyons, G. Biofortification of Cereals with Foliar Selenium and Iodine Could Reduce Hypothyroidism. *Front. Plant Sci.* 2018, **9**, 730.

14. Lavu, R.V.S.; Du Laing, G.; Van De Wiele, T.; Pratti, V.L.; Willekens, K.; Vandecasteele, B.; Tack, F. Fertilizing Soil with Selenium Fertilizers: Impact on Concentration, Speciation, and

Bioaccessibility of Selenium in Leek (*Allium ampeloprasum*). *J. Agric. Food Chem.* 2012, **60**,

4.2. Metabolic Diseases

4.2.1. Diabetes Mellitus

16. Ros, G.H., Van Rotterdam, A.M.D., Bussink, B.W., Bindraban, P.S. Selenium fertilization

strategies for bio-fortification of food: An agro-ecosystem approach. *Plant Soil* 2016, **404**, 99–112. A meta-analysis based on previous observational studies found a U-shaped non-linear dose-responsive relationship between selenium and yield. *Plant Soil* 2015, **387**, 715. Selenium fortification Se induces a growth/antioxidant activity, yield and nutritional quality of wheat in soil after 2015. Using results obtained in soil application. *Plant Soil* 2017, **411**, 245–258. Soil factors in the development of T2DM. The

Nutritional Prevention of Cancer trial (NPCT) showed that Se yeast supplementation (200 µg/day) increased the incidence of T2DM in subjects with the highest baseline Se levels (>121.6 ng/mL) [60]. The Se and Vitamin E human diets—Iron, zinc, copper, calcium, magnesium, selenium and iodine. *New Phytol.* 2009, 182, 49–84.

¹⁸², 49–84). It should be noted that the median baseline plasma Se level in SELECT (136 µg/L) was higher nonsignificant [61]. 19. Kumar, J.; Gupta, D.S.; Kumar, S.; Gupta, S.; Singh, N.P. Current Knowledge on Genetics

19. Kumar, J.; Gupta, D.; Surya, A.; Kumar, S.; Gupta, S.; Singh, N. P. Current knowledge on Genetic than in the N-PEI (113 µg/L). Furthermore, these were generally cancer traits in which T2DM was only a Biofortification in Lentil. *J. Agric. Food Chem.* 2016, **64**, 6383–6396.

status appears to have no adverse effects while Se supplementation in well-nourished populations may potentially increase the risk of T2DM [62].

Increase the risk of 2DM¹⁴ Phytotechnologies: A Review. *J. Environ. Qual.* 2017, 46, 10–19.

24.2 Maladyroid Diseases

on crop nutritional quality. *Front. Plant Sci.* 2015, 6, 280. The thyroid gland contains the highest amount of Se among all tissues. Thyroid tissues express a number of

22. Van Huyzen, T.; Terry, N.; Rilon-Smits, E.A. Exploring the selenium phytoremediation potential of selenoproteins such as GPX5, TXNRD1, and B10S, which play an important role in thyroid hormone metabolism and anti-oxidative stress. *Int. J. Environ. Res. Public Health* **2019**, *16*, 3330.

J. Phytoremediat. 2004, 6, 111–118.

23. Chen, M.; Zeng, L.; Luo, X.; Meboob, M.Z.; Ao, T.; Lang, M. Identification and functional characterization of a novel selenocysteine methyltransferase from *Brassica juncea* L. *J. Exp. Bot.* that in Se-rich areas [63]. Several studies have already demonstrated the benefits of Se supplementation on 2019 70 6401–6416.

autoimmune thyroid disorders. A systematic review and meta-analysis of 16 controlled trials showed that Se 24. Amato, P.D.; Boari, L.; Falchetti, R.; Mattioli, S.; Benincasa, D.; Bosco, A.D.; Rocchetti, R.

[64]. The presence of thyroid autoantibodies is relatively high in women of childbearing age, and pregnant women

positive for thyroperoxidase antibodies are prone to develop postpartum thyroid dysfunction (PP-TD) and permanent hypothyroidism. [65] A prospective randomized placebo-controlled study suggested that SeMet

25. Djuric, I.S., Jozanov-Stankov, O.N., Milovac, M., Jankovic, V., Djermahovic, V. Bioavailability and

hypothyroidism [66]. A recent multicenter, randomized, double-blind, placebo-controlled trial also demonstrated that possible benefits of wheat intake naturally enriched with selenium and its products. *Biol Trace SeMet supplementation (83 µg/day) during pregnancy and after delivery reduced autoantibody titer during*

26. Newman, R.; Waterland, N.; Moon, Y.; Tou, J.C. Selenium Biofortification of Agricultural Crops and pregnancy and postpartum thyroiditis recurrence [67]. Se is also effective in Graves' disease; Se administration

Effects on Plant Nutrients and Bioactive Compounds Important for Human Health and Disease patients with "mild Graves" orbitopathy [68]. Despite recommendations only extending to patients with Graves Prevention—A Review. *Plant Foods Hum. Nutr.* 2019; 74: 449–460. ophthalmopathy, Se supplementation is widely used by clinicians for other thyroid phenotypes. More solid clinical

27. Poncelet, H.; Medeiros, A.; Mazzoni, B.; Roselli, B.; Mazzoni, M.; Malagoli, M. Selenium Enrichment Enhances the Quality and Shelf Life of Basil Leaves. *Plants* **2020**, *9*, 801. For instance, on individual Se status or genetic profile [69].

28. Schiavon, M.; Dall'Acqua, S.; Mietto, A.; Pilon-Smits, E.A.H.; Sambo, P.; Masi, A.; Malagoli, M.

4.3. Chronic/Acute Inflammations

(*Solanum lycopersicum* L.). *J. Agric. Food Chem.* **2013**, *61*, 10542–10554.

Epidemiological data suggest that Se deficiency is positively related to the prevalence of atherosclerosis, rheumatoid arthritis, and viral infections, including HIV/AIDS, and chronic inflammation is the main cause of the M.C. Antioxidant and antiproliferative activities in different maturation stages of broccoli (*Brassica oleracea* *Italica*) biofortified with selenium. *Food Chem.* **2016**, *190*, 771–776. [70]. Epidemiological studies have shown that there is an inverse relationship between Se levels and inflammatory

30. Bahadur, M.; Bhowmik, G.; Zamani, Z.; Akanbi, A.M. Effects of zinc application with sodium selenite. Further selenium biofortification and its dietary intake and of 'StarKing' delicious apple during storage. *Sci. Food Agric.* **2019**, *99*, 5149–5156. Supplementation increased body weight, colon length, and the

survival of mice after treatment with dextran sodium sulfate (DSS) and decreased colitis-associated inflammation [71]. In addition, dietary Se protected against chronic inflammation-induced colon cancer (CICC) in preclinical animal models [73]. Significant associations between the Se status and incidence or severity of asthma have not

S. Afr. J. Bot. **2019**, *124*, 350–358. been consistently demonstrated in human studies. As with the epidemiological data, the results of intervention

32. Amato, R.D.; De Feudis, M.; Hasuoka, P.E.; Regni, L.; Pacheco, P.H.; Onofri, A.; Businelli, D.; Proietti, P. The Selenium Supplementation Influences Olive Tree Production and Oil Stability Against Oxidation and Can Alleviate the Water Deficiency Effects. *Front. Plant Sci.* **2018**, *9*.

33. Marković, R.; Ćirić, J.; Starčević, M.; Šefer, D.; Baltić, M.Ž. Effects of selenium source and level in Se deficiency has been associated with the pathogenicity of several viruses. In addition, several selenoproteins, including GPXs and TXNRDs, seem to play an important role in different virus replication patterns. Finally, the Se

poultry. *Anim. Health Res. Rev.* **2018**, *19*, 166–176. nutritional status of the host may also lead to the transformation of the virus genome from benign or low pathogenic

34. Joksimovic, Todorovic, M.; Davidovic, V.; Sretenovic, I. The effect of diet selenium supplement on meat quality. *Biotechnol. Anim. Husb.* **2012**, *28*, 553–561.

35. Netto, A.S.; Zanetti, M.A.; Claro, G.R.; de Melo, M.P.; Vilela, P.G.; Correa, L.B. Effects of copper and selenium supplementation on performance and lipid metabolism in confined brangus bulls.

The novel coronavirus infection (COVID-19) seriously threatens human health globally. Recent studies have

36. Lönnérdal, B.; Vargas-Fernández, F.; Whitacre, M. Selenium fortification of infant formulas: Does selenium form matter? *Food Funct.* **2017**, *8*, 3856–3868.

37. Morris, J.S.; Stampfer, M.J.; Willett, W. Dietary Selenium in humans toenails as an indicator. *Biol. Trace Element Res.* **1983**, *5*, 529–537.

38. Gutierrez-González, E.; García-Esquinas, E.; de Larrea-Baz, N.F.; Salcedo-Bellido, I.; Navas-Acien, A.; Lope, V.; Gómez-Ariza, J.L.; Pastor, R.; Pollán, M.; Pérez-Gómez, B. Toenails as

transporter selenoprotein P concentrations within the reference ranges indicated high survival odds in COVID-19 [83]. Early nutritional interventions with Zn, Se, and Vitamin D might protect against COVID-19 and mitigate the

39. De Nascimento Da Silveira, E.; Mazzoni, F.; Amador, M.D.; Puglisi, A.; Gaudio, S.; Cubadda, P. Selenium Bioaccessibility and Speciation in Selenium-Enriched Lettuce: Investigation of the

on Selenium compounds released after in vitro dissolution of plant and dietary sources. *Food Chemistry* 2019, **291**, 1–19. [https://doi.org/10.1016/j.foodchem.2017.09.025](#)

40. Hu, T.; Hui, G.; Li, H.; Guo, Y. Selenium biofortification in *Hericium erinaceus* (Lion's Mane mushroom) and its in vitro bio-accessibility. *Food Chem.* 2020, **331**, 127287.

4.4.1. Human Studies on Se and Cancer

41. Pyrzynska, K.; Sentkowska, A. Selenium in plant foods: Speciation analysis, bioavailability, and factors affecting composition. *Crit. Rev. Food Sci. Nutr.* 2021, **61**, 1340–1352.

42. Nicastro, H.L.; Dunn, B.K. Selenium and Prostate Cancer Prevention: Insights from the Selenium and Vitamin E Cancer Prevention Trial (SELECT). *Nutrients* 2013, **5**, 1122–1148.

not been consistent. Several epidemiological studies have shown that there is a negative correlation between Se

43. exposure; Zhang, J.; Jiang, C.; Deng, B.Y.; Örtner, M. *Role of Selenium in Cancer Prevention Research*—meta-analysis of the post-SELECT era: Promises and challenges. *Nutr. Cancer* 2016, **68**, 1–17.

Se exposure reduced the risk of breast cancer, lung cancer, esophageal cancer, gastric cancer, and prostate cancer,

44. Labunsky, V.; Hatfield, D.L.; Gladyshev, V.N. Selenoproteins: Molecular Pathways and Physiological Roles. *Physiol. Rev.* 2014, **94**, 739–777.

but it had nothing to do with colorectal cancer, bladder cancer, and skin cancer [86]. Several observational longitudinal studies showed that the risk for site-specific stomach, colorectal, lung, breast, bladder, and prostate

45. Davis, C.D.; Tsuji, P.A.; Milner, J.A. Selenoproteins and Cancer Prevention. *Annu. Rev. Nutr.*

2012, **32**, 73–95.

a systematic review of epidemiological studies showed that Se exposure was associated with a possible higher risk

46. Avery, J.; Hoffmann, P. Selenium, Selenoproteins, and Immunity. *Nutrients* 2018, **10**, 1203.

47. Gladyshev, V.N.; Arnér, E.; Berry, M.J.; Brigelius-Flohé, R.; Bruford, E.A.; Burk, R.F.; Carlson, B.A.; Castellano, S.; Chavatte, L.; Conrad, M.; et al. Selenoprotein Gene Nomenclature. *J. Biol. Chem.* 2016, **291**, 24036–24040.

Several epidemiological studies demonstrated a non-linear U-shaped dose-response association. When plasma/serum Se concentration was between 120 and 160 ng/mL, the risk of some types of cancer, including prostate cancer, was reduced compared with a low plasma Se status, <120 ng/mL. Above 160 ng/mL, the cancer-protective effect is likely to diminish, and the risk of certain types of cancer may increase [8].

48. Lu, H.; Xu, H.; Huang, K. *Selenium in the prevention of atherosclerosis and its underlying mechanisms*. *Metalomics* 2017, **9**, 21–37.

Although some observational studies indicated an inverse relationship between Se exposure and the risk of certain types of

49. Benstöem, C.; Goetzenich, A.; Kraemer, S.; Borsig, S.; Manzanares, W.; Hardy, G.; Stoppe, C. exposure misclassification and unmeasured confounding [89]. Accordingly, RCTs are considered next.

Selenium and Its Supplementation in Cardiovascular Disease—What do We Know? *Nutrients*

2015, **7**, 3094–3118.

In addition, hepatocellular carcinoma patients undergoing liver transplantation (LT) displayed a notable Se deficiency, and Se status was higher in survivors than non-survivors. Serum Se status may serve as a prognosis marker of LT, and thus, adjuvant Se supplementation may support convalescence [90].

50. Zhang, X.; Lu, C.; Guo, J.; Song, Y. *Selenium status and cardiovascular diseases: Meta-analysis of prospective observational studies and randomized controlled trials*. *Eur. J. Clin. Nutr.* 2015, **70**, 162–169.

• Human intervention studies with Se

51. Jenkins, D.J.; Spence, J.D.; Giovannucci, E.L.; Kim, Y.-I.; Josse, R.; Vieth, R.; Mejia, S.B.; Viguier, E.; Nishi, S.; Saby, P.; Puthucheary, S.; et al. *Supplemental Vitamins and Minerals for CVD Prevention and Treatment*. *J. Am. Coll. Cardiol.* 2018, **71** (12S), 2570–2584.

52. Rayman, M.P.; Bath, S.C.; Westaway, J.; Williams, P.; Mao, J.; Vanderlelie, J.J.; Perkins, A.V., Redman, C.W.G. *Selenium status in UK pregnant women and its relationship with hypertensive conditions of pregnancy*. *Br. J. Nutr.* 2015, **113**, 249–258.

mortality, overall cancer incidence, and incidences of lung, colorectal, and prostate cancers [92]. The NPCT also

suggested that the incidence of prostate cancer (PCa) decreased significantly only among the subjects with low

53. Alehagen, U.; Johansson, P.; Björnstedt, M.; Rosén, A.; Dahlström, A. Cardiovascular mortality (>1 and <1 year) and n-terminal-proBNP reduced after combined selenium and coenzyme Q10 supplementation: A 5-year prospective randomized double-blind placebo-controlled trial among elderly Swedish citizens. *J. Clin. Endocrinol.* 2013, **167**, 1860–1866.

Following the NPCT, a series of phase II clinical trials against prostate and lung cancer was carried out in North America, including SELECT, SWOG9917 [94], ECOG NBT [95], and ECOG5597 [96]. The primary endpoint of all these trials is cancer incidence, but none of them show the efficacy of SeMet or Se-yeast. In fact, follow-up analyses of SELECT showed that Se supplementation increased the risk of high-level PCa among men with a higher Se status [97]. The Se and Celecoxib (Sel/Cel) Trial found that selenized yeast supplementation (200 µg/day)

54. Alehagen, U.; Aaseth, J.; Johansson, P. Reducing the risk of prostate and lung cancer mortality by 18% among participants with low selenium and coenzyme Q10 combined: Results from a 4-year prospective randomized double-blind placebo-controlled trial among elderly Swedish citizens. *Biofactors* 2015, **41**, 443–452.

Major reasons for the failure of these studies were associated with the baseline Se levels of subjects, the dose levels and forms of Se supplementation. The baseline Se levels of subjects for these newer trials were higher than

55. Alehagen, U.; Aaseth, J.; Alexander, J.; Johansson, P.; Larsson, A. Supplemental selenium and coenzyme Q10 reduce glycation along with cardiovascular mortality in an elderly population with low selenium status—A four-year, prospective, randomized, double-blind placebo-controlled trial, cancer cells, 100–500 µM SeMet was needed to suppress growth and induce apoptosis [98]. Such a high level of oral supplement dose cannot be achieved. SeMet did not have an inhibitory effect against human PCa xenografts [99].

56. Balakumar, P.; Maung-U, K.; Jagadeesh, G. Prevalence and prevention of cardiovascular disease and diabetes mellitus. *Pharmacol. Res.* 2016, **113**, 600–609.

In summary, although the results of RCTs so far are inconsistent and the protective effect of Se against cancer is still uncertain, it was revealed that subjects with a low baseline Se status could advantage from Se supplementation. To determine the outcome of Se on cancer prevention, more extensive clinical trials are necessary. The dose and chemical form of Se, the baseline Se level of the subjects, and cancer type/grade are all

57. Wang, X.; Yang, T.; Ma, J.; Ma, J.; Seibert, C. Association between serum selenium level and type 2 diabetes mellitus: A non-linear dose–response meta-analysis of observational studies. *Br. J. Nutr.* 2015, **15**, 1–9.

60. Stranges, S.; Marshall, J.R.; Narayanan, P.R.; Donahue, R.P.; Nevalainen, M.; Combs, G.F.; Cappuccio, F.P.; Cerejo, A.; Reis, M.E. Effects of long-term selenium supplementation on the incidence of type 2 diabetes: A randomized trial. *Am. J. Med.* 2007, **147**, 217–223.

61. Lippman, S.M.; Klein, E.A.; Goodman, P.J.; Lucia, M.S.; Thompson, J.M.; Ford, L.G.; Parnes, H.L.; Minasian, L.M.; Gaziano, J.M.; Hartline, J.A.; et al. Effect of selenium and vitamin E on risk of prostate cancer and other cancers: The Selenium and Vitamin E Cancer Prevention Trial (SELECT). *JAMA* 2009, **301**, 39–51.

MSeC was more active than selenite or SeMet in tumor inhibition in a chemically induced breast cancer model in rats [100]. MSeA and MSeC exerted dose-dependent inhibition of human PCa xenograft growth, and both were

62. more potent than SeMet and selenite [101]. MSeA significantly reduced the metastatic pulmonary yield of Lewis lung carcinoma (LLC); however, SeMet did not [102]. Furthermore, MSeA inhibited cancer cell growth and induced apoptosis more effectively than MSeC in cell culture models [101]. That may due to the β-lyase present in the intestine, liver, kidney, mammary gland, and other animal tissues [104], and MSeC may not be metabolized into methylselenol in vitro.

63. Wu, Q.; Rayman, M.P.; Lv, H.; Cui, B.; Gao, C.; Chen, P.; Zhuang, G.; Zhang, Z.; Peng, X.; Li, H.; et al. Low Population Selenium Status Is Associated with Increased Prevalence of Thyroid Disease. *J. Clin. Endocrinol. Metab.* 2015, **100**, 4037–4047.

64. Winther, K.H.; Bonnema, S.; Hegedüs, L. Selenium Supplementation Significantly Reduces Thyroid Autoantibody Levels in Patients with Chronic Autoimmune Thyroiditis. *Thyroid* 2016, 26, 1681–1692. [\[105\]](#) Tellurium-Se nanosystems: Review and Meta-Analysis. *Thyroid* 2016, 26, 1681–1692. lung cancer xenografts [\[106\]](#). In addition, Se from Se-rich food sources exhibited optimal chemo-preventive efficacy. Se-enriched milk significantly lowered colonic tumor incidence and tumor multiplicity [\[107\]](#). Se-enriched malt inhibited the angiogenesis of hepatocarcinoma [\[108\]](#).

65. Rayman, M.P. Multiple nutritional factors and thyroid disease, with particular reference to 4.4.3 Possible Mechanisms for Anticarcinogenic Actions of Se

Selenium Supplementation on Postpartum Thyroid Status in Pregnant Women with Thyroid Peroxidase Autoantibodies. *J. Clin. Endocrinol. Metab.* 2007, 92, 1263–1268.

A better mechanistic understanding of the biochemical effects and molecular targets of Se will provide an in-depth understanding of the results of clinical trials and the possible mechanisms of the effects of selenium supplementation in the management of thyroid autoimmunity during pregnancy: Results of the “SERENA study”, a randomized, double-blind, placebo-controlled trial. *Endocrine* 2019, 66, 542–550.

68. Marcocci, C.; Kahaly, G.J.; Krassas, G.E.; Bartalena, M.; Prummel, M.; Stahl, M.; Altea, M.A.; Nardi, M.; Pitz, S.; Boboridis, K.; et al. Selenium and the Course of Mild Graves’ Orbitopathy. *N. Engl. J. Med.* 2011, 364, 1920–1931.

69. Winther, K.H.; Rayman, M.P.; Bonnema, S.J.; Hegedüs, L. Selenium in thyroid disorders—essential knowledge for clinicians. *Nat. Rev. Endocrinol.* 2020, 16, 165–176.

70. Prabhu, K.S.; Lei, X.G. Selenium. *Adv. Nutr.* 2016, 7, 415–417.

71. Kudva, A.K.; Shay, A.E.; Prabhu, K.S. Selenium and inflammatory bowel disease. *Am. J. Physiol. Liver Physiol.* 2015, 309, G71–G77.

72. Kaushal, N.; Kudva, A.K.; Patterson, A.D.; Chiaro, C.; Kennett, M.J.; Desai, D.; Amin, S.; Carlson, B.A.; Cantorna, M.T.; Prabhu, K.S. Crucial Role of Macrophage Selenoproteins in Experimental Colitis. *J. Immunol.* 2014, 193, 3683–3692.

73. Saxena, A.; Fayad, R.; Kaur, K.; Truman, S.; Greer, J.; Carson, J.A.; Chanda, A. Dietary selenium protects adiponectin knockout mice against chronic inflammation induced colon cancer. *Cancer Biol. Ther.* 2017, 18, 257–267.

Figure 3. Possible mechanisms of Se against cancer and related molecular targets. Se has been shown to induce apoptosis, cell cycle arrests, inhibit angiogenesis, invasion and metastasis, potentiate anti-tumor immunity, and reduce DNA damage repair. The following figure illustrates the mechanisms of Se in cancer prevention and therapeutic opportunities. *Antioxidants Redox Signal.* 2012, 16, 705–743.

Apoptosis induction is a mechanism mediating the anticancer activity of Se. MSeA exposure caused caspase-mediated apoptosis in DU145 human PCa cells, which was associated with decreased phosphorylation of Protein

76. Cell (ATM) and p53, and regulation of the kinase ERK1/2/ERK1/8 [\[110\]](#). Selenium and proteins and viral infection and apoptosis in LNCaP cells [\[101\]](#).

77. Harthill, M. Review: Micronutrient Selenium Deficiency Influences Evolution of Some Viral

survivin, Bcl-XL [\[112\]](#), and Mcl-1 [\[113\]](#) [\[114\]](#). MSeA exposure caused a profound G1 arrest in DU145 cells, which was

78. Schiavon, M.; Mazzoni, S.; Vescovi, P.; Dipietro, L.; Sestini, P. [\[114\]](#) Selenium biofortification in the 21st century: apoptosis and statins as challenges for healthy human nutrition. *Plant Soil* **2020**, *453*, 245–270. In increased levels of p27kip1, and c-Jun NH₂-terminal kinase (JNK) activation [\[115\]](#).

79. Bae, M.; Kim, H. Mini-Review on the Roles of Vitamin C, Vitamin D, and Selenium in the Immune System against COVID-19. *Molecules* **2020**, *25*, 5346.

80. Angiogenesis is a basic and necessary component of tumor growth, development and metastasis. MSeA reduced the growth of xenografts [\[116\]](#). MSeA decreased the metastatic rate of Se-deficient cells [\[117\]](#). Selenium Deficiencies Associated with Mortality Risk factor in COVID-19 and Nutrients **2020**, *12*, 2098. EGF and glucose transporter 1 (GLUT1) [\[117\]](#). MSeA inhibited angiogenesis not only by down-regulating the expression of integrin β 3 but also by disorganizing the clustering of integrin β 3 [\[118\]](#). Matrix metalloproteinase-2 (MMP-2) and matrix metalloproteinase-9 (MMP-9) degrade the extracellular matrix and basement membrane [\[119\]](#), correlated with tumor invasion and metastasis. The urokinase plasminogen activator (uPA) system plays a role in the invasion and metastasis of cancer cells. Dietary supplementation with MSeA reduced spontaneous metastasis of LCE in nude C57BL/6 mice by inhibiting the uPA system and reducing angiogenesis [\[120\]](#). Selenite inhibits the invasion of tumor cells via decreasing expression of MMP-2, MMP-9, and uPA [\[121\]](#).

81. Zhang, J.; Taylor, E.W.; Bennett, K.; Saad, R.; Rayman, M.P. Association between regional selenium status and reported outcome of COVID-19 cases in China. *Am. J. Clin. Nutr.* **2020**, *111*, 1297–1299.

82. Galmés, S.; Serra, F.; Palau, A. Current State of Evidence: Influence of Nutritional and Nutrigenetic Factors on Immunity in the COVID-19 Pandemic Framework. *Nutrients* **2020**, *12*, 2738.

83. Heller, R.A.; Sun, Q.; Hackler, J.; Seelig, J.; Seibert, L.; Cherkezov, A.; Minich, W.B.; Seemann, P.; Diegmann, J.; Pilz, M.; et al. Prediction of survival odds in COVID-19 by zinc, age and cytotoxicity related molecules including natural killer cell group 2 member D (NKG2D), CD16, and IFN- γ were upregulated, but meanwhile, programmed death protein 1 (PD-1) expression of $\gamma\delta$ T cells was downregulated [\[122\]](#).

84. Alexander, J.; Tinkov, A.; Strand, T.A.; Alehagen, H.; Skalny, A.; Aaseth, J. Early Nutritional Interventions with Zinc, Selenium and Vitamin D for Raising Anti-Viral Resistance Against Progressive COVID-19. *Nutrients* **2020**, *12*, 2358.

85. Jin, Z.; Du, X.; Xu, Y.; Deng, Y.; Gu, M.; Zhao, Y.; Zhang, B.; Li, X.; Zhang, L.; Peng, C.; et al. Structure of M(pO) from SARS-CoV-2 and discovery of its inhibitors. *Nature* **2020**, *582*, 289–293.

86. Cai, X.; Wang, C.; Yu, W.; Fan, W.; Wang, S.; Shen, N.; Wu, P.; Li, X.; Wang, F. Selenium Exposure and Cancer Risk: An Updated Meta-analysis and Meta-regression. *Sci. Rep.* **2016**, *6*, 19213.

The androgen receptor (AR) is a vital driver and a common therapeutic target for PCa. MSeA suppressed the AR expression and AR signals to downregulate prostate-specific antigen (PSA) in human PCa cells [\[127\]](#). The signaling of estrogen receptor (ER) is very important for the development of breast cancer. MSeA has been proven to disrupt ER signaling in human breast cancer cells [\[128\]](#). In addition, MSeA effectively suppressed aromatase activation in human breast tumor cells [\[129\]](#), which makes it a potential chemopreventive agent for breast cancer in postmenopausal obese women. Autophagy also plays an important role in Se-induced cell death. In malignant tumor cells, selenite induced superoxide-mediated mitochondrial damage and subsequent autophagic cell death, to Trace Elements and Risk of Skin Cancer: A Systematic Review of Epidemiologic Studies. *Cancer Epidemiol. Biomark. Prev.* **2019**, *28*, 3–21.

88. Matthews, N.H.; Fitch, K.; Li, W.Q.; Morris, J.S.; Christiani, D.C.; Qureshi, A.A.; Cho, E. Exposure to Trace Elements and Risk of Skin Cancer: A Systematic Review of Epidemiologic Studies. *Cancer Epidemiol. Biomark. Prev.* **2019**, *28*, 3–21.

89. Vinceti, M.; D'Amico, R.; Crespi, C.M. Selenium for preventing cancer. *Cochrane Database Syst. Rev.* **2014**, *2014*, CD005195.

4.4.4. Se and Cancer Adjuvant Therapy

- Vitamin/Mineral Combinations, Cancer Incidence, and Disease-Specific Mortality in the General Population. *J. Natl. Cancer Inst.* 1993, 85, 1483–1491.

Extensive pre-clinical experiments have shown the therapeutic potential of Se as an apoptotic enhancer of various chemotherapy drugs including cisplatin [132] [133], carboplatin [134], irinotecan [135], paclitaxel [112] [136], etoposide [136], R.A., Graham, G.F., Gross, E.G., et al. Effects of selenium supplementation for cancer prevention in patients with car-cinoma of the skin. A randomized controlled trial. Nutritional Prevention of Cancer Study Group. JAMA. 1996; 276: 1957-1969.

demonstrated to sensitize head and neck squamous cell carcinoma (HNSCC) to radiation, potentially by inducing lipid peroxidation.¹⁴¹ Few clinical studies have evaluated the impact of Se supplementation during chemotherapy or radiation on treatment efficacy. Researchers have found that Se supplementation with chemotherapy significantly improved clinical outcomes, including an increased tumor response rate and prolonged overall survival (Table 1).¹⁴²

time in patients with non-Hodgkin lymphoma (NHL) [142]. Another multi-center, phase III trial showed that selenite

944 Marshall, John R.; Tang, Peter C.; Modak, Saket; Wu, Alan; St. Viateur, Daniel; Patten, Barry; LeDell, Kyle; Klimstra, Eric; Ambler, James; Goss, Michael; and several others. *Diabetes, Alberts, David; Barr, Robert [143]; DAF* that is, the Phase II trial of fructose-1,6-diphosphatase to prevent prostate cancer. *Am J Clin Oncol* 2000; 17: 144-149. Cancer Prev.

Res. 2011, 4, 1761–1769.
• Reduction in toxicity
• Algator, A.M.; Stretton, M.S.; Ahmann, F.R.; Renger-Moore, J.; Negle, R.R.; Thompson, R.A.;

95. Algotar, A.M.; Stratton, M.G.; Anmann, P.R.; Ranger-Moore, J.; Nagle, R.B.; Thompson, P.A.; Slate, F.; Hsu, C.H.; Dalkin, B.L.; Sindhwan, P.; et al. Phase 3 clinical trial investigating the effect of selenium supplementation in men at high-risk for prostate cancer. *Prostate*. 2013; 73: 328–335.
 Extensive preclinical data have demonstrated that various Se compounds reduced the toxicity of radiation, as well as the organ-specific toxicity of multiple chemotherapy agents. MSeC provided great protection against organ-specific toxicity induced by clinical chemotherapy in nude mice, which included diarrhea, stomatitis, alopecia, bladder, kidney, and bone marrow toxicities.^[135] MSeC protected normal cells from cytotoxic arabinoside or doxubicin chemotherapy and radiation toxicity while enhancing their therapeutic effects against malignant cells.^[145] Human studies also indicated that Se supplementation reduced the risk of side effects from chemotherapy.

and RT. Two randomized phase III clinical studies showed that adjuvant Se supplementation successfully decreased RT-induced diarrhea in patients with carcinomas of the uterus and prevented the ageusia and dysphagia due to RT in patients with head and neck cancer [146]. Supplementation with Se also reduced the side effects of chemotherapy in cancer patients, especially by improving the conditions of patients with fatigue, nausea, and physical performance, and improving the function of kidney and liver [147]. However, the potential

and poor physical performance, and improving the function of kidney and liver [147]. However, the potential benefits of Adonis root, Euphorbia, and *Salvia miltiorrhiza* on the prevention of cancer, especially liver cancer, are not clear. *Salvia miltiorrhiza* supplementation for prevention of an, large supercoiled (adenomas) and small (adenomas) risk of associated type 2 diabetes [152]. In *Int J M Cancer* in 2016, *o108*, any additional benefits to the patient and did not decrease the toxicity of the treatment [148].

4.5. Fertility 99. Menter, D.G.; Sabichi, A.L.; Lippman, S.M. Selenium effects on prostate cell growth. *Cancer Epidemiol. Biomark. Prev.* 2000, 9, 1171–1182.

100 observations from previous studies (blood, animal and human) on the role of selenium in spermatogenesis and male fertility. The efficacy of methylseleninic acid against Stenotrophomonas maltophilia and *Escherichia coli* is also discussed. *Int J Mol Sci*. 2019; 20: 3105. [\[CrossRef\]](#)

101. Ip, C.; Thompson, H.J.; Zhu, Z.; Ganther, H.E. In Vitro and in vivo studies of methylseleninic acid: selenite treatment can prevent adult male Wistar rats from testicular damage induced by varicocele. *Cancer Res.* 2000, 60, 2882–2886. [\[CrossRef\]](#) Evidence that a monome-thyl-ated selenium metabolite is critical for cancer chemoprevention, clearly seen from previous studies (both animal and human) that Se is essential for optimal reproduction in females [\[149\]](#). It can be seen from previous studies (both animal and human) that Se is essential for optimal reproduction in females [\[150\]](#). It can be seen from previous studies (both animal and human) that Se is essential for optimal reproduction in females [\[151\]](#). One multi-center prospective cohort study found that lower maternal plasma concentrations of Se were associated with longer pregnancy and lower birth rate [\[152\]](#). The exact molecular mechanisms through which Se modulates female reproduction is still unclear.

102. Abdullah, R.; Miyazaki, K.; Nakazawa, M.; Koyama, H. Chemical forms of selenium for cancer prevention. 1. Trace Elements Med. Biol. 2005, 19, 141–150.

103. Yan, L.; DeMars, L.C. Dietary supplementation with methylseleninic acid, but not selenomethionine, reduces spontaneous me-tastasis of Lewis lung carcinoma in mice. *Int. J. Cancer* 2012, 131, 1260–1266.

104. Ip, C.; Zhu, Z.; Thompson, H.J.; Lisk, D.; Ganther, H. Chemoprevention of mammary cancer with Se-allylselenocysteine and other selenoamino acids in the rat. *Anticancer Res.* 2000, 19, 2875–2880.

105. Pi, J.; Jiang, J.; Cai, H.; Yang, F.; Jin, H.; Yang, P.; Cai, J.; Chen, Z.W. GE11 peptide conjugated selenium nanoparticles for EGFR targeted oridonin delivery to achieve enhanced anticancer efficacy by inhibiting EGFR-mediated PI3K/AKT and Ras/Raf/MEK/ERK pathways. *Drug Deliv.* 2017, 24, 1549–1564.

106. Chen, S.; Xing, C.; Huang, D.; Zhou, C.; Ding, B.; Guo, Z.; Peng, Z.; Wang, D.; Zhu, X.; Liu, S.; et al. Eradication of tumor growth by delivering novel photothermal selenium-coated tellurium nanoheterojunctions. *Sci. Adv.* 2020, 6, eaay6825.

107. Hu, Y.; McIntosh, G.H.; Young, G.P. Selenium-rich foods: A promising approach to colorectal cancer prevention. *Curr. Pharm. Biotechnol.* 2012, 13, 165–172.

108. Liu, J.-G.; Zhao, H.-J.; Liu, Y.-J.; Liu, Y.-W.; Wang, X.-L. Effect of two selenium sources on hepatocarcinogenesis and several angiogenic cytokines in diethylnitrosamine-induced hepatocarcinoma rats. *J. Trace Elements Med. Biol.* 2012, 26, 255–261.

109. Li, G.X.; Hu, H.; Jiang, C.; Schuster, T.; Lu, J. Differential involvement of reactive oxygen species in apoptosis induced by two classes of selenium compounds in human prostate cancer cells. *Int. J. Cancer* 2007, 120, 2034–2043.

110. Jiang, C.; Wang, Z.; Ganther, H.; Lü, J. Distinct effects of methylseleninic acid versus selenite on apoptosis, cell cycle, and protein kinase pathways in DU145 human prostate cancer cells. *Mol. Cancer Ther.* 2002, 1, 1059–1066.

111. Jiang, C.; Hu, H.; Malewicz, B.; Wang, Z.; Lü, J. Selenite-induced p53 Ser-15 phosphorylation and caspase-mediated apoptosis in LNCaP human prostate cancer cells. *Mol. Cancer Ther.* 2004, 3, 877–884.

112. Hu, H.; Li, G.-X.; Wang, L.; Watts, J.; Combs, G.F.; Lü, J. Methylseleninic Acid Enhances Taxane Drug Efficacy against Human Prostate Cancer and Down-Regulates Antiapoptotic Proteins Bcl-XL and Survivin. *Clin. Cancer Res.* 2008, 14, 1150–1158.

113. Yin, S.; Dong, Y.; Li, J.; Fan, L.; Wang, L.; Lu, J.; Vang, O.; Hu, H. Methylseleninic acid potentiates multiple types of cancer cells to ABT-737-induced apoptosis by targeting Mcl-1 and Bad. *Apoptosis* 2012, 17, 388–399.

114. Guo, X.; Yin, S.; Dong, Y.; Fan, L.; Ye, M.; Lu, J.; Hu, H. Enhanced apoptotic effects by the combination of curcumin and methylseleninic acid: Potential role of mcl-1 and fak. *Mol. Carcinog.* 2013, 52, 879–889.

115. Jiang, W.; Jiang, C.; Pei, H.; Wang, L.; Zhang, J.; Hu, H.; Lü, J. In vivo molecular mediators of cancer growth suppression and apoptosis by selenium in mammary and prostate models: Lack of involvement of gadd genes. *Mol. Cancer Ther.* 2009, 8, 682–691.

116. Wu, X.; Zhang, Y.; Pei, Z.; Chen, S.; Yang, X.; Chen, Y.; Lin, D.; Ma, R.Z. Methylseleninic acid restricts tumor growth in nude mice model of metastatic breast cancer probably via inhibiting angiopoietin-2. *BMC Cancer* 2012, 12, 192.

117. Sinha, I.; Null, K.; Wolter, W.; Suckow, M.A.; King, T.; Pinto, J.T.; Sinha, R. Methylseleninic acid downregulates hypoxia-inducible factor-1 α in invasive prostate cancer. *Int. J. Cancer* 2011, 130, 1430–1439.

118. Cai, Z.; Dong, L.; Song, C.; Zhang, Y.; Zhu, C.; Zhang, Y.; Ling, Q.; Hoffmann, P.R.; Li, J.; Huang, Z.; et al. Methylseleninic Acid Provided at Nutritional Selenium Levels Inhibits Angiogenesis by Down-regulating Integrin β 3 Signaling. *Sci. Rep.* 2017, 7, 9445.

119. Roomi, M.W.; Kalinovsky, T.; Niedzwiecki, A.; Rath, M. Modulation of uPA, MMPs and their inhibitors by a novel nutrient mixture in human glioblastoma cell lines. *Int. J. Oncol.* 2014, 45, 887–894.

120. Sundaram, S.; Yan, L. Dietary Supplementation with Methylseleninic Acid Inhibits Mammary Tumorigenesis and Metastasis in Male MMTV-PyMT Mice. *Biol. Trace Elem. Res.* 2018, 184, 186–195.

121. Yoon, S.-O.; Kim, M.-M.; Chung, A.-S. Inhibitory Effect of Selenite on Invasion of HT1080 Tumor Cells. *J. Biol. Chem.* 2001, 276, 20085–20092.

122. Hu, Y.; Liu, T.; Li, J.; Mai, F.; Li, J.; Chen, Y.; Jing, Y.; Dong, X.; Lin, L.; He, J.; et al. Selenium nanoparticles as new strategy to potentiate $\gamma\delta$ T cell anti-tumor cytotoxicity through up-regulation of tubulin- α acetylation. *Biomaterials* 2019, 222, 119397.

123. Nair, D.; Rådestad, E.; Khalkar, P.; Diaz-Argelich, N.; Schröder, A.; Klynnning, C.; Ungerstedt, J.; Uhlin, M.; Fernandes, A.P. Methylseleninic Acid Sensitizes Ovarian Cancer Cells to T-Cell Mediated Killing by Decreasing PDL1 and VEGF Levels. *Front. Oncol.* 2018, 8, 407.

124. Bera, S.; De Rosa, V.; Rachidi, W.; Diamond, A.M. Does a role for selenium in DNA damage repair explain apparent controversies in its use in chemoprevention? *Mutagenesis* 2013, 28, 127–134.

125. Gudkov, A.V. Converting p53 from a killer into a healer. *Nat. Med.* 2002, 8, 1196–1198.

126. Seo, Y.R.; Kelley, M.R.; Smith, M.L. Selenomethionine regulation of p53 by a ref1-dependent redox mechanism. *Proc. Natl. Acad. Sci. USA* 2002, 99, 14548–14553.

127. Dong, Y.; Lee, S.O.; Zhang, H.; Marshall, J.; Gao, A.C.; Ip, C. Prostate Specific Antigen Expression Is Down-Regulated by Selenium through Disruption of Androgen Receptor Signaling. *Cancer Res.* 2004, 64, 19–22.

128. Lee, S.O.; Nadiminty, N.; Wu, X.X.; Lou, W.; Dong, Y.; Ip, C.; Onate, S.A.; Gao, A.C. Selenium Disrupts Estrogen Signaling by Altering Estrogen Receptor Expression and Ligand Binding in Human Breast Cancer Cells. *Cancer Res.* 2005, 65, 3487–3492.

129. Gao, R.; Zhao, L.; Liu, X.; Rowan, B.G.; Wabitsch, M.; Edwards, D.P.; Nishi, Y.; Yanase, T.; Yu, Q.; Dong, Y. Methylseleninic acid is a novel suppressor of aromatase expression. *J. Endocrinol.* 2011, 212, 199–205.

130. Kim, E.H.; Sohn, S.; Kwon, H.J.; Kim, S.U.; Kim, M.-J.; Lee, S.-J.; Choi, K.S. Sodium selenite induces superoxide-mediated mitochondrial damage and subsequent autophagic cell death in malignant glioma cells. *Cancer Res.* 2007, 67, 6314–6324.

131. Pan, X.; Song, X.; Wang, C.; Cheng, T.; Luan, D.; Xu, K.; Tang, B. H2Se Induces Reductive Stress in HepG2 Cells and Activates Cell Autophagy by Regulating the Redox of HMGB1 Protein under Hypoxia. *Theranostics* 2019, 9, 1794–1808.

132. Zhang, Y.; Zheng, S.; Zheng, J.-S.; Wong, K.-H.; Huang, Z.; Ngai, S.-M.; Zheng, W.; Wong, Y.-S.; Chen, T. Synergistic Induction of Apoptosis by Methylseleninic Acid and Cisplatin, The Role of ROS-ERK/AKT-p53 Pathway. *Mol. Pharm.* 2014, 11, 1282–1293.

133. Tarrado-Castellarnau, M.; Cortés, R.; Zanuy, M.; Tarragó-Celada, J.; Polat, I.H.; Hill, R.; Fan, T.W.; Link, W.; Cascante, M. Methylseleninic acid promotes antitumour effects via nuclear FOXO3a translocation through Akt inhibition. *Pharmacol. Res.* 2015, 102, 218–234.

134. Cao, S.; Durrani, F.A.; Rustum, Y.M. Selective Modulation of the Therapeutic Efficacy of Anticancer Drugs by Selenium Containing Compounds against Human Tumor Xenografts. *Clin. Cancer Res.* 2004, 10, 2561–2569.

135. Cao, S.; A Durrani, F.; Tóth, K.; Rustum, Y.M. Se-methylselenocysteine offers selective protection against toxicity and potentiates the antitumour activity of anticancer drugs in preclinical animal models. *Br. J. Cancer* 2014, 110, 1733–1743.

136. Hu, H.; Jiang, C.; Ip, C.; Rustum, Y.M.; Lü, J. Methylseleninic Acid Potentiates Apoptosis Induced by Chemotherapeutic Drugs in Androgen-Independent Prostate Cancer Cells. *Clin. Cancer Res.* 2005, 11, 2379–2388.

137. Li, S.; Zhou, Y.; Wang, R.; Zhang, H.; Dong, Y.; Ip, C. Selenium sensitizes MCF-7 breast cancer cells to doxorubicin-induced apoptosis through modulation of phospho-Akt and its downstream substrates. *Mol. Cancer Ther.* 2007, 6, 1031–1038.

138. Yamaguchi, K.; Uzzo, R.G.; Pimkina, J.; Makhov, P.; Golovine, K.; Crispen, P.; Kolenko, V.M. Methylseleninic acid sensitizes prostate cancer cells to TRAIL-mediated apoptosis. *Oncogene* 2005, 24, 5868–5877.

139. Hu, H.; Jiang, C.; Schuster, T.; Li, G.-X.; Daniel, P.T.; Lü, J. Inorganic selenium sensitizes prostate cancer cells to TRAIL-induced apoptosis through superoxide/p53/Bax-mediated activation of mitochondrial pathway. *Mol. Cancer Ther.* 2006, 5, 1873–1882.

140. Shin, S.H.; Yoon, M.J.; Kim, M.; Kim, J.-I.; Lee, S.-J.; Lee, Y.-S.; Bae, S. Enhanced lung cancer cell killing by the combination of selenium and ionizing radiation. *Oncol. Rep.* 2007, 17, 209–216.

141. Lafin, J.T.; Sarsour, E.H.; Kalen, A.L.; Wagner, B.A.; Buettner, G.R.; Goswami, P.C. Methylseleninic Acid Induces Lipid Peroxidation and Radiation Sensitivity in Head and Neck Cancer Cells. *Int. J. Mol. Sci.* 2019, 20, 225.

142. Asfour, I.A.; Fayek, M.; Raouf, S.; Soliman, M.; Hegab, H.M.; El-Desoky, H.; Saleh, R.; Moussa, M.A.R. The Impact of High-dose Sodium Selenite Therapy on Bcl-2 Expression in Adult Non-Hodgkin's Lymphoma Patients: Correlation with Response and Survival. *Biol. Trace Element Res.* 2007, 120, 1–10.

143. Muecke, R.; Schomburg, L.; Glatzel, M.; Berndt-Skorka, R.; Baaske, D.; Reichl, B.; Buentzel, J.; Kundt, G.; Prott, F.J.; Devries, A.; et al. Multicenter, Phase 3 Trial Comparing Selenium Supplementation with Observation in Gynecologic Radiation Oncology. *Int. J. Radiat. Oncol.* 2010, 78, 828–835.

144. Muecke, R.; Micke, O.; Schomburg, L.; Glatzel, M.; Reichl, B.; Kisters, K.; Schaefer, U.; Huebner, J.; Eich, H.T.; Fakhrian, K.; et al. Multicenter, phase III trial comparing selenium supplementation with observation in gynecologic radiation oncology: Follow-up analysis of the survival data 6 years after cessation of randomization. *Integr. Cancer Ther.* 2014, 13, 463–467.

145. Lobb, R.J.; Jacobson, G.M.; Cursons, R.T.; Jameson, M.B. The Interaction of Selenium with Chemotherapy and Radiation on Normal and Malignant Human Mononuclear Blood Cells. *Int. J. Mol. Sci.* 2018, 19, 3167.

146. Muecke, R.; Micke, O.; Schomburg, L.; Buentzel, J.; Kisters, K.; Adamietz, I.A. Selenium in Radiation Oncology-15 Years of Experiences in Germany. *Nutrients* 2018, 10, 483.

147. Vieira, M.L.D.S.; Fonseca, F.L.A.; Costa, L.G.; Beltrame, R.L.; Chaves, C.M.D.S.; Cartum, J.; Alves, S.I.P.M.d.N.; Azzalis, L.A.; Junqueira, V.B.C.; Pereria, E.C.; et al. Supplementation with Selenium Can Influence Nausea, Fatigue, Physical, Renal, and Liver Function of Children and Adolescents with Cancer. *J. Med. Food* 2015, 18, 109–117.

148. Fakih, M.G.; Pendyala, L.; Brady, W.; Smith, P.F.; Ross, M.E.; Creaven, P.J.; Badmaev, V.; Prey, J.D.; Rustum, Y.M. A Phase I and pharmacokinetic study of selenomethionine in combination with a fixed dose of irinotecan in solid tumors. *Cancer Chemother. Pharmacol.* 2007, 62, 499–508.

149. Qazi, I.H.; Angel, C.; Yang, H.; Zoidis, E.; Pan, B.; Wu, Z.; Ming, Z.; Zeng, C.-J.; Meng, Q.; Han, H.; et al. Role of Selenium and Selenoproteins in Male Reproductive Function: A Review of Past and Present Evidences. *Antioxidants* 2019, 8, 268.

150. Taghizadeh, L.; Eidi, A.; Mortazavi, P.; Rohani, A.H. Effect of selenium on testicular damage induced by varicocele in adult male Wistar rats. *J. Trace Elements Med. Biol.* 2017, 44, 177–185.

151. Qazi, I.H.; Angel, C.; Yang, H.; Pan, B.; Zoidis, E.; Zeng, C.-J.; Han, H.; Zhou, G.-B. Selenium, Selenoproteins, and Female Reproduction: A Review. *Molecules* 2018, 23, 3053.

152. Grieger, J.A.; Grzeskowiak, L.E.; Wilson, R.L.; Bianco-Miotto, T.; Leemaqz, S.Y.; Jankovic-Karasoulos, T.; Perkins, A.V.; Norman, R.J.; Dekker, G.A.; Roberts, C.T. Maternal Selenium, Copper and Zinc Concentrations in Early Pregnancy, and the Association with Fertility. *Nutrients* 2019, 11, 1609.

Retrieved from <https://encyclopedia.pub/entry/history/show/24554>