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Protein aggregation is classically considered the main cause of neuronal death in neurodegenerative diseases (NDDs).

However, increasing evidence suggests that alteration of RNA metabolism is a key factor in the etiopathogenesis of these

complex disorders. Non-coding RNAs are the major contributor to the human transcriptome and are particularly abundant

in the central nervous system, where they have been proposed to be involved in the onset and development of NDDs.

Interestingly, some ncRNAs (such as lncRNAs, circRNAs and pseudogenes) share a common functionality in their ability

to regulate gene expression by modulating miRNAs in a phenomenon known as the competing endogenous RNA

mechanism. Moreover, ncRNAs are found in body fluids where their presence and concentration could serve as potential

non-invasive biomarkers of NDDs.
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1. Introduction

ncRNAs can be classified into two groups according to their length: small ncRNAs (<200 nucleotides) and long ncRNAs

(>200 nucleotides) . Among small ncRNAs, microRNAs (miRNA) stand out, being around 22 nucleotides long and

regulating gene expression at the post-transcriptional level in a sequence-specific manner . Approximately 70% of the

identified miRNAs are expressed in the brain  and have been described as major regulators of neuronal homeostasis,

their misregulation being associated with pathological conditions of CNS . The largest class of ncRNAs in the

mammalian genome is long ncRNAs (lncRNAs), which can be further grouped into linear RNAs and circular RNAs  .

Linear lncRNAs (hereon referred to as lncRNAs) are similar to protein-coding messenger RNA (mRNA) in sequence

length and transcriptional and post-transcriptional behavior . However, lncRNAs play a different cellular role compared

to mRNAs. Moreover, they have been described to be involved in brain development, neuronal function, maintenance and

differentiation . Circular RNAs (circRNAs) represent a relatively recently discovered class of RNAs that, unlike linear

RNAs, are characterized by a covalent bond that joins the 5′ and 3′ ends and confers increased stability (half-life of 48 h

vs. 10 h for mRNAs) . circRNAs are highly abundant in the brain, enriched in synaptoneurosomes and upregulated

during neuronal differentiation , so they could be promising biomarkers in age-associated NDDs.

On the other hand, a considerable number of pseudogenes can be transcribed to ncRNAs, even though they have

historically been regarded as inactive gene sequences  . In fact, there is mounting evidence that pseudogenes may

modulate the expression of parental as well as unrelated genes  . Therefore, alteration of pseudogene transcription

could perturb gene expression homeostasis leading to disease .

In 2011, Pier Paolo Pandolfi’s group proposed the so-called ceRNA hypothesis , which sought to explain how RNAs

“talk” to each other, establishing interactions that modify functional genetic information and that may play major roles in

pathological conditions. This hypothesis is based on the fact that miRNAs can recognize their specific target sites called

miRNA response elements (MRE) in different RNA molecules, causing target repression via miRNA-RISC complex-

mediated degradation. Thereby, miRNAs could mediate regulatory crosstalk between the diverse components of the

transcriptome, comprising mRNAs and ncRNAs, which include pseudogenes, lncRNAs and circRNAs.

In a simplified manner, when two RNA molecules share the same MRE they potentially compete for the same pool of

miRNAs. Thus, when the expression of a ceRNA is upregulated, it will bind and titrate more miRNAs (phenomenon called

miRNA sponging), leaving fewer miRNA molecules available for binding the mRNA with shared MRE. Hence, this

corresponding mRNA will become derepressed. In reverse, when the ceRNA levels are reduced as a consequence of a

biological disturbance, the corresponding mRNA will be downregulated due to hyperrepression (Figure 1).
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Figure 1. (A) Transcriptional and post-transcriptional regulation of messenger RNAs (mRNAs) (orange) can be both

influenced by direct and indirect mechanisms involving long non-coding RNAs (lncRNAs) (green), pseudogenes (blue)

and circular RNAs (circRNAs) (purple). (I) Direct mechanisms include some processes that act on the transcription rate in

the nucleus through the specific RNA-RNA complex and others that help the stability of mRNA molecules in the

cytoplasm. (II) Competing endogenous RNA (ceRNA) mechanism is a bidirectional indirect regulation mechanism

mediated by microRNAs (miRNAs) (yellow). miRNAs bind lncRNAs, pseudogenes, circRNAs and mRNAs through the

miRNA response elements (MRE) (grey). (B) ceRNA hypothesis. Upregulation of a certain ceRNA (pseudogene, lncRNA

or circRNA) expression can decrease cellular concentrations of the corresponding miRNA, resulting in the de-repression

of other transcripts (mRNA) that contains the same MREs (left arrows). Conversely, the downregulation of a certain

ceRNA would lead to increased concentrations of specific miRNAs and thus to hyperrepression of mRNA expression (right

arrows).

Without doubt, the reality is more complex and a miRNA can bind more than one mRNA (50% of miRNAs are predicted to

target 1–400 mRNAs and some of them up to 1000) . Likewise, most ceRNAs contain 1 to 10 MREs  and, as a

consequence, complex ceRNA networks involving a large number of RNA molecules are established. Novel bioinformatic

and computational tools have enabled to elucidate an increasing number of ceRNA networks, as well as predict the most

important enclaves of them. These may provide a valuable global vision to identify new biomarkers, underlying pathways

or potential therapeutic targets for complex disorders such as NDDs.

2. ceRNA Networks and Neurodegenerative Diseases

Over the last years, the ceRNA hypothesis has been corroborated by a large number of experiments. However,

investigation of ceRNA mechanisms and their interaction networks has been mainly carried out in cancer research  

 . Nevertheless, some advances have also been made in the field of NDDs (Table 1).

Table 1. miRNA-ceRNAs networks experimentally validated associated with NDDs

Disease ncRNA miRNA mRNA Sample Ref.
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lncRNA

BACE1-AS

miR-29,

miR-485,

miR-

761,miR-

124 and

miR-107

BACE1
Computational analysis

from human data and

cellular and mouse

models

 miR-214-3p -

 miR-132-3p -

XIST miR-124 BACE1
Cellular and mouse

models
 miR-132 -

NEAT1 miR-124 BACE1
Cellular and mouse

models
 miR-107 -

SOX21-AS1 miR-107 - Cellular model

NEAT1

HOTAIR

MALAT1

miR-107,

miR-103,

miR-16,

miR-195,

miR-15a

and miR-

15b

CDK5R1
Cellular model

 

MALAT1 miR-125b
CDK5, FOXQ1

and PTGS2
Cellular and rat models

 miR-30b CNR1

TUG1 miR-15a ROCK1
Cellular and mouse

models

SNHG1 miR-137 KREMEN1 Cellular model and

human primary cell

culture miR-361-3p ZNF217

lncRNA-ATB miR-200 ZNF217 Cellular model

LINC00094
miR‐224‐4p

miR‐497‐5p
SH3GL2 Cellular model
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MIAT miR-150-5p VEGF
Cellular and mouse

models

Rpph1 miR-326 PKM2

Cellular and mouse

models
 miR-122 Wnt1

 miR-330-5p CDC42

linc00507
miR-181c-

5p

MAPT

TTBK1

Cellular and mouse

models

lnc-ANRIL mir-125a
TNF-α, IL1B
IL6 and IL17

Cellular model

circRNA

ciRS-7 miR-7 UBE2A  Human brain

 *miR-7 *NF-Κb/p65 Cellular models

circ_0000950 miR-103 PTGS2 Cellular models

circHDAC9 miR-138 Sirt1
Cellular and mouse

models
 miR-142-5p -
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PD pseudogene GBAP1 miR-22-3p GBA Cellular models [45]
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SNHG1

miR-153-3p

miR-15b-5p

miR-7

miR-

221/222

PTEN

SIAH1, GSK3β

NLRP3

CDKN1B (p27)

Cellular and mouse

models

 

  

 

HAGLROs miR-100 ATG10
Cellular and mouse

models

HOTAIR miR-874-5p ATG10
Cellular and mouse

models
 miR-126-5p RAB3IP  

NEAT1 miR-212-5p RAB3IP

Cellular models 
miR-1277-

5p
ARHGAP26

 miR-124 -

AL049437 miR-205-5p MAPK1
Cellular and mouse

models

MALAT1 miR-205-5p LRRK2

Cellular and mouse

models

 

 miR-124 DAPK1

 miR-129 SNCA (α-syn)

SNHG14 miR-133b SNCA
Cellular and mouse

models

LincRNA-p21
miR-1277-

5p
SNCA

Cellular and mouse

models 
miR-181

family

PRKCD

(PKC-δ)

 miR-625 TRPM2

GAS5 miR-223-3p NLRP3
Cellular and mouse

models

BDNF-AS
miR-125b-

5p
-

Cellular and mouse

models
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Mirt2 miR-101 - Cellular model

lncRNA H19
miR-301b-

3p
HPRT1 Computational analysis

from human data and

cellular and mouse

models miR-585-3p PIK3R3

circRNA

*ciRS-7 miR-7 SNCA
Cellular and mouse

models

circSNCA miR-7 SNCA Cellular model

circzip-2 *miR-60

M60.4ZK470.2,
igeg-2 and

idhg-1
Worm model

circDLGAP4 miR-134-5p CREB
Cellular and mouse

models

MS

lncRNA

Gm15575 miR-686 CCL7
Cellular and mouse

models

PVT1 miR-21-5p SOCS5
Cellular and mouse

models

TUG miR-9-5p NFKB1 (p50)
Cellular and mouse

models

HOTAIR miR-136-5p AKT2
Cellular and mouse

models

GAS5 miR-137 - Human blood

circRNA

hsa_circ_0106803 *miR-149 *ASIC1a Human blood (PMBCs)

hsa_circ_0005402

hsa_circ_0035560

*14 miRNAs

(miR-

1248,        

miR-766)

- Human blood (PMBCs)

SCA7 lncRNA lnc-SCA7 miR-124 ATXN7
Human samples, and

cellular and animal

models

* Experimental validation is needed.
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3. RNA Editing Alteration and ceRNA Networks

RNA editing is an important mechanism of post-transcriptional processing that can modify RNA molecules by altering its

sequences through insertion, deletion, or conversion of a nucleotide  . Recent discoveries suggest that RNA editing

critically regulates neurodevelopment and normal neuronal function, for which some crucial aspects of neurodegenerative

diseases may stem from the modification of both coding and non-coding RNA   .

The most common type of RNA editing is the conversion of adenosine to inosine (A-to-I), in which enzymes encoded by

the adenosine deaminase acting on RNA (ADAR) gene family catalyze the deamination of adenosine (A) nucleotides to

inosines (I) . Critical consequences are derived from this modification, since inosine (I) is interpreted by the translation

and splicing machineries as guanosine (G) . Editing of pre-mRNA coding regions can lead to codon change that may

result in increased diversity of protein isoforms and their respective function . However, most of the RNA editing

happens in non-coding RNAs, which can affect their stability, biogenesis and target recognition   . In fact, it has

been reported that ADAR is involved in circRNA biogenesis by editing and destabilizing the flanking Alu repeat sequences,

which makes circRNA production less favorable  . Moreover, editing events can affect both the maturation and the

expression of miRNAs, but if the modification occurs in MREs or in miRNA seed regions (regions in miRNA sequence that

largely determine the binding specificity on its targets), the spectrum of miRNA targets, or “targetome”, shall be changed

. Therefore, a single editing site in an RNA molecule could drastically modify its function, resulting in new or different

ceRNA networks that regulate gene expression.

Interestingly, A-to-I editing has been reported specifically reduced in SALS motor neurons due to the progressive

downregulation of ADAR2  . Based on this evidence, Hosaka et al.  searched for extracellular RNAs with ADAR2-

dependent A-to-I sites that may reflect the intracellular pathological process and thus could be potentially good ALS

biomarkers. A total of six RNAs were identified. Among these, a circRNA (hsa_circ_0125620, also called circGRIA2) with

an ADAR2-dependent site was detected in human SH-SY5Y neuroblastoma cells as well as in their culture medium .

Therefore, variations in RNA editing efficiency in ALS, as a consequence of decreased ADAR2 activity, could be

potentially measured in peripheral circRNAs and other relatively stable ncRNAs. In light of this evidence, this editing

phenomenon may be considered a very important aspect, since it allows obtain relevant information of disease

pathological process from non-coding RNAs.

Other NDDs, such as AD and PD, also present alterations in RNA editing patterns    . In fact, a recent study

has explored how RNA editing in AD contributes to the regulation of AD-related processes in blood cells in two populations

of patients . Results identified differentially edited sites predicted to disrupt miRNA target sites in five genes. In all

cases, decreased editing was observed in AD suggesting a greater miRNA-binding affinity relative to controls . In light

of this evidence, alterations in RNA editing could result in a specific RNA profile, given by different amount of RNAs,

modified interaction networks and editing levels or efficiencies changes in A-to-I sites, that could be useful to identify new

robust biomarkers of these NDDs (Figure 2).
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Figure 2. Schematic representation of alterations in RNA editing that could provide a specific RNA profile in

neurodegenerative diseases (NDDs). In some linear and circular RNAs, the enzyme ADAR2 deaminates adenosine (A)

into inosine (I), resulting in important biological consequences (especially in ncRNAs). On the one hand, a single editing

site in MRE or miRNA seed region can drastically change its set of targets. In this image, circ-Purple acts as a miR-Yellow

sponge, which regulates the mRNA expression of Orange gene (right panel). Deamination of A into I in circ-Purple could

affect its binding site for miR-Yellow. In consequence, circ-Purple stops sponging miR-Yellow, and it may bind to another

miRNA (miR-Pink) and promote the expression of Green gene (left panel). Hence, the ceRNA interaction network has

changed, emerging a new or different regulatory axis. On the other hand, ADAR editing negatively regulates circRNA

biogenesis, resulting in a decrease of circRNA levels (in the left panel there is less circ-Purple expression than in the right

panel). In NDDs with a diminution of A-to-I RNA editing (like ALS, AD or PD), a different and opposite profile/pattern could

be observed (right panel) with respect to a normal editing efficiency of ADAR (left panel). Therefore, alterations mediated

by RNA editing in RNAs and its ceRNA interaction networks may serve as robust biomarkers of these NDDs. This figure is

based on a previously published figure  .

4. Conclusion

The vast majority of NDDs can be definitively diagnosed only after death or in advanced stage, and their previous

diagnosis is based on ruling out other possible causes for the symptoms. For most NDDs, there is no cure or treatment

capable of reversing the damage due to neuronal death. Therefore, it is critical to find new biomarkers that would facilitate

an early diagnosis, prognosis and efficient monitoring of therapeutic interventions.

In the search for new biomarkers, non-coding RNAs have been proposed as promising tools for diagnosis and prognosis.

Many ncRNAs often arise from genes that cause NDDs or are somehow involved in the development of one of these

disorders (like BACE1-AS or circSNCA). Thus, ceRNETs established by these ncRNAs could well be, at least in some

cases, disease and even stage-specific. However, as reported in this review, ncRNAs are commonly misregulated in

several NDDs (Figure 3). This is the case, for example, of the lncRNAs SNHG1 and HOTAIR, which are altered in AD 

 and PD     , and PD   and MS , respectively. However, their miRNA targets may vary depending

on cell types affected by the disease and, therefore, the mechanism of action may also differ. Similarly, miR-7 has been

shown sponged by ciRS-7/CDR1as and circSNCA in AD     and PD , respectively, being detrimental in the

first case and beneficial in the second, due to regulation of different target mRNAs. The apparent discrepancy between

the anti and pro cell death activity of miR-7 reflects the complex regulatory role of miRNAs, so further research is required

to clarify their function in different cellular and disease contexts.

In this way, by analyzing various elements of the altered ceRNETs, it may be possible to differentiate one NDD from

another even if there were common components. Ideally, working with several correlatable molecular targets at the same

time (lncRNAs/circRNAs/pseudogenes-miRNA-mRNAs) increases the sensitivity and reliability of ceRNETs as

biomarkers. It should be noted that ceRNETs construction also contributes to the identification of new molecular

mechanisms of gene regulation that may lead to a better understanding of the etiopathogenesis of the diverse NDDs, as

well as to reveal new therapeutic targets and obtain relevant information about the pathological processes of the disease.

In this sense, ceRNETs may also reflect the editing efficiencies of ADAR, a post-transcriptional phenomenon dysregulated

in several NDDs. RNA editing can affect the levels and the efficiency of RNA interaction networks, so its alterations could

provide a specific RNA fingerprint that helps in the diagnosis or prognosis of NDDs. Finally, the described crosstalk

between the RNA molecules in certain ceRNETs is relatively conserved between species, paving the way for translation of

data obtained from animal models into clinical practice  .

Among the main advantages of ceRNETs for biomarker research, the fact that these ncRNAs are easily accessible is

noteworthy, since they are extremely stable in circulation and may be detected in exosomes. Such is the case for circRNA

CDR1as/ciRS-7 and lncRNA MALAT1, found in exosomes. Interestingly, levels of ciRS-7 in these vesicles depend on the

intracellular abundance of the miRNA that it sponges (miR-7) . Furthermore, ciRS-7 and MALAT1 may regulate

miRNA expression in target cells after exosomal delivery modulating their phenotype, since these ceRNAs retain their

biological activity  . Therefore, ciRS-7 and MALAT1 together with other circulating ncRNAs (e.g., NEAT1, GAS5,

hsa_circ_061346, hsa_circ_000843) represent promising candidates for peripheral ceRNA biomarkers of NDDs. Although

many of the ncRNAs discussed earlier have not been reported in exosomes to date, some of them are predicted to be

detected in human blood exosomes by exoRBase (e.g., circSLC8A1, circCORO1C, SNHG1, BACE1-AS) . Indeed, it

has recently been demonstrated that plasma exosomal BACE1‑AS levels could serve as a biomarker of AD  .
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Because ceRNA interaction networks are multifactorial, they may represent an advantage in studies of these complex

neurodegenerative disorders, one being at the level of biomarkers (combined RNA biomarkers panels) and another at the

level of therapeutic targets (modulate the levels of multiple disease-associated RNAs at once by just targeting one).

Nevertheless, it must be taken into account that there is still much to do, since these networks are very complex and their

interactions must be experimentally defined . In this sense, some “non-canonical” aspects of ncRNAs have also been

described: i) circRNAs that can also sponge or serve as a decoy for RBPs or lncRNAs, ii) miRNAs that may increase the

expression of target genes,  iii) lncRNAs that can be precursors of smaller ncRNAs and can regulate miRNA and circRNA

biogenesis, iv) miRNAs that can direct Ago2 to degrade lncRNA and circRNA, v) lncRNAs that compete with miRNAs for

the target site of mRNA, and vi) context-specific miRNA function and target identification       

.

Although the full extent of ceRNA networks still needs to be still determined, the competition of ncRNA and mRNAs for

miRNAs constitutes a key point of gene regulation that could underlie some pathological aspects of neurodegenerative

diseases, favoring at the end the identification of specific pathological mechanisms for each disease.

Figure 3. Complexity and interaction of ceRNETs in NDDs. The diagram was constructed with Gephi software from

ceRNAs (lncRNAs and circRNAs) that, according to the bibliography cited in this review, contribute to the pathogenesis of

more than one neurodegenerative disease and miRNAs that are part of ceRNETs from more than one ceRNA.

Interactions between RNA molecules are represented with lines colored in accordance with the NDD background they

have been described in: spinocerebellar ataxia type 7 (SCA7) (red), Alzheimer’s disease (AD) (purple), Parkinson’s

disease (PD) (blue), multiple sclerosis (MS) (yellow) and amyotrophic lateral sclerosis (ALS) (green).
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