
Antioxidant Potential of Psychotropic Drugs
Subjects: Biochemistry & Molecular Biology

Contributor: Laura Orian, Giovanni Ribaudo, Marco Bortoli

Due to high oxygen consumption, the brain is particularly vulnerable to oxidative stress, which is considered an important

element in the etiopathogenesis of several mental disorders, including schizophrenia, depression and dependencies.

Despite the fact that it is not established yet whether oxidative stress is a cause or a consequence of clinic manifestations,

the intake of antioxidant supplements in combination with the psychotropic therapy constitutes a valuable solution in

patients’ treatment. When the psychoactive compounds possess themselves antioxidant capacity, this is an added-value

for the therapy.

Keywords: antipsychotic drugs ; antidepressants ; oxidative stress ; radical scavenging ; serotonin ; fluoxetine ; selenium ;

in silico methodologies ; quantum chemistry calculations ; machine learning

1. Introduction

It has been demonstrated that several drugs, or classes of drugs, already in clinical use, are endowed with antioxidant

activity. Several classes of approved drugs have been studied through the years for their antioxidant properties .

Proton pump inhibitors , antidiabetics , drugs acting on the cardiovascular system , antiepileptics , and anti-

inflammatory agents  represent some of the investigated classes, which are also paired by antioxidant natural and semi-

synthetic compounds with biological activity . Furthermore, besides therapeutic agents, it must be

stressed that bioactive components from diet have been recognized among the risk factors or, on the other hand,

protective agents possibly influencing oxidative stress and pathogenesis of related diseases . More specifically,

increased peripheral inflammatory markers, elevated production of ROS, reduced activity of the antioxidant systems and

decreased efficiency in repairing mechanisms are associated also with mental diseases such as major depressive

disorders and schizophrenia, suggesting a direct involvement of oxidative stress in their pathophysiology. While there are

numerous studies about oxidative stress and antioxidants, and numerous studies dedicated to psychotropic drugs and

their action, much less is known about the antioxidant potential of psychoactive molecules, a topic which is discussed in

this work focusing on antipsychotics and antidepressants.

2. Antipsychotic Drugs

Antipsychotic drugs are pharmacological agents that have been introduced over 4 decades ago . Currently,

treatment options include the use of a single molecule or a combination of substances. These agents are classified as

first-generation, or typical, and second-generation, or atypical. Moreover, a third generation of drugs has been more

recently introduced . The mechanism of action of typical antipsychotics (haloperidol, 1, Scheme 1) consists in blocking
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dopamine type 2 receptors. Atypical antipsychotics (clozapine, risperidone, olanzapine, quetiapine and ziprasidone, 2–6,

Scheme 1), on the other hand, have lower affinity for dopaminergic receptors but also block serotoninergic 5-HT

receptors . For more details on the molecular mechanisms underlying the activity of antipsychotic drugs and on the

pharmacological aspects, the reader is invited to refer to the recent contributions by Aringhieri and colleagues and by

Marder and colleagues . Although great improvements in the management of schizophrenia were achieved after the

introduction of atypical antipsychotic drugs in the early 1990s, it must also be pointed out that their use is associated with

some severe adverse effects. Clozapine can cause agranulocytosis, while the use of olanzapine has been connected with

hepatotoxicity .

Scheme 1. Haloperidol (1), clozapine (2), risperidone (3), olanzapine (4), quetiapine (5) and ziprasidone (6).

2.1. First Generation (Typical) Antipsychotics

The effects of typical antipsychotics on oxidative stress level is probably the most debated. In fact, evidence suggests that

increased lipid peroxidation seems to be associated with the use of these molecules in therapy . Moreover, according

to the reports available in the literature, treatment with the typical antipsychotic haloperidol induces a sensible increase in

mitochondrial activity in generating toxic reactive species. In particular, the generation of a pyridinium metabolite is

thought to be responsible for cytotoxicity, extrapyramidal side effects and cardiac functional disorders . The

antioxidant role of haloperidol was also investigated in a more recent study by Brinholi et al. The compound was not found

to be very effective in the in vitro antioxidant tests . Haloperidol was also described to induce lipid peroxidation in

schizophrenic patients . The fact that the treatment with such antipsychotics would not lead to unambiguous results is

further supported by clinical evidence. Kriisa et al. reported the results of a study conducted considering several indices of

oxidative stress in first-episode psychosis patients. The patients were given typical, atypical or mixed medications and

oxidative stress markers (total antioxidant capacity, lipid peroxidation and protein oxidation) were measured in blood. First,

the authors highlighted the absence of significant differences in such levels between first-episode psychosis patients and

the control group. Anyway, the antipsychotic treatment induced two positive effects: a decrease in oxidative status and an

amelioration of inflammation. Nevertheless, the authors pointed out that these effects were not observed in long-term

chronic schizophrenia patients, who were showing significant high-grade oxidative stress .

2.2. Second Generation (Atypical) Antipsychotics

The role of atypical antipsychotics in influencing oxidative stress is also matter of discussion . Some authors reported

that changes in antioxidant enzymes concentration and activity, together with other biomarkers of oxidative damage, may

be independent of antipsychotic treatment and may otherwise represent the results of the pathophysiological process of

the disease in patients . In addition to this, and before any other consideration, it must be pointed out that redox

behavior and performances of any organic compound depends on several parameters, thus a direct comparison is not

always possible. In particular, the results from in vitro and in vivo tests may differ due to a number of reaction conditions.

Moreover, as pointed out by Janaszewska and Bartosz, even in the context of a simple and preliminary in vitro test, the

antioxidant activity of a given compound may appear different when estimated with different tests, due to peculiar

indicators or reaction kinetics . It must also be stressed that such antioxidant effect could be direct or indirect

(mediated by enzymes or other biochemical pathways). Thus, the antioxidant activity should be tested in several models

to better evaluate different possible mechanisms and pathways . Several reports suggested that atypical antipsychotics

may improve oxidative status, decreasing damage markers . Although the mechanism of action is not completely

clear, this effect could be exerted by interfering with antioxidant enzymes or by contrasting O  and hydroxyl radical

formation . Other reports indicated that atypical antipsychotics act indirectly by increasing the concentration of the

serotonergic metabolite 5-hydroxyindol acetic acid, an efficient scavenger of hydroxyl and superoxide radicals that also

contrasts lipid peroxidation . Moreover, Sadowska-Bartosz et al. stressed the relevance of the “local antioxidant action”
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of atypical antipsychotics, due to their higher local concentration in proximity to dopamine and serotonin receptors. This

behavior would result in a protective effect against oxidation, nitration and chlorination of receptors themselves, thus

allowing correct receptor functioning and signaling .

In rodent models, with the exception of olanzapine, treatment with atypical antipsychotics did not induce significant

changes in lipid peroxidation levels, which were also detected after 90 days of treatment. Moreover, previous studies

demonstrated that olanzapine and other antipsychotics could stimulate the ROS production, glutathione depletion and

lipid peroxidation . There is also evidence showing that olanzapine may exert antioxidant activity by upregulating

SOD . Concerning in vivo effects, a general increase in serum total antioxidant status was observed after 2 months

of olanzapine treatment, paralleled by a decrease in serum malondialdehyde levels . More recently, Sadowska-Bartosz

et al. presented a study focused on the evaluation of the antioxidant properties of atypical antipsychotics in cell-free and

cellular systems. Olanzapine and clozapine were identified as the most efficient antioxidants on the basis of a set of tests

investigating the effects of such drugs at the molecular level (DHR123 oxidation, ABTS, DPPH, FRAP, fluorescein

bleaching), in agreement with previous observations . The authors rationalized these results by discussing the

structural features of the two compounds. In fact, the molecules bear similar functional groups, consisting of a nitrogen-

containing moiety behaving as Lewis bases capable of donating electrons, thus stabilizing radical species . Clozapine

was also observed to be effective in the DPPH radical scavenging test and as a H O  inactivator in a previous study  

. These results are further supported by clinical data, such as the observation of the effects of olanzapine and

clozapine in patients, where a decrease in radical-induced damage and neurological symptoms was observed after

administration . Moreover, olanzapine is thought to improve SOD functioning . On the other hand, it must be

considered that a previous study on schizophrenic patients highlighted that clozapine may induce oxidative stress and

pro-apoptotic gene expression in neutrophils .

2.3. Aripiprazole

In the context of antipsychotic treatments, aripiprazole (7, Scheme 2) shows a different mechanism of action and,

consequently, is referred to as a third-generation agent. This drug acts as a partial agonist on D , D , and 5-HT

receptors, while is an antagonist for 5-HT  receptors. Aripiprazole is the first partial dopamine agonist marketed as an

antipsychotic drug, and it is also defined as a dopamine-serotonin system stabilizer . It is very effective in treating

affective, cognitive and negative symptoms of schizophrenia .

Scheme 2. Aripiprazole (7).

Park et al. reported that aripiprazole, as well as olanzapine and ziprasidone, could provide protection against oxidative

stress in a N-methyl-4-phenylpyridinium (MPP ) ion-induced rodent model by modulating ROS levels and SOD activity)

and BCL2-associated X protein (Bax) expression . Kato et al. reported that aripiprazole may also contrast microglial

O  generation by interfering with the cascade of protein kinase C (PKC) activation, intracellular Ca  signaling and

NADPH oxidase activation .

Aripiprazole was also considered by Cai et al. in the study investigating the therapeutic efficacy of antipsychotics in

targeting stress-related metabolic pathways mentioned above. This drug, as well as clozapine and risperidone, was found

to be effective in regulating creatine levels in prefrontal cortex and hyppocampus .

Dietrich-Muszalska et al. compared the in vitro antioxidant effect of aripiprazole with that of other antipsychotic drugs

(haloperidol, clozapine, risperidone, olanzapine, quetiapine and ziprasidone) at concentrations corresponding to their

clinically effective doses in the plasma of patients. The effect of such treatment was evaluated by measuring TBARS

levels, which is an indicator of lipid peroxidation in plasma. According to the findings of these authors, aripiprazole induced

insignificant lipid peroxidation in plasma, whereas it showed antioxidant effects on TBARS level in plasma at higher doses

.
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3. Antidepressant Drugs

Also in the case of antidepressants, the results in ameliorating oxidative stress are debated . This may be due to the

fact that the class of antidepressants is wide and variegated, comprehending different molecules acting through several

mechanisms of action . Depression is a multifaceted disease, neurobiology and molecular events leading to this

pathology are still rather unclear.

Nevertheless, growing evidences suggest that dietary or commonly administered antioxidants may exert their

antidepressant activity by increasing the availability of serotonin (18) and noradrenaline (19, Scheme 3) in the synaptic

cleft, thus acting similarly to the conventional antidepressants .

Scheme 3 Serotonin (18), noradrenaline (19), fluoxetine (20), phenelzine (21), β-phenylethylidenehydrazine (22) and

doxepin (23).

Particularly, serotonin and its balance have been extensively studied from this perspective. 

4. Other Agents against Oxidative Stress: Natural and Dietary Compounds

Besides synthetic antipsychotics, other natural and dietary small molecules have been reported to play an antioxidant role

and inactivate harmful reactive species in the context of schizophrenia. The administration of PUFAs to rats represents an

explicative example, since an increase in SOD activity was observed . The potential of vitamin C (water soluble) and

vitamin E (lipid soluble) as antioxidant supplement in patients with schizophrenia was also investigated. However,, the use

of vitamins C and E does not appear to be a feasible strategy, since the high required dietary intake would most likely

result in a pro-oxidant action . Bošković et al. reviewed the contributions reporting studies performed using other

supplements, such as N-acetyl cysteine (8), rutin (9), Ginkgo biloba, melatonin (10), hydroxytyrosol (11), caffeic acid

phenethyl ester (12), resveratrol (13), quercetin (14) and lycopene (15, Scheme 4) . Various preclinical and clinical

studies have shown the positive effects of Ginkgo biloba in enhancing cognitive abilities in impaired individuals and

reducing anxiety under pathological conditions . Unluckily, due to data heterogeneity and uncertain mechanisms of

action, the correct interpretation of such effects is not trivial.
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Scheme 4. N-acetyl cysteine (8), rutin (9), melatonin (10), hydroxytyrosol (11), caffeic acid phenethyl ester (12),

resveratrol (13), quercetin (14), lycopene (15), apocynin (16) and ebselen (17).

5. In silico approaches

The overview thus far gives a quite good picture of how already existing compounds can have tandem beneficial effect in

treating major mental disorders and reducing oxidative stress levels. The employment of computational algorithms

developed in the last years to the possible use of antipsychotic or antidepressant drugs as effective antioxidants has also

seen a decisive contribution of many researchers . However, many of the studies performed so far

make use of statistical or classical mechanics based methodologies (like QSAR, molecular docking and molecular

dynamics) . These approaches, while being very useful when dealing with a large number of trial molecules, do

not have the ability of elucidating the intrinsic molecular mechanism underlying the efficacy of a particular structure. For

this task, one needs resort to methods based on quantum mechanical (QM) calculations, or even better to combine this

latter type of accurate calculations with a machine learning rapid and efficient screening.

In a recent study by some of us,  the free radical scavenging activity of fluoxetine (20) and serotonin (18, Scheme 3)

was investigated using a meta-hybrid functional (M06-2X ) in the gas phase and in solvent. The study confirmed the

notion that although fluoxetine possesses some radical scavenging capacity on its own, it is less active than serotonin

itself. Thus, the effect it exerts as oxidative stress balancer most likely comes from the higher concentration of free

serotonin found when the drug is taken. In addition, the employment of DFT computations allowed the authors to analyze

the antioxidant activity of each available site for a range of different mechanisms, giving a complete picture of the overall

mechanism of antioxidant activity of fluoxetine and serotonin. This is an example of how in silico methodologies allow to

investigate the antioxidant capacity of a drug, relating it to specific molecular features and thus providing essential

elements for drug design.
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