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Diatoms are unicellular eukaryotic microalgae widely distributed in aquatic environments, possessing a porous silica cell
wall known as frustule. Diatom frustules are considered as a sustainable source for several industrial applications
because of their high biocompatibility and the easiness of surface functionalisation, which make frustules suitable for
regenerative medicine and as drug carriers. Frustules are made of hydrated silica, and can be extracted and purified both
from living and fossil diatoms using acid treatments or high temperatures. Biosilica frustules have proved to be suitable for
biomedical applications, but, unfortunately, they are not officially recognised as safe by governmental food and medical
agencies yet.
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| 1. Introduction

Diatoms are an extremely diverse group of algae, comprising more than 100,000 different species . They are able to
colonise a large plethora of aquatic environments, and play a significant role on a global scale in the biogeochemical
cycles of carbon and silicon in the water column. Two diatom species, Thalassiosira pseudonana and Phaeodactylum
tricornutum, have been employed as model species for studies of gene expression and regulation, since they were the
first species for which the whole genome was fully sequenced 8. Subsequently, genomes have been sequenced from a
number of diatoms possessing specific metabolic or physiological features, such as oleaginous (Fistulifera solaris),
psicrophylic (Fragilariopsis cylindrus), araphid (Synedra acus subsp. radians), oceanic (Thalassiosira oceanica), biofilm-
forming (Seminavis robusta), and heterotrophic (Nitzschia sp.) species BEIBIAEIE Apart from their ecological role,
diatoms are also suitable for several biotechnological applications. They can be cultured in the laboratory under sterile
conditions and controlled temperatures, light irradiance and nutrient concentrations in order to achieve faster growth rates
and to promote the accumulation of specialty products. Diatoms have been employed during the last decades for the
production of metabolites exhibiting different biological activities and used as sources for cosmetic ingredients 29, food or
feed supplements U2 fertilizers (14, and sorbents or accumulators for the bioremediation of aquatic environments
(1511161 Microalgae other than diatoms, especially freshwater green algae, also exhibit a great potential in one or more of
the abovementioned fields of research.

The true distinctive feature that makes diatoms more suitable than other taxa for biotechnological purposes, is the high
proportion of amorphous silica within their cell wall. This natural source of silicon has already shown several advantages,
such as its high surface area and biocompatibility, and can be employed for various research fields, especially for
biomedical applications after in vitro or in vivo treatments L4, Diatom-derived silica is also available in huge amounts in
aquatic benthic environments, as a consequence of the sedimentation of dead diatom cells.

Currently, diatom biosilica is considered as a suitable biomaterial for metal removal from aquatic environments, as a
catalyst support, in optical devices, as a microsensor, and other kinds of applications 1819 Since its presence on the
market as a device for aquatic remediation and as food-grade products is a pledge of its effectiveness in these fields, the
present review is mainly focused on evaluating the potential of diatom biosilica for biomedical applications.

Diatom biosilica is actually exploited, indeed, for its potential as a drug carrier 22 and as a scaffold for bone tissue
regeneration 2. Biosilica-based processes can be considered as low-cost and environmentally friendly alternatives to
processes based on artificial structures. While the production of synthetic materials requires the implementation of specific
protocols, biosilica carries the advantage of triggering natural and sophisticated structure formation. For example, the
employment of diatom-derived biosilica for the development of optical sensors may turn out to be, in the future, more
attractive than using synthetic crystals, since it allows control and manipulation of light in a cost-effective way [22,
Biotemplated-based silica can be synthesized by rapid environmentally sustainable methods (solvent-free procedures),
thus avoiding the use of hazardous chemicals, and allowing a good control of condensation rates 231,



| 2. Diatom Biosilica Sources

Diatom-derived silica can be obtained either from living cultures or fossil diatoms (diatomite, e.g., chalky deposits of
skeletal remains). The energy required for diatom growth is sustained by either led-based (i.e., low energy demanding)
artificial light or sunlight. Furthermore, the nutrients required for algal growth, such as nitrates, phosphates, silicates,
vitamins, and some trace elements, can be purchased for a relatively cheap price or even obtained from wastewaters. To
avoid both the costs of artificial illumination and the seasonal variability of sunlight, cells can also be grown
heterotrophically 242311261271 aithough organic substrates are to be supplied in this case. However, only a small number
of species are able to grow in the dark 28221 and organic compounds can promote bacterial growth leading to culture
contaminations and to a decrease in cell growth. Biosilica is obtained after cell dewatering (i.e., centrifugation or filtration
of the whole culture), followed by a purification process that is usually based on treatments with strong acids and/or high
temperatures (see below). Besides, the limited motility of diatoms (due to the lack of flagella) and the “heavy” cell wall
(due to the presence of a high silicon amount) enhance the spontaneous sinking of cells, limiting the volume to harvest
and, thus, costs of biomass collection.

Diatoms generally exhibit fast growth rates and high lipid and biomass productivities, B2 which can be further enhanced
by tuning growth conditions B2 making diatoms promising candidates for mass culturing. However, to the best of our
knowledge, no diatom-based industrial plants (i.e., indoor or outdoor systems of algal culturing) are focusing on biosilica
production as their main activity. Follow-up studies are thus required to lay the foundations for the industrial production of
silica-based biomaterials.

The most abundant source of biosilica that does not foresee the induction of living cultures is diatomite, which can be
easily crushed into a fine powder to become a marketable product, namely, diatomaceous earth (DE). Diatomite is made
of frustules of dead diatom cells, usually found in benthic environments. The harvesting of fossil frustules, which are
naturally present in benthic environments, is cost-effective and makes diatomite a promising starter for the industrial
production of biosilica. However, the composition of DE is variable and the purity is often lower than that of living culture-
derived frustules. The quality and abundance of these impurities vary upon environmental and aging conditions (8. DE,
generally made of ca. 80-90% of silicon and of clay minerals 33, is used as a raw material for different kinds of
applications, such as agricultural fertiliser, sorbent for pollutants, and filler in plastics and paints to improve the strength of
construction materials. In addition, DE is also employed to filter impurities and as an abrasive agent in cleaning and
polishing products.

| 3. Frustule Cleaning/Purification: Main Techniques and Technical Issues

Frustules can be thus purified from both living culture-derived algal biomass and diatomite stocks. The impurities of
diatom frustules mainly consist of organic matters adhered to their surface 4. In the case of diatomite samples, impurities
are present in larger amounts, and can vary in relation to the local environment and aging conditions of these natural
stocks 8. Diatomite impurities typically contain also clay and metallic oxides, such as aluminium and ferric oxides 2.
Before cleaning procedures, diatomite particles usually undergo a first step of pulverization, in which micrometric powder
is grinded to nanoparticles by mechanical crushing and sonication. However, apart from a few exceptions, most studies
report purification protocols based on raw material derived from living cultures rather than diatomite, which is currently the
only diatomic silica-based marketable product.

Organic impurities can be removed from the silica frustule by either a chemical pre-treatment with acids or other oxidative
agents, or by exposing the frustules to high temperatures. Some studies, aimed at assessing the efficacy of preliminary
hydrochloric acid treatments for organic mass removal, showed that acid concentration greatly influenced both the
removal rate of impurities and the state of preservation of the frustule shape, with strong acidic pre-treatments causing
frustule erosion 8, Potassium permanganate can be also used to pre-treat frustules for organic compound removal E2!
(28] However, this procedure is essentially limited to remove impurities outside the frustule, and pre-treatments with acidic
solutions are usually applied (even if they are not mandatory) when purification protocols do not foresee acid-based
cleaning procedures, such as baking-based purifications B2, Some preliminary oxidations with acid solutions do not
exclude the employment of both acids and high temperatures. Treatment of diatom frustules with sodium permanganate
and oxalic acid, for example, is followed by perchloric acid treatments at 100 °C &7,

Baking (i.e., strong heating of silica cell walls) of diatom frustules at 400-800 °C is the simplest and least expensive
method to remove organic components. However, high-temperature treatments can alter diatom architecture and pore
size 49, Oxygen plasma etching, a procedure consisting of the removal of impurities using ionised gases, was found to be
effective to preserve the frustule structure, with a negligible loss of material and without shape alterations 2111421,



The most commonly used procedure for the removal of organic matter and the purification of diatom biosilica is, however,
an oxidative washing treatment. Some protocols require the use of 30% [B41[43][441[45][46]147] o 1504 (48] hydrogen peroxide
solutions.

The most common washing solvents used in acid-based treatments of diatom frustules are sulphuric 4959 and nitric 48]
B acids. Sulphuric acid treatment is rapid (10—30 min) and revealed successful even on small amounts of biosilica 2.
Despite the rapidity of this strong acid-based method, cleaning procedures are time-consuming, since several washes
with distilled/deionised water are required for a complete acid removal. However, the effect of acid strength needs to be
evaluated in each case, since silica nanostructures can be damaged by the action of acids. For example, frustules from
poorly silicified diatom species can be dissolved in strong acid cleaning solutions 29,

To improve the efficiency of biosilica purification, Wang and co-workers 22 set up a vacuum cleaning method in which all
the cleaning steps, which are cell extraction, acid treatment and washing, are carried out on polytetrafluoroethylene
(PTFE) filter cloths, thus decreasing the processing time. This allows the recycling of the sulphuric acid used for cleaning,
decreasing the amount of both the reagent needed for purification and the liquid wastes. The main drawback of the
vacuum cleaning method is that it depends on the mechanical properties of the raw material, and cannot be applied on
poorly silicified diatoms.

Some purification methods combine the use of both sulphuric acid and hydrogen peroxide in a strong oxidizing agent (2 M
H,S0,, 10% H,0,) called Piranha solution 23134, The purification process is relatively fast, while post-treatment washes
can be time-consuming. The removal of Piranha solution requires, indeed, an overnight treatment with HCI (5 M, 80 °C)
and two further washes with distilled water to eliminate the HCI residuals 29, The main treatments for frustule separations,
the tested diatom silica sources, and the main bottlenecks of each cleaning technique are summarized in Table 1.

Table 1. Pre-treatments and treatments for diatom frustule cleaning and their main advantages and drawbacks.
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