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Ubiquitylation is a post-translational modification that covalently conjugates the ubiquitin molecule through the C-
terminus to a lysine residue on a substrate protein. Ubiquitylation results in the turnover of the ubiquitylated
substrate protein by either the proteasome or lysosome, a change in subcellular localization of the substrate
protein, or alteration of substrate protein function . Ubiquitylation is mediated by three enzymes and scaffolding
proteins: E1, E2, and E3.

ubiquitylation HECT-type ES3 ligase cardiac disease

| 1. Introduction

Despite advances in medicine, cardiovascular disease remains a significant public health problem associated with
high mortality 121, Heart failure (HF) is a major cause of cardiovascular deaths. Maladaptive cardiac remodeling
caused by hypertension, ischemic heart disease, and other cardiac diseases is accompanied by complex
mechanisms that lead to the development of HF B4, Further studies are needed to prevent maladaptive cardiac

remodeling and subsequent heart failure.

The modification of eukaryotic proteins with ubiquitin, named ubiquitylation, controls their lifetimes, abundance,
localization, interactions, and activities, thereby regulating protein function at all levels. Thus, ubiquitylation plays a
pivotal role in a wide range of cellular processes, such as signal transduction, transcriptional regulation, and
maintenance of homeostasis. Failing hearts from patients with dilated cardiomyopathy and those with ischemic
heart disease show hyper-ubiquitylation compared to donor hearts B, The overall observed change in the
ubiquitylation cascade in failing hearts is considered an adaptive response to an increased protein burden derived
from increased protein synthesis that accompanies the hypertrophic response or an excess of damaged or

modified proteins to be targeted for proteasomal degradation.

In the 2000s, many studies focused on the cardiac ubiquitin E3 ligases to clarify the role of ubiquitylation in the
development of cardiac diseases, such as the carboxyl terminus of Hsp70 interacting protein (CHIP), atrogen-1,
muscle ring finger (MuRF) family, mouse double mutant 2 homolog (MDM?2), cellular inhibitor of apoptosis, casitas
b-lineage lymphoma, and E6-associated protein (E6AP) BIIIEIRILOMLIIZANLS] - Cardiac ubiquitin E3 ligase plays
several roles in protein turnover, energy metabolism, receptor internalization, hypertrophic response, apoptosis,
and tolerance to ischemia/reperfusion (I/R) in cardiomyocytes 145 Although elevated expression levels of EGAP

were observed in mice after pressure overload 12, the functional role of EBAP has never been examined. Thus,
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our knowledge of the molecular mechanism of HECT-type E3 ligase in the development of cardiac disease is still

lacking.

HECT-type E3 ligase is reported to be involved in a wide range of human diseases and health including
neurodegenerative diseases, neurological syndromes, and cancers 18718 HECT-type E3 ligases are highly
conserved between cells and tissues; as a result, it is tempting to speculate that they also contribute to human
cardiac health and disease. There are only a few review articles summarizing recent advancements regarding
HECT-type E3 ligase in the field of cardiac disease (9. This study focused on cardiac remodeling and described

the role of HECT-type E3 ligases in the development of cardiac disease.

| 2. Ubiquitylation

Ubiquitylation results in the turnover of the ubiquitylated substrate protein by either the proteasome or lysosome, a
change in subcellular localization of the substrate protein, or alteration of substrate protein function [29,
Ubiquitylation is mediated by three enzymes and scaffolding proteins: E1, E2, and E3. There are only few Els and
several E2s; however, E3 ligases constitute a large class of proteins with the human genome encoding more than
600 putative E3 ligases and E3 ligase complexes 21221231241 E3 |igases are also modulators of the rate-limiting

step in this enzymatic cascade, participating in substrate protein recognition and catalytic transfer of ubiquitin.

As shown in Figure 1, E3 ligases are classified into three groups: really interesting new genes (RING), homologous
to E6AP C-terminus (HECT), and RING-between-RINGs (RBRs). The domain architecture and mechanism of

ubiquitylation depend on the class of E3 ligases 23,
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Figure 1. Classification of ubiquitin E3 ligases and the domain architecture of HECT-type E3 ligases. E3 ligases
are classified into three groups: RING family, HECT E3 family, RBRs family. HECT E3 family are grouped into three
subfamilies: NEDD4 subfamily, HERC subfamily, other E3 subfamily. RING, really interesting new genes; HECT,
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homologous to E6AP C-terminus; RBRs, RING-between-RINGs; NEDD4, neural precursor cell expressed
developmentally downregulated 4; HERC, HECT and RLD domain containing E3 ubiquitin protein ligase; WWP,
WW domain containing E3 ubiquitin protein ligase; SMURF, SMAD ubiquitin regulatory factor; HECW, HECT, C2,
and WW domain containing E3 protein ligase; E6AP, E6-associated protein; HUWE1, HECT, UBA, and WWE
domain containing E3 ubiquitin protein ligase 1; HACE1, HECT domain and ankyrin repeat containing E3 ubiquitin
protein ligase 1; TRIP12, thyroid hormone receptor interactor 12; UBRS5, ubiquitin protein ligase E3 component N-
recognin 5; UBE3B, ubiquitin—protein ligase E3B; UBE3C, ubiquitin protein ligase E3C; HECTD, HECT domain E3
ubiquitin protein ligase; G2E3, G2/M phase-specific E3 ubiquitin protein ligase; AREL1, apoptosis-resistance E3
ubiquitin protein ligase 1; C2, C2 domain; WW, WW domain; RLD, RCC-like domain; ARM, armadillo repeat; UBA,
UBA domain; WWE, WWE domain; ANK, ankyrin repeat.

Substrate proteins are modified by a single ubiquitin moiety on one or multiple sites, giving rise to mono- and multi-
mono-ubiquitylated proteins, respectively. In addition, a wide variety of polyubiquitin chains can be formed on
substrate proteins, in which the ubiquitin moieties can be linked through either one of the seven internal lysine
residues (Lys6, Lys11, Lys27, Lys29, Lys33, Lys48, and Lys63) in ubiquitin or through its N-terminal amino group.

Polyubiquitylation through the Lsy48-linked ubiquitin chain is generally used for the ubiquitin—proteasomal
degradation pathway. Substrate proteins that receive Lys48-linked polyubiquitin chains migrate to and are
degraded by the 26S proteasome. The ubiquitin—proteasome system is a protein quality and quantity control
system that mediates approximately 80-90% of intracellular protein degradation under optimal nutritional
conditions [2811271[28][291130] ' Fyrthermore, mono-ubiquitylation of lysine residues or polyubiquitylation through Lys63-
linked ubiquitin chains are used for nonproteolytic pathways such as DNA repair, relocalization, modifying activity

(signal transcriptional activity), or endocytosis [2132]33],

RING E3 ligases catalyze the direct transfer of ubiquitin from the E2 conjugating enzyme to the substrate,
suggesting that the linkage type of the ubiquitin chain is determined by the E2 conjugating enzyme. In contrast to
RING-type E3 ligases, HECT-type E3 ligases include an active-site cysteine in the HECT domain, which forms an
intermediate thioester bond with ubiquitin before it is conjugated to the substrate protein 2433 HECT-type E3
ligase has enzymatic activity and directly catalyzes the covalent attachment of ubiquitin to substrate proteins;
therefore, it could determine the linkage type of ubiquitin chain preferred [2€l,

E6AP transcribed from the ubiquitin—protein ligase There are 28 types of HECT-type E3 ligases in humans 7,
which are commonly grouped into three groups based on the presence of distinct amino acid sequence motifs or
domains within the N-terminal: NEDD4 subfamily, HERC subfamily, and other HECT-type E3 ligases 28 (Figure 1).
The N-lobe represents the E2 binding domain, whereas the C-lobe contains an active site cysteine to receive
ubiquitin. In the HECT family, 16-92% amino acid identity was found for this domain 52,

The NEDD4 subfamily member includes nine types of HECT-type E3 ligases and accounts for approximately 30%
of HECT-type E3 ligases 28, The N-terminal C2 domain is defined as a Ca+ phospholipid binder 49, The Ww

domains are responsible for recognizing substrates and have also been found to form intramolecular interactions
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with the HECT domain of the E3 ligases 142 Some NEDD4 subfamily members are often expressed as

alternative splice isoforms 38,

The HERC subfamily is characterized by a HECT domain and one or more regulators of chromosome
condensation-like domains (RLDs), an effector protein domain that was first identified as a regulator of
chromosome condensation 1 431, In humans, the HERC subfamily comprises six members, which can be further
organized into two large and four small HERCs. Large HERCs (HERCL1 and 2) have two or three RLDs; however,
small HERCs (HERCs 3, 4, 5, and 6) have one RLD. RLD has dual functions: one side of the domain acts as a
guanine nucleotide exchange factor for the small GTPase Ran, whereas the opposite side interacts with chromatin
through histones H2A and H2B [441[43],

Each member of another HECT E3 ligase lacks WW or RLD domains and has a distinct variety of N-terminal
domains. There are several N-terminal domains of other HECT E3 ligases, such as WWE and armadillo repeats
(HUWEZ1 and TRIP12), , ankyrin repeats ( HACE1 and HECTD1), and IQ motifs (UBE3B and UBE3C)

| 3. Importance of Ubiquitylation in Cardiac Disease

Accumulating evidence indicates that ubiquitylation is involved in developing cardiac diseases [13146][47][48][491[50]
Cardiac proteins are in a dynamic state of continual degradation and resynthesis and are thought to replace all in
30 days under normal circumstances. An experimental study demonstrated that the balance of protein turnover
could lead to protein accumulation and aggravation during cardiac remodeling . The discovery that cardiac
ubiquitin E3 ligases, such as muscle-specific ubiquitin ligase atrogin-1 and MuRF family, yields cardiac growth, and
remodeling through sarcomeric protein turnover, indicated that the ubiquitylation cascade is fundamental to the

maintenance of normal cardiac function through protein quality control L31[521[53]

As previously mentioned, ubiquitylation is involved in most aspects of eukaryotic cell biology, such as intracellular
signaling, transcriptional control, and regulation of cell death. Research regarding the role of cardiac ubiquitin E3
ligases has developed from protein turnover to cellular processes such as signal transduction, transcriptional
regulation, maintenance of homeostasis, mitochondrial dynamics, receptor turnover, and energy metabolism 131131,
In the following paragraph, we will limit ourselves to a discussion of HECT-type E3 ligases that have been

associated with cardiac diseases.

| 4. Cardiac Fibrosis and HECT-Type E3 Ligase

Pathological cardiac fibrosis is a process characterized by excessive deposition of extracellular matrix (ECM),
leading to the development of cardiac dysfunction, arrhythmia, and HF B4BSIE8 Several pathophysiological
conditions induce cardiac fibrosis, such as pressure overload, volume overload, myocardial infarction, dilated and

hypertrophied cardiomyopathy, various toxic insults, metabolic disturbances, and aging [BZ58I591[60],
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Cardiac fibroblasts are key effector cells in cardiac fibrosis and are responsible for ECM homeostasis in the heart

(341 After cardiac fibroblasts are activated by regulators of tissue fibrosis, such as angiotensin Il, connective tissue

growth factor, bone morphogenetic protein (BMP), Wnt ligands, cytokines, and TGF- TGF-1 contributes to cardiac

fibrosis development through SMAD-dependent and SMAD-independent pathways. TGF-1 generally exerts its

biological effects by activating downstream mediators, including SMAD2 and SMAD3, while negatively regulated by

SMAD?7 expression [61I62](63]

Although the pathophysiological conditions leading to cardiac fibrosis are different from those of cardiac diseases,

it is valuable to explore the common mechanisms involved in cardiac fibrosis. This study shows the current

understanding of the role of HECT-type E3 ligases in cardiac fibrosis. An overview of HECT-type E3 ligases in

cardiac fibrosis is summarized in Table 1.

Table 1. HECT-type E3 ligase and cardiac remodeling.

HECT-Type E3

Ligase Substrate/Target Main Findings Reference
Cardiac hypertrophy
. Cardiac-specific ITCH transgenic mice inhibited [64]
ITCH Dishevelled maladaptive hypertrophy via Wnt/(3 catenin signal inhibition.
NEDD4-2 ENaC in kidney Cardiac hypertrophy Was.obs.erved in .NEDD4-2 null mice [65][66]
on chronic high-salt diet.
Circular RNA ANF and miR- Circular RNA WWP1 was dysregulated in the heart treated 67]
WWP1 23a with isoproterenol.
WWP2 conditional knockout mice (MycCre+;WWP2F/Fl [68]
WWP2 PARP1 . : .
exacerbated isoproterenol-induced cardiac hypertrophy.
EGAP Increased myocardium E6AP expression after pressure [12]
overload.
HUWEL c-myc HUWEL1 conditional knogkout mice spontaneously 69]
developed cardiac hypertrophy.
HACEL Unknown HACEL1 conditional knockout mice spontaneously [70]
developed cardiac hypertrophy.
HECTD3 SUMO2/STAT1 AAV9-medited ovgrexpressmn of HECTDS inhibited [71]
pathological hypertrophy in mice.
Cardiac fibrosis
mut/mut i i i i
WWP2 SMAD2 WWP2 mice attenuated cardiac fibrosis after [72]

angiotensin Il infusion and myocardial infarction.
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HECT-Type E3

Ligase Substrate/Target Main Findings Reference

SMURF1 was involved in BMP-2 antagonization for TGF-31

signal. [731[74]
SMURFL SMURF1 was a target of miR-10b-5p, which inhibits cardiac

fibroblast activation.

Mediator of TGF-( signal.
SMURF2 SMAD7 SMURF2 mediated SMAD7 degradation was inhibited by [slize]
SMADS inhibitor.

HFpEF

Cardiac-specific overexpression of WWP1 developed [77]

Wwel Not described cardiac hypertrophy with diastolic dysfunction.

ANF, atrial natriuretic factor; BMP, bone morphogenic protein; ENaC, epithelial Na* channel; HFpEF, heart failure
with preserved ejection fraction; NEDD4-2, neural precursor cell expressed developmentally downregulated 4-2;
PARP1, poly(ADP-ribose)polymerase-1; SMAD, small mother against decapentaplegic; SMURF, SMAD ubiquitin

regulatory factor; STAT, signal transduction and activator of transcription; SUMOZ2, small ubiquitin-like modifier 2.

Chen et al. identified the WWP2 N-terminal isoform as a positive regulator of the pro-fibrotic gene network
associated with cardiac fibrosis using systems genetics in human and murine dilated cardiomyopathy and repaired
tetralogy of Fallot. The left ventricular single-cell RNA sequence indicated that WWP2 is mainly expressed in
fibroblasts, immune cells, and endothelial cells. WWP2mut/mut mice lacking the N-terminal isoform and full-length
WWP2 attenuated cardiac fibrosis and preserved cardiac function after angiotensin Il infusion or myocardial
infarction. These findings provide new understanding into the role of HECT-type E3 ligases independently of the
HECT domain.

SMAD ubiquitin regulatory factor (SMURF) was initially identified as a regulator of SMAD1 stability 8. SMURFs
have been implicated in determining the competence of cells in response to the TGF-B/BMP signaling pathway £,
SMURF is a multifunctional protein that is involved in cell cycle progression, cell proliferation, differentiation, DNA
damage response, and maintenance of genomic stability. SMURFL1 plays an important role in heart development,

including outflow tract septation and cell-type specification, by controlling cilium-associated BMP signaling [BO)(B1]

BMP-2, as a novel fibrosis-antagonizing cytokine, have a potential beneficial effect in attenuating pressure
overload-induced cardiac fibrosis. Wang S et al. demonstrated that SMURF1 interacted with SMAD6 and that this
SMURF1/SMAD6 complex was involved in BMP2 antagonization of TGF-B1 mediated protein kinase C-6 and
SMAD3 signaling in cardiomyocytes 8 This finding suggests that SMURF1 may contribute to cardiac fibrosis
development.

Endothelial colony-forming cells have been reported to reduce cardiac fibrosis in myocardial infarction due to their

proliferation and secretion of exosomes, which transfer microRNAs. Cardiac fibroblast activation is ameliorated by
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exosomes from endothelial colony-forming cells treated with normoxia compared to those treated with hypoxia. Liu
et al. found that miR-10b-5p was enriched in exosomes from normoxia and targeted SMURF1 and histone
deacetylase 4 using next-generation RNA sequencing. Thus, inhibition of mMRNA expression of SMURF1 by miR-
10b-5p was suggested to participate in the antifibrotic effects of exosomes derived from endothelial colony-forming
cells treated with normoxia [4,

SMURF2 consists of a C2 domain, three WW domains, and an HECT domain. SMURF2 targets SMADSs, heat
shock proteins 27, and p53 82, SMURF2 was reported to be downregulated in DCM B3, SMURF functions as a

mediator of TGF-P signaling via interaction with SMAD7 containing PY motif during cardiac fibrosis 2!,

The protein expression level of SMURF2 in the mouse heart increased, while that of SMAD7 decreased after
angiotensin Il administration. However, this effect was reversed by the SMAD3 inhibitor, suggesting that the
SMAD3 inhibitor protected cardiac SMAD7 from SMURF2-mediated ubiquitin—proteasome degradation. Since
SMAD?7 functions as an inhibitor of both TGF-B/SMAD and NF-kB signaling, an increase in cardiac SMAD7 could
be another mechanism through which SMADS3 inhibitor blocked SMAD3-mediated cardiac fibrosis and NF-«kB-
driven cardiac inflammation 8. This finding suggests that SMRUF2 may contribute to the development of cardiac
fibrosis.
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