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The taxonomy includes (1) IoT security attacks, (2) IoT architecture layers, (3) intrusion-detection systems for IoT, (3) DL

techniques used in the IoT IDSs, (4) common datasets used in the evaluation of the DL systems, and (5) their

classification strategies. The different areas included in the taxonomy are in various ways interconnected as root causes

of IoT security vulnerabilities in IoT and/or solutions to counter such causes.
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1. Introduction

IoT technologies communicate without the need for human-to-human or human-to-computer interaction. IoT has

increasingly been adopted by organizations to streamline their operations and is one of the fastest growing technology

fields; by the end of 2030, estimates have IoT at 50 billion devices, which includes everything from smartphones to

kitchen appliances . IoT innovations are contributing to improvements across real-life smart applications (e.g., cities,

healthcare, transportation, and education). Concomitant cutting-edge and large-scale adoption of IoT technology has

introduced new security challenges. Adherence to IoT security requirements is hindered by the complexity and integrative

arrangements of new and somewhat ad-hoc contexts. IoT devices are connected mostly over wireless networks and are

typically utilized in an unattended fashion. In this type of environment, an attacker may easily gain both physical or logical

access to these devices illegally. An attacker with assumed malicious intent may indeed cause critical, life-threatening

consequences.

To counter the IoT security conundrum, researchers first opted for adopting conventional security mechanisms, including

encryption, authentication, access control, network security, and application security. However, such adoptions of security

technologies have proved inadequate and have needed enhancement to suit the various contextual needs of their

respective environments. Nevertheless, implementing security measures against specific security threats has usually

been effective, though often thwarted by new attack Methods and Tactics (M&T). For example, the Mirai botnet caused

large-scale Distributed Denial of Service (DDoS) attacks by exploiting IoT devices. While amplifying DDoS, these recent

attacks utilize spoofed-source IP addresses to circumvent current solutions targeted to the Mirai botnet M&T. These

solutions have motivated newer, more sophisticated attacks that are more complex and more destructive than the original

Mirai botnet attributed attacks. Therefore, investigating effective IoT security countermeasures remains a research priority.

Many related surveys on IoT already exist in the literature that cover different aspects of deep learning in cybersecurity.

Our comparison of previous studies is based on several key properties as shown in Table 1. These surveys 

 provide a modest focus on IoT intrusion detection. Most studies are either descriptive of the IoT architecture,

or they present the various IDSs as a general overview for a particular project evaluation and verification purpose.

References  are completely dedicated to IoT architectures and include an incomplete assessment of some

applications and protocols. References  propose a six-layer architecture for the IoT domains. However. IoT security

and IDSs were not considered in their study. In , the architecture, protocols, and privacy are described only as brief IoT

security concepts, including the interconnection between the objects of things. In , the authors presented a survey of

IDS in IoT but nothing about DL/ML techniques in IDS. Several attacks targeting protocol topology (the Routing Protocol

for Low-Power and Lossy Networks (RPL), IPv6 over Low-Power Wireless Personal Area Networks (6LoWPAN)) are

discussed in  without classifying those attacks on an IoT layered architecture connected with IDS. Reference  similarly

provides a classical comparative analysis for several existing papers based on advantages and disadvantages. Their

focus, furthermore, concentrates on the attacks without due consideration of the ML/DL methods as a general solution.

Table 1. Comparison of Intrusion Detection Systems (IDSs) properties.
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Survey Area Survey
Content Design Focused

Domain Attacks ML/DL
Methods

Type of
Experiment Reference

IoT Vision: IoT
application

six-layer IoT
architecture IoT architecture √ - -  2014

IDS in IoT

IDS in IoT

- IDS √ ML Statistical
analysis  2018

Five research
questions IDS √ - -  2019

IDS - IDS √ - -  2018

IoT
architecture
IoT security

IoT-IDS
architecture IDS √ - -  2018

IoT Security-
Based Data

Analysis
IoT security Five-layer IoT

architecture IoT Security √ ML -  2020

IoT
Architectures

and Applications

IoT
architectures

IoT taxonomy Five-layer
architecture - - -  2017

IoT-Based Info of
Things - IoT architecture - - -  2013

IoT Architecture IoT survey
taxonomy

IoT architecture,
Protocols and

security Privacy
- - -  2020

Attacks Attacks - RPL and
6LoWPAN in IoT √ - -  2015

NIDS for IoT NIDS IoT threats
classification

Three-layer
architecture, IoT

threats NIDS
√ ML Statistical

analysis  2019

ML/DL Methods
for IoT Security

ML/DL in IoT
IoT threats

IoTsys and
threats
ML/DL

taxonomy

IoT security
Six-layer IoT
architecture

√ ML/DL -  2020

Accordingly, the thesis of this paper is as follows: IoT architecture standards in term of compatibility and difference

between those standards are discussed. This reconciles and creates a mapping between those various IoT architectures

with respect to IoT security aspects making the IoT ecosystem robust against intrusions. A novel comprehensive

taxonomy is presented that includes state-of-the-art deep learning for IoT-IDS in terms of (a) IoT targeted attacks, (b) IoT

architecture, (c) various IDSs, (d) deep learning approaches, and (e) common IoTIDS datasets. The potential attacks and

requisite security needs are proposed for each IoT layer defined in Table 1. A fine-grained review on anomaly-based IDSs

in the IoT ecosystem using deep learning approaches and traditional anomaly-based IDS approaches is provided. A

comparative and descriptive analysis of different anomaly-based IDS approaches in terms of strategy, advantage, and

disadvantage is also presented. An experimental study of the performance of four ML approaches, (a) LR, (b) SVM, (c)

DT, and (d) ANN, is performed using the Bot-IoT  and IoTID20 datasets .

2. Taxonomy of Deep Learning for IoT-IDS Logic

Hindy et al.  classified various common threats using the seven-layer OSI model. Those various threats are presented

as a taxonomy here based on the tools need to carry out said attacks. In , the authors presented an overall taxonomy

based on public IDS-established datasets. The references  provided new IoT architectures and classified current

IoT architecture. Other investigators have focused on deep learning techniques, which are classified deep learning

methods based on their view of knowledges. In , for example, the authors reviewed deep learning-based IDS

taxonomy, whereas in , the authors provided a taxonomy based on machine learning methods. This section classifies

deep learning for IoT-IDS through various aspects. The taxonomy described in Figure 1 houses the aspects associated

with IDS expertise by facilitating industry, government, and investigators to develop an intelligent intrusion-detection

system in the IoT ecosystem. Figure 1 provides a detailed taxonomy of deep learning approaches used in IDSs. The

taxonomy includes the various areas that are important to understanding IoT security issues and their solutions. The

taxonomy includes (1) IoT security attacks, (2) IoT architecture layers, (3) intrusion-detection systems for IoT, (3) DL

[4]

[7]

[8]

[9]

[6]

[11]

[3]

[2]

[13]

[5]

[10]

[12]

[14] [15]

[16]

[17]

[3][4][11][12]

[18]

[19]



techniques used in the IoT IDSs, (4) common datasets used in the evaluation of the DL systems, and (5) their

classification strategies. The different areas included in the taxonomy are in various ways interconnected as root causes

of IoT security vulnerabilities in IoT and/or solutions to counter such causes.

In Figure 1, on the leftmost branch, IoT security attacks are enumerated along with the corresponding layer needed to

detect them. Indeed, IoT architectures are vulnerable to various threat actors and attack methodologies. These attacks

could be passive or active and internal or remote, as seen in Table 1 and Figure 2. The passive attacks monitor for

vulnerabilities and do not disturb IoT ecosystem services (i.e., collecting information needed for future penetration

attempts). Active attacks disrupt (i.e., interrupt/block) the operation of targeted IoT devices or IoT ecosystems. These

attacks and threats include but are not limited to the methods listed in Figure 1 (e.g., data accessibility, man-in-the-

middle, denial of service, distributed denial-of-service attack, eavesdropping, sniffing, routing attack, sybil, replay

spoofing, and mass node authentication). Section 3 explains more about the challenges of IoT security Issues.

Figure 1. Taxonomy of Deep Learning for IoT-IDS Logic.

Figure 2. Passive and active threats in the IoT system.

Many studies have proposed, developed, and empirically evaluated different approaches for IDSs .

There are primarily four different categories as shown in Figure 1: (1) anomaly-based intrusion-detection system (AD-

IDS), (2) signature-based intrusion-detection system (S-IDS), (3) hybrid-based intrusion-detection system (Hybrid-IDS),

and (4) specification-based IDS. AD-IDS depends on established known patterns for normal behavior. Behavior outside

the realm of “normal” is considered anomalous, thus causing some sort of warning or alert. S-IDS relates to the known

pattern (signature) of malicious traffic to detect attacks. The zero-day (unknown; never been seen before) attack cannot

be detected by S-IDSs. Specification-based IDS and hybrid-IDS attempt to leverage complementary capabilities by

integrating the first two types (AD-IDS and S-IDS). ML and DL algorithms are good examples of the core capability used in

AD-IDS. The snort tool is an excellent example of S-IDS .

DL models can be categorized based on the primary goal for the analysis, such as classification, feature extraction,

prediction, and expression. The feature-extraction technique plays a significant role in extracting important features,

especially in high-dimensional data, such as IoT ecosystem. Feature extraction is significant for creating a suitable

prediction or classification model. Most studies describe how to create non-handcrafted features of the data as the basis

for training their IDS model for the purpose of enhancing the quality of classification, prediction, and/or regression
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outcomes. In classification, the model organizes the existing traffic data into two classes, benign (normal) or malicious

traffic (a binary classification), with the goal of minimizing false-negative and false-positive rates. Another strategy is to

create a model that can handle multi-classification to categorize the abnormal patterns into different malicious attack

types. To build a robust prediction model, the feature extractions must be carried out before building the predictive

application. A prediction model analyzes the past data and generates a predictive model to forecast future data. It may be

a possible solution for transmission issues of IoT sensors data to cloud applications. A prediction model plays an

important role to solve spatial-temporal problems in IoT ecosystem. It plays an important role in improving industrial IoT

products, reducing the cost, and providing good decision making. The regression model comes with two different kinds of

regression: linear regression and nonlinear regression. It fits the time-series problems. It began to surface in IoT

ecosystem as one of the solutions for spatial-temporal problems, but it remains the least popular in the IoT research

community. To preview those strategies, refer to Figure 1.

3. IoT Security Challenges

One important challenge reported in the literature  is securing IoT technologies, which can be life

threatening. A harmful scenario can result with Integrated Smart-Devices (ISD) when exploited by hackers, especially in

industrial IoT applications or Internet of Vehicles (IoV). There is a number of IoT technology-hacking scenarios as

illustrated in  that could cause a high level of harm to the system. IoT information security issues are associated with

the preservation of authentication, authorization, integrity, confidentiality, non-repudiation, availability, and privacy .

Security issues and challenges related to IoT technologies can be approached from aspects of issues associated with

different IoT layers. Some studies  have proposed security requirements for each layer within the IoT architecture

separately, whereas some other references  remain focused on analysis and presentation of the potential

threats that attack each layer. This paper seeks to combine security requirements against threats to propose a three-layer

IoT architecture. Accordingly, the most basic IoT architecture, the three-layered architecture, provides a simple platform

from which to present security requirements and concerns as well as threats/exploits at each layer of the architecture as

illustrated by considering Table 2 combined with Figure 2.

Table 2. IoT architecture, attacks, and security requirements.

Layers Attacks Security Requirements

Application Data accessibility and authentication, Data privacy and identity,
Dealing with availability

Privacy protection, Authentication,
Information security management,

Network Man-in-the-middle, Denial of service, Eavesdropping/Sniffing,
Routing attack.

Authentication, Communication security,
Key management, Routing security,

Intrusion detection,

Perception
Node capture, Denial of service, Denial of sleep, Distributed

denial of service, Fake node/Sybil, Replay, Side channel, Mass
node authentication,

Data confidentiality, Lightweight
encryption,

Key management, Authentication.

The security requirements of Table 2 are defined here. Authentication is confirming the identity of a claimer. Thus, in IoT,

each device is expected to have the ability to verify the identity of its user and another device for the interaction with

others. Authorization is giving access to an entity to interact in the IoT environment. Integrity refers to maintaining the

consistency, precision, and dependability of information, while confidentiality is about making sure that sensitive

information is accessed by authorized entities. Non-repudiation guarantees holding an entity accountable for its actions.

Availability ensures that IoT services are there and can be accessed from anywhere and anytime the user needs them.

Privacy is a property and/or process of ensuring that private information is only accessible by authorized entities. The

properties above, taken as requirements, should be enforced to achieve the highest levels of safety. However, IoT device

constraints will naturally limit the extent and depth achievable, which therefore necessitates a risk assessment to

understand better the threats, impacts, and tradeoffs. Figure 2 shows how active and/or passive threats can impact those

aforementioned properties within the IoT ecosystem .

4. Intrusion Detection System (IDS) in IoT

In IoT environments, anomaly-based IDSs are used to monitor the behavior of a normal network and to define a threshold

to detect deviations from the normal behavior . In this section, we review existing anomaly-based IDSs proposed for

the purpose of protecting the security of IoT environments. We study different detection techniques employed in each of

the reviewed systems. For example, in , the researchers present an anomaly-based IDS system that uses data-mining

techniques as a distributed intrusion-detection scheme to detect anomalies in IoT environments. Their research
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theoretically showed, by using the intrusion semantic to distinguish intrusive from a normal behavior, that the proposed

approach is accurate and extensible. Ding et al.  proposed a non-cooperative differential game model that uses

statistical techniques to allow all nodes in an IoT environment to choose the optimal amount of network resources to

invest in information security contingent upon the state of the game. This research models selfish-nodes and malicious-

nodes interactions as a differential game. The results show that malicious behavior can be discovered with high probability

and high detection accuracy, good performance, and low resource consumption. Chen et al.  proposed a fusion-based

approach for attack inference at the IoT network level. The approach details the attack and IDS procedure as a zero-sum

game. The outcome of the game equilibrium is used to evaluate the network robustness achievable from a given

proposed defense mechanism.

Hybrid or semi-supervised DL methods combine generative features in early phases and discriminative features at a later

stage for data differentiation. Generative adversarial network (GAN) is a good example of hybrid deep learning. GAN has

been adapted into the IoT environment for security purposes . GAN may show improved success because it can

learn different attack scenarios that are combined to generate samples similar to a zero-day attack scenario. Such

predictive capabilities represent a higher level of learning and require that such hybrid algorithms receive extra attacks

samples to learn other than existing attacks  that approximate suspicious zero-day behaviors. This course aims to

achieve lower false-negative rates, though perhaps at the expense of higher false-positive rates. Yet, some would argue

that higher learning layers are necessary to anticipate unknown, sophisticated attack strategies.

Traditional detection techniques, noted previously, have fallen short of detecting new complex attacks. As the volume of

data increases, for example, into terabytes, it has become even more important to find alternative techniques. DL models

can train using massive amounts of data to build robust anomaly detection systems. The model classifies the new traffic

into either a normal or anomaly class . DL techniques learn from hierarchical discriminative features discernable in the

data. The fact that anomalous behavior is often not precisely defined poses challenges for conventional techniques;

therefore, domain experts have begun to advocate solving the problem using DL techniques . Some anomaly-based

IDSs are used in the IoT context by employing deep learning techniques for their insights. The most common deep

learning architectures employed for anomaly detection in conventional systems include CNN , DNN , LSTM 

, and RNN . Such deep learning architectures are employed in an anomaly-detection system for either feature

learning or classification . Figure 3 shows the (typical) overall framework of IDS based on deep learning.

Figure 4. Diagram of the framework of IDS based on deep learning.

There are a good number of datasets available for the development and validation of IDSs. The most popular datasets

used in the implementation of IoT-IDSs include NSL-KDD , the Bot-IoT , the Botnet , and the Android malware 

datasets. The NSL-KDD dataset is designed to solve some of the inherent problems of the KDD’99 dataset. Thus, NSL-

KDD eliminated redundant duplicate records, thereby significantly reducing the total number of records. The number of

borderline (i.e., difficult) records were eliminated based on the inverse percentage so that the NSL-KDD dataset has far

fewer borderline records than other datasets. Several papers focused on IoT intrusion detection have used this NSL-KDD

and reported judicious and sensible results. The Android malware dataset (CICAndMal2017) contains malware and

benign applications, proposed in . The malware samples used to develop this dataset consist of Adware, Ransomware,

Scareware, and Short Message Service (SMS) malware and include more than 80 network traffic features. The Bot-IoT is

an IoT traffic-based dataset that contains more than 72,000,000 records, including DDoS, DoS, OS and Service Scan,

Key-logging, and data exfiltration attacks . The Bot-IoT, compared to other datasets, is dedicated to the validation of
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IDS within an IoT environment. The Botnet dataset is an internet-connected devices-based dataset containing training and

test data that include 7 and 16 types of botnet attacks, respectively . The data featured in the botnet dataset include

four groups: Byte- , Packet- , Time- , and Behavior-based . Finally, IoTID20 was developed for anomalous activity

detection for the IoT ecosystem. It was generated by including laptops, smartphones, Wi-Fi cameras, and other IoT

devices.
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