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Diatoms have an ability that is unique among the unicellular photoautotrophic organisms to synthesize an

intricately ornamented siliceous (biosilica) exoskeleton with an ordered, hierarchical, three-dimensional structure

on a micro- to nanoscale. The unique morphological, structural, mechanical, transport, photonic, and optoelectronic

properties of diatomaceous biosilica make it a desirable material for modern technologies. This review presents a

summary and discussion of published research on the metabolic insertion of chemical elements with specific

functional activity into diatom biosilica. Included in the review is research on innovation in methods of synthesis of a

new generation of functional siliceous materials, where the synthesis process is “outsourced” to intelligent

microorganisms, referred to here as microtechnologists, by providing them with appropriate conditions and

reagents.
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1. Introduction

The use of microorganisms, especially unicellular microalgae, is a novel approach in the design and synthesis of

new inorganic composite nanomaterials . Some microorganisms have the ability to synthesize unique mineral

composites with complex, hierarchical structures on a micro- to nanoscale . The single-celled photoautotrophic

microorganisms—diatoms (Bacillariophyceae)—have an astonishing variety of intricately ornamented siliceous

exoskeletons, called frustules or valves, with a unique three-dimensional structure (Figure 1 ) in more than

100,000 known species . Such a variety of unique, precise siliceous structures with orderly pore (areola) systems

makes them a desirable material for modern technologies .
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Figure 1. The unique structure of the diatom frustule. The images are 3D models .

The concept of using diatomaceous biosilica as an implementation material in modern technologies, especially in

nanotechnology, is relative new and was proposed in 1994 by Gordon R. and Drum R. W. . Since then, the

phenomenal ability of diatoms to synthesize unique three-dimensional structures with specific physicochemical

(optical, electrical, filtration, thermal, mechanical) properties from amorphous silica has held growing fascination for

biologists, chemists, and physicists . Currently, diatomaceous biosilica, due to its three-

dimensional, porous structure, wide availability, and the possibility of biosynthesis through the cultivation of diatoms

under artificial conditions, is one of the most frequently used substitutes for mesoporous silica materials in modern

technologies. These materials, despite their biocompatibility and large specific surface area , are difficult to

synthesize because of the necessity of considerable financial input, a large amount of energy, and an association

of toxic materials using .

The unique, hierarchically porous 3D structure of diatom frustules makes them an attractive source of solutions for

the development of modern material engineering. There are a wide range of possibilities for the use of such

materials, e.g., in the production of biosensors, optical devices, catalysts, semiconductors, effective adsorbents,

templates for nanolithography, and in designing drug carriers or bone implants . The range of

perspectives for the use of diatomaceous biosilica is shown in Figure 2.
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Figure 2. A range of possibilities to use diatomaceous biosilica.

2. Application

Diatomaceous biosilica can be successfully used as an electrode material for energy generation and storage, or as

photonic crystals . Diatom frustules can be used as microlenses, as they are able to focus light

below the diffraction limit, and their ability to accumulate high-intensity light can lead to the development of modern

solar cells . High thermal and mechanical resistance as well as unique optical properties make

diatomaceous biosilica an inspiration in the development of modern optoelectronic devices . However,

many of the possible applications for diatomaceous biosilica as an industrial material are limited by the chemistry of

the silica in diatom frustules. For this reason, considerable efforts have been made recently to modify the structure

of diatom frustules to make them more technologically functional, whilst preserving their unique shape and

morphology . An extremely exciting proposal for the modification of biosilica is its reduction to

pure silicon, without destroying its three-dimensional structure, which would be associated with new, broad

possibilities in the field of microelectronics . Promising results have been obtained using diatomaceous
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biosilica as a matrix in the chemical synthesis of nanomaterials . Umernura et al.   proposed using

fragmented diatomaceous biosilica as a matrix for luminescence in the liquid phase. The potential for placing

specific proteins, enzymes, or antibodies within the structure of diatoms could allow for the production of microchip-

sized hybrid biosensors, which would be a medical breakthrough .

Test results so far have indicated a great potential for the application of diatomaceous biosilica as a component of

solar cells, in place of expensive titanium dioxide . An extremely interesting but not yet fully developed

idea is the ability to modify the structure of diatomaceous biosilica. There are two basic methods for the

functionalization of diatoms . The first one is the in vitro method involving the attachment, via a condensation

reaction, of functional groups on the surface of the diatomaceous frustule after its purification, i.e., the removal of

the organic matrix of the diatomaceous cell. The second one is the in vivo method based on the stable

incorporation of the modifying element into the nanostructural architecture of diatomaceous biosilica during

cultivation . The in vitro method can be used to give magnetic properties to diatom frustules by adding iron

nanoparticles treated with dopamine , as well as to create antibody matrices that can be applied in such

techniques as immunoprecipitation . The functionalization of diatoms in vivo is possible when modifying

elements are added to the culture medium. This enables the incorporation of the doping element into the structure

of the diatom frustules. So far, a few publications report the ability of diatoms to metabolically introduce metal

oxides such as titanium or germanium into the structure of silica frustules .

There are also results of initial studies on the possibility of metabolic substitution of silicon atoms with nickel,

zirconium, tin, zinc, calcium, aluminum, iron, and europium in diatomaceous biosilica .
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