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Biomolecular condensates are membraneless organelles (MLOs) that form dynamic, chemically distinct subcellular
compartments organizing macromolecules such as proteins, RNA, and DNA in unicellular prokaryotic bacteria and
complex eukaryotic cells. Separated from surrounding environments, MLOs in the nucleoplasm, cytoplasm, and
mitochondria assemble by liquid—liquid phase separation (LLPS) into transient, non-static, liquid-like droplets that
regulate essential molecular functions. LLPS is primarily controlled by ATP-dependent post-translational
modifications (PTMs) that fine-tune the balance between attractive and repulsive charge states and/or binding
motifs of proteins. Aberrant phase separation due to the absence of adequate hydrotropic small molecules such as
ATP can cause pathological protein aggregation in diseases such as neurodegenerative disorders. Melatonin is a
potent antioxidant capable of protecting cardiolipin and membrane lipids raft domains from peroxidation to support
ATPase functionality and ion channel activities that may exert a dominant influence over phase separation in

biomolecular condensates during condensate coacervation or dissolution processes that are ATP-dependent.

melatonin biomolecular condensate neurodegenerative disorder
liquid—liquid phase separation ATP lipid raft post-translational modification mM6A
RNA

| 1. Introduction

Present in all cells, biomolecular condensates are membraneless organelles (MLOs) containing proteins,
ribonucleic acids (RNAs), and other nucleic acids 2. These micron-scale macromolecules that can assemble into
liquid-like droplets have been proposed to be the origin of life 2. Current cell and molecular biology reveal that
liquid—liquid phase separation (LLPS) is the driving force behind the assembly or dissolution of biomolecules in
energy-efficient, rapid, essential reactions to changing endogenous or exogenous conditions including stress
response B and signal transduction 4B as well as genome expression, organization, and repair [&l. LLPS creates
distinct compartments that enhance or restrict biochemical reactions by enriching or excluding biomolecules from
their environment . Increasing evidence associates diseases such as neurodegeneration and cancer with the

formation of protein aggregates from dysregulated, aberrant transitions in phase separation [EIRILY11][12]

Phase separation at its core is a thermodynamic process driven by the reduction or a negative change in global
free energy I3l | | PS is entropically unfavorable; therefore, multivalent protein—protein interactions that are
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energetically favorable may be necessary to offset energetic costs 4. Adenosine triphosphate (ATP) is the
molecule favored by most organisms for capturing and transferring free energy. During hydrolysis, ATP is
transformed into adenosine diphosphate (ADP) and inorganic phosphate (Pi). The change in free energy of -7.3
kcal/mol associated with this chemical reaction is used by cells to perform energetically favorable reactions [12],
including relevant post-translational modification (PTM) such as phosphorylation X8, ubiquitination L4[18! and
SUMOylation that may regulate condensate nucleation, composition, and growth 22129, |t js understood that most
proteins in the human proteome can undergo LLPS, assembling into dense liquid-like, reversible droplets under
most physiological conditions 21, Thermodynamic non-equilibrium processes facilitate the constant exchange of
substrates and information that allow these condensates to perform important biological functions 22, The phase
transition of these functionally relevant proteins from their native to droplet states are often mediated and stabilized
by ATP-dependent factors such as PTM and RNA. RNAs are critical architectural components that can fine-tune
biophysical properties such as viscosity and dynamics in the regulation of spatiotemporal distribution of
condensates [231124],

Aberrant phase separation leading to the pathological amyloid fibrillation of fused in sarcoma (FUS), TAR DNA-
binding protein 43 (TDP-43), tau, and a-synuclein (a-Syn} are now associated with neurodegenerative disorders
such as amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), Alzheimer’s disease (AD), and
Parkinson’s disorder (PD) [22128]1271[28] The timely dissolution of pathological amyloid fibrils may be dependent on
cellular levels of ATP, which has recently been identified as a biological hydrotrope 29—an amphiphilic molecule
that may behave as a surfactant B2 which can reduce tension between solute and solvent, and increase solubility

in an energy-independent manner.

| 2. ATP Regulates Biomolecular Condensates

At micromolar concentrations in cells, the hydrolysis of ATP phosphoanhydride bonds provides substantial free
energy to fuel chemical processes such as post-translational modifications that may maintain fluid phases or
facilitate phase separation by generating supersaturation gradients that can induce droplet segregation [12115](31]
(821 At higher physiological concentrations between 2 and 8 mM, ATP becomes a biological hydrotrope that can
solubilize proteins to prevent abnormal aggregation and the formation of pathological amyloid fibrils often
associated with neurodegenerative disorders such as Alzheimer’s disease (AD) [29. Recent extensive all-atom
molecular dynamics studies showed that at higher millimolar concentrations (150 mM), ATP prevented the
aggregation of amyloid-beta peptide AB;¢-, and disrupted prefibril formations 23, supporting earlier observations
of decreased ATP levels in the brain and whole blood of AD transgenic mouse models 4. Other experimental
studies determined that mechanisms such as the suppressed fibrillation of disordered protein by the adenosine
moiety of ATP leading to increased protein stability and reduced thermal aggregation may not be typical of
hydrotrope-type reactions. Instead, ATP could be viewed as a kosmotropic anion 32 that can increase the solubility

of the hydrophobic adenine part [2€: thus, the term “biological aggregation inhibitor” may be more appropriate 37,

Even though ATP is produced mainly in mitochondria, ATP levels in the mitochondrial matrix are significantly lower

than those found in the cytoplasm and nucleus (2829 \/oltage-dependent anion channels (VDACS) located in the
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mitochondrial outer membrane (MOM) 9 and adenine nucleotide translocators (ANTs) on the inner mitochondrial
membranes (IMM) 21142 facilitate the export of ATP into cytosol where ATP accumulation has been observed to be
the highest 3], The high physiological concentration of ATP in cytoplasm may be used to control the pathological
aggregation of macromolecules that coacervate as a result of transient interactions during LLPS in the cytoplasm
and nucleus #4431 A major hallmark of ALS/FTD is the presence of FUS inclusion in the cytoplasm. FUS are
prosurvivor molecules that re-localize from the nucleus to cytoplasm under stress conditions to form reversible,
survival-promoting stress granules via LLPS [“8l47]  Stress granules contain important ATP-dependent RNA
helicases that function as ATPases to hydrolyze ATP during assembly and disassembly 48, Stress granules could
not be formed without the presence of ATP, and the presence of ATP was required to maintain the liquid-like
behavior of assembled droplets B, A recent in vitro study showed that aggregate disassembly is also an ATP-

dependent process.

During metabolic stress such as nutrient deprivation that causes ATP depletion, cells compartmentalize and
sequester misfolded proteins into stress granules to protect cellular fitness. Budding yeast subjected to 0.02%
glucose starvation showed a 5-fold ATP decline to ~1.1 mM within 10 min, accompanied by a ~4.4-fold increase in
median aggregate diameter, whereas the addition of glucose restored ATP levels, quickly reducing aggregate size
and abundance back to control values 49, Mutants with abolished ATP hydrolysis failed to dissolve aggregates
even when placed back in 2% glucose solutions after starvation 9. In the same manner, ATP has been shown to
enhance the LLPS of FUS at low concentrations but dissolves FUS aggregates at higher concentrations B9,
Moreover, 8 mM of ATP complexed with Mg?* ions prevented the LLPS of FUS and dissolved previously formed
FUS condensates [22. The presence of ATP facilitates the essential phase transition of FUS into stress granule
droplets, yet prevents further transition into irreversible aggregation and the fibrillation of FUS to cause cytotoxicity
by binding to the RNA-recognition motif (RRM) domain of FUS, kinetically inhibiting the fibrillization of FUS B4,
Similarly, through binding to arginine-containing domains in TDP-43, ATP altered physicochemical properties to
induce LLPS, causing droplet formation at molar ratios as low as 1:100 (protein to ATP); by contrast, increasing
ATP concentrations could reduce droplet formation, with TDP-43 droplets completely dissolving at a molar ratio of
1:1000 2. Nevertheless, in order to completely dissolve the amyloid-beta peptide AB-42 associated with AD,

supraphysiological concentrations of ATP in excess of 100 mM were found to be necessary 22,

Tau is the major constituent of fibrillar tangles in AD. Phase-separated tau forms droplets that serve as
intermediates toward aggregation [28. Physiological concentrations of ATP at 0.1-10 mM enhanced the fibrillation
of 10 uM tau K18 (equivalent to 10-1000-fold molar ratio) by accelerating aggregation in a concentration-
dependent manner B2l through energy-independent binding to tau proteins B4, It may seem paradoxical that ATP
would enhance the formation of amyloids and prions that are associated with diseases. As a matter of fact, prion-
like mechanisms are functional biological processes ubiquitously present from bacteria to humans 2. The
nucleation and growth of amyloid fibrils in FUS, TDP-43, tau and a-synuclein are dependent upon intermolecular
interactions of intrinsically disordered regions (IDRs) and proteins (IDPs) such as prion-like domains and low-

complexity sequence domains 28!,
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Proteins that undergo LLPS often contain long segments that are intrinsically disordered and lack well-defined
three-dimensional structure BZ. The relatively low concentration of hydrophobic amino acids in IDPs enables the
rapid exchange between multiple conformations where condensates form without altering the affinity of binding
interactions during LLPS 81591601 Although the formation of biomolecular condensates can potentially accelerate
amyloid aggregation, condensates can also inhibit fibril formation by the sequestration of aggregation-prone, prion-
like IDPs. Biomolecular condensates derived from proteins associated with the formation of processing bodies (P-
bodies) prevented aberrant amyloid aggregation despite local increase in concentration of aggregate-prone
proteins 81, P-bodies are conserved eukaryotic cytoplasmic ribonucleoprotein (RNP) membraneless organelles
that regulate protein homeostasis in non-stressed cells through LLPS involving messenger RNAs (mRNAs) and
low-complexity sequence domains 621631641651 p_phodies respond to cellular stress, especially DNA replication
stress, by increasing their sizes and numbers B8187], The disassembly of P-bodies in yeast is an ATP-dependent
process involving ATP hydrolysis by DEAD-box ATPases [68l. Inhibition of DDX ATPase activity can disrupt the
disassembly of physiological MLOs such as P-bodies and stress granules £8169 To remain in functional states,
bimolecular condensates may require energy to support the continuous active restructuring and rearrangement of
molecular components. Insufficient or the depletion of ATP can directly impact the physical and functional

properties of biomolecular condensates [BHEB2I[70I[71]
2.1. Dimerized ATP Synthase/ATPase Require High-Curvature Lipid Domains

First isolated in 1960 278 F,F, ATP synthases are mostly localized in the inner membrane invaginations of
mitochondria 4, Eukaryotes and prokaryotes use four major types of ATPases localized in cell membranes to
release energy during hydrolysis of ATP for the maintenance of critical transmembrane ionic electrochemical
potential differences (2. In the ubiquitous intracellular powerhouses of eukaryotes, F;Fy ATP synthase is complex
V of the electron transport chain responsible for chemiosmotic oxidative phosphorylation (OXPHOS) that couples
ATP synthesis to the inner membrane proton gradient 87778 The ATP synthases of mammalian mitochondria
are usually arranged in rows of dimeric complexes of two identical monomers located at the highly curved apex of
deep IMM invaginations known as cristae 2. Dimerized ATP synthases are seven times more active than
monomers B9 Dimerization of ATP synthase may be a major determinant in cristae formation B because
extreme cristae membrane curvature is shaped by the self-assembly of ATP monomers into dimerized rows 2.
Inability to form dimers resulted in reduced or deformed cristae invaginations 83! that impacted ATP production
from decreased OXPHOS activity as a result of defective cristae morphology (485 Experimentally purified ATP
synthase reconstituted with membrane lipids revealed that dimerized rows of ATP synthases were formed only on
curved surfaces and not on flat membrane areas [B8. Extracellular F;F, ATP synthases have been observed to
translocate from mitochondria to lipid raft domains of various cell types, including plasma membranes of

gonadotropes (71, and the sarcolemma of muscle fibers (8],

2.2. Translocation of ATP Dimers to Lipid Rafts Are Cellular Responses to Stress and Stimuli

Biomolecular condensates adapt to changing endogenous or exogenous conditions B by continuously fine-tuning

biochemical reactions, enriching or excluding biomolecules from their environment [Z. The rapid translocation of

https://encyclopedia.pub/entry/14585 4/43



Melatonin: ATP Regulation in MLOs | Encyclopedia.pub

mitochondrial ATP synthase to lipid rafts may be integral to these adaptive responses because ATP functions not
only as a biological hydrotrope 22189 increasing the solubility of positively charged, intrinsically disordered proteins
(991 hut may act as a universal and specific regulator of intrinsically disordered regions (IDRs) capable of altering
physicochemical properties, conformation dynamics, assembly, and aggregation 44, in addition to providing
phosphates as an energy source to fuel post-translational modifications that regulate the fluctuation of biomolecule
phase separation during condensate formation B9 Fajlure to maintain nanoscopic lipid raft domains with
appropriate line tension and membrane elasticity 21 to functionally host dimerized ATPase 22 ATP synthase (8¢l

may contribute to aberrant phase separation, resulting in pathogenic protein aggregates in neurodegeneration 1]
and cancer 19112],

The ability of ATP synthase/ATPase to form dimerized rows on the IMM of mitochondria and other membrane
surfaces may be highly dependent upon membrane lipid composition 231 and curvature 81, Uncontrolled, excess
oxidative stress can cause lipid peroxidation 24 which induces pathological changes to membrane lipid
composition, including alterations of cardiolipin in IMMs [28I33] as well as changes in membrane curvature that
prevent optimal dimerization and the subsequent functioning of ATP synthase/ATPase 28871 |nsufficient or
depletion of ATP can directly impact the physical and functional properties of biomolecular condensates B132170
721 ATP is not only a biological hydrotrope capable of inhibiting protein LLPS and aggregation at high mM
concentrations; it has recently been observed to act as a universal and specific regulator of IDRs, altering their

physicochemical properties, conformation dynamics, assembly, and aggregation 441,

3. Melatonin Is a Potent Ancient Antioxidant That Protects
ATP Levels to Regulate the Formation and Dissolution of
MLOs

Melatonin (N-acetyl-5-methoxytryptamine) is a mitochondria-targeted molecule found in cells of all tested eukarya
and bacteria [28]. Effective distribution via horizontal gene transfers may explain the discovery of ancient homologs
of arylalkylamine N-acetyltransferase (AANAT), the enzyme responsible for the rhythmic production and release of
melatonin in bacteria, fungi, unicellular green algae, and chordates RIMIO0I0L] |n present-day vertebrates, it is
estimated that ~99% of melatonin is likely not produced in the pineal gland, nor released into circulation upon
pineal production 192 put is mainly synthesized and localized in mitochondria [293I104]  photosynthetic
cyanobacteria responsible for filling the earth with oxygen that led to the extinction of obligate anaerobes produce
melatonin 193I106] The presence of melatonin in primitive unicellular organisms including Rhodospirillum rubrum
and cyanobacteria, precursors to mitochondria and chloroplasts, respectively BI207I108][109] ' may have conferred
protection against endogenous and exogenous oxidative stress that could readily damage biomolecules and
disrupt ATP production at plasma membranes [203I109][1101111] Thjs ynique feature implies that melatonin may have

an intrinsic modulatory effect over phase separation in early organisms.

As in all eukaryotic cells of plants and animals, LLPS is also believed to be the organizing principle behind the
subcellular compartmentalization of membraneless organelles (MLOs) in prokaryotic bacteria 1121138l \here

condensate formation is tightly correlated with ATP levels. Impaired ATP hydrolysis from reduced ATPase activity in
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bacteria causes droplet formation by phase separation 114I115] Cyanobacteria, the only known prokaryote capable
of water oxidation 1181 has recently been shown to exhibit circadian rhythm in the formation and dissolution of
MLOs that remained soluble during daylight, but became reversible, insoluble condensates at night. The formation
of aggregates allows cyanobacteria to conserve energy when metabolic activities and ATP levels are lowered at
night LL7L18ILI9N[120] |t j5 therefore not unexpected that when ATP production was disrupted, insoluble aggregates
could be induced to form in cyanobacteria even during daylight by suppressing F;Fy-ATP synthase or uncoupling
OXPHOS with mitochondrial proton gradient inhibitors 1171,

The gene sequences of cyanobacteria ATP synthase subunits are extremely similar to those in chloroplasts 1211,
Embedded in the thylakoid membrane, both ATP synthase in cyanobacteria and chloroplasts (CFyCF;) control
transmembrane electrochemical proton gradients for the production of ATP [122l123]i124] - Similar to CL, which is
synthesized from phosphatidylglycerol (PG) in all organisms 123 PG is the primary phospholipid associated with
photosystem complexes that carry out electron transport reactions during oxygenic photosynthesis 128, Both CL
and PG are essential for maintaining the proper lipid composition that supports electron transport and ATP
production in eukarya and prokarya, although these lipids are easily subjected to damage via lipid peroxidation 23
(127][128][129][130][131][132] The antioxidant effects of melatonin and its metabolites become particularly meaningful
when the prevention of CL peroxidation by hydroperoxyl in mitochondrial membranes can affect the formation and
dissolution of biomolecular condensates (Figure 1).
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Figure 1. Schematic illustrating the regulation of biomolecular condensates by melatonin represented through
observations reported in antioxidant protection against lipid peroxidation to maintain membrane/lipid raft
composition/stability that serves to maintain adequate ATP levels in all cellular compartments to fuel, support, and
regulate post-translational/m®A modifications that may fine-tune RNA dynamics in the assembly and disassembly

of MLOs to prevent pathological aggregations in neurodegenerative disorders. LLPS: liquid—liquid phase
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separation; DDX: Dead-box RNA helicase; m6A: N8-methyladenosine; MLO: membraneless organelle; RBP: RNA-
binding protein; RNP: ribonucleoprotein; PTM: post-translational modification (See Abbreviations for additional

acronyms).

3.1. Melatonin Metabolite 3-OHM Inhibits Lipid Peroxidation by Hydroperoxyl
Radical

Melatonin and its secondary, tertiary, and quaternary metabolites actively scavenge potent free radicals [133][1101[134]
including hydroxyl radicals 133 singlet oxygen (381371 hydrogen peroxide 138 nitric oxide [139I14011141] gng
peroxynitrite anions 142 via different antioxidant mechanisms such as direct radical trapping in Type | antioxidant
reactions and inactivating hydroxyl radicals ("OH) through the sequestration of metal ions and deactivating "OH
during Fenton-like reactions in Type Il antioxidant reactions 243! |n addition, melatonin and its metabolites
collectively preserve the chemical integrity of biomolecules from oxidative stress via Type Il antioxidant cellular
repair processes and Type IV antioxidant reactions that can enhance antioxidant enzymes and inhibit pro-oxidant
enzymes 1431,

A recent study that analyzed the mechanistic interactions between melatonin and *OH employing density functional
theory found that one molecule of melatonin effectively scavenged two "OH radicals to produce the stable footprint
metabolite, cyclic 3-hydroxymelatonin (3-OHM) 1441 in perfect agreement with mechanisms reported in prior
experimental and theoretical studies [135][145][146][147] ' 3_OHM has been shown to react with hydroperoxyl radicals
("OOH) at rates 98.4 times faster than Trolox in aqueous solution 248l Trolox is a water-soluble, cell-permeable
analog of vitamin E with high radical scavenging potential often used as a yardstick for measuring antioxidant
capacities in vitro. Trolox resides mainly in the aqueous phase; therefore, it has been observed that Trolox and
other water-soluble antioxidants exhibit reduced scavenging activity if radicals are produced within hydrophobic
cores of lipid membranes 2481, Melatonin accumulates in all of the internal membranes of cells as well as other
hydrophobic sites [249: therefore, this antioxidant may be uniquely positioned for quenching lipid peroxidation by

*OOH and other free radicals that penetrate deep into lipid molecules.

3.2. Melatonin Is Preferentially Located at Hydrophilic/Hydrophobic Membrane
Interfaces

All biological cell membranes comprise amphipathic lipid molecules with hydrophilic heads and hydrophobic tails
that naturally form bilayers with headgroups oriented towards an aqueous environment and tails facing each other
(2301 The melatonin molecule is uncharged in the entire pH range 15 and, accordingly, in laboratory environment,
the “hydrophobic” molecule dissolved poorly in water 132 except when solubilized in pure aqueous medium by
specific methodology that polarizes the pyrrole ring to facilitate hydrogen bonding of the N—H group 153l The
unique ability to form strong H-bonds with hydrophilic lipid headgroups allowed nonpolar melatonin to be
preferentially located at hydrophilic/hydrophobic interfaces, with complete solubility observed at the interfaces
between polar and lipophilic nanodomains in reversed micelles 134, The presence of both hydrophilic and lipophilic

moieties in melatonin facilitates the scavenging of both aqueous and lipophilic free radicals 122, especially *OH
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(1351 3nd *OOH, the two most prevalent ROS responsible for the chain oxidation of unsaturated phospholipids 128

(157 in the membranes of cells and mitochondria [15811159]

3.3. Melatonin Metabolite Free Radical Scavenging Cascades Rescue Cardiolipin
from Hydroperoxyl Radicals ("fOOH)

Lipid peroxidation, a physiological process in all aerobic cells 289, is a cascading chain reaction that begins with
the abstraction of allylic hydrogen from adjacent lipid molecules by free radicals such as *OOH and ‘OH and
terminates with reactive aldehyde end products such as malondialdehyde (MDA) and 4-hydroxynonenal (HNE) [24]
(161][162][163]164] Both *OOH and *OH are derived from ubiquitous superoxide radicals (O,"") generated from the
one-electron reduction of oxygen (O,) that may be catalyzed by nicotinamide adenine dinucleotide phosphate
oxidase (NADPH oxidase) during respiratory bursts [183 and/or electron leakage during mitochondrial electron
transport (1881 Due to its low rate constant values below ~102 L-molt.s™1 [167] O,*~ behaves more similarly to an
unimpressive reductant (E°'(0,/0,"") = -0.33 V) than an oxidant (E*'(O,"/H,0,) = 0.93 V) 1E3I[168JIENL70] \yhich
reacts at a much slower pace with the tested phospholipids compared to *OOH 237174 Hydroperoxyl ("OOH or
HO,"), also known as a perhydroxyl radical, is a chemically active, protonated form of superoxide radicals (O5,"")
(1721 engaged predominantly as intermediates for the disproportionation of O,"~ into hydrogen peroxide (H,O,)
which then can further be transformed via Fenton's/Haber—Weiss reactions 73 into *OH, possibly the most
reactive and mobile species of oxygen that interacts with almost all molecules in cells 4273l Eyen though at
neutral pH *OOH exists primarily as the less reactive O,"", where the ratio of protonated *OOH to anionic O, is
~130:1 (less than 1%), *OOH can be a potent initiator of lipid peroxidation 2261157],

When reacting with phospholipids, the advantageous free energy profile of —8.5 kJ/mol free energy minimum
relative to the aqueous phase allowed *OOH to accumulate at lipid headgroup membrane—water interface at
concentration enhancement of over one order of magnitude 274, Multi-level atomistic simulations for interactions of
*OH, *O0H, and H,0, with polar headgroups of phospholipid bilayer revealed that all three species traveled deep
into the water layer to reach phospholipid biomolecules, oxidizing hydrophilic headgroups before hydrophobic tails
(1751 with *OOH staying adsorbed for the longest duration at headgroup regions 2741, The headgroup of CL is fully
ionized as a dianion in the physiological pH range 178 supporting its unique, optimal functionality as a “proton

trap” that promotes mitochondrial respiratory enzyme activities 177,

The strong negative curvature of cristae in the IMM is primarily sustained by the distinct molecular geometry of CL
with its smaller, elongated, conical-shaped, double-phosphate dianonic headgroups that increase lateral pressure
within the acyl chain regions and stabilize cylindrically curved, tubular cristae structures 1781791801 |n |grge
unilamellar vesicles (LUVs) comprising similar lipid properties as the IMM, the addition of a typical concentration of
25% negatively charged, dianonic CL lowered pH at the membrane interface to ~3.9, compared to the bulk pH of
6.8 normally found in mitochondrial intermembrane space 181 and 7.7 in the matrix space 182 in contrast, LUVs
with mono-anionic lipids only reduced the pH to ~5.3 at the membrane interface 18, The reduced pH at the
membrane interface from CL, linearly associated with increased proton (H*) concentration (~700 to ~800) 181 s

the reason why ATP production is doubled in mitochondrial models with cristae compared to those without 1831 At
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the same time, the increased H* concentration at membrane surfaces may cause accumulation of ‘OOH, the
protonated form of O, [172],

*OOH remains adsorbed at polar headgroups longer than other ROS tested 174I: therefore, a low pH at membrane
interface that is favorable for enhanced ATP synthesis could also initiate peroxidation cascades. As such, even
though the proper functioning of CL is prerequisite for optimal mitochondrial respiration and ATP production,

peroxidation of CL in mitochondria is an inevitable, natural, physiological process that can deteriorate
pathologically [1841[185](186][187][188][189][190][191][192][193][194][195][196] n|ess properly counterbalanced by the continuous

synthesis 1941 and/or uptake of high levels of melatonin. Melatonin is known for its role in maintaining systemic
energy homeostasis 227, |n the mitochondria of brown and beige adipose tissue, CL biosynthesis is robustly
induced upon cold exposure 198I199] hecause CL can bind tightly to uncoupling protein 1 (UCP1), stabilizing its
conformation and enhancing functionality 299, The ability of melatonin to protect CL from peroxidation may account
for the increased thermogenic response in Zicker diabetic fatty (ZDF) rats via the restoration of UCP1 mRNA
expression, increased mitochondrial mass and brown adipose tissue (BAT) weight, as well as enhanced
mitochondrial OXPHOS activities in complex | and IV [201],

3.4. Melatonin Antioxidant Cascades May Inhibit NLRP3 Prionoid-Like Aggregation in an ATP-
Dependent Manner

Cardiolipin (CL) is a mitochondria signature lipid distinctly attracted to membrane lipid domains with
strong negative curvatures, such as the apex of IMM cristae [292203] C| js often externalized to the
outer mitochondrial membrane (OMM) upon mitochondrial distress from ROS attacks [20411205]
whereas oxidized CL in OMM initiates apoptotic signaling processes 2% that can lead to opening of
the mitochondrial permeability transition pore (mPTP) and the release of cytochrome ¢ (Cyt c) [297]
[208] Externalized CL, whether oxidized or not, becomes an essential signaling platform that binds
and interacts with important mitophagic, autophagic, and inflammatory enzymes 29511209 " incjuding
Beclin 1 (2201 {Bjd, Bax [298l211] caspase-8 [212 and the NLR pyrin domain containing 3 (NLRP3)
inflammasomes 2181, A major source of extremely inflammatory cytokines IL-1f and IL-18 [214]
NLRP3 inflammasome is a phase-separated supramolecular complex that mediates immune
responses upon the detection of cellular stress and dysfunction [218l[2161217] The activation of the
NLRP3 inflammasome in macrophages is induced by oxidized phospholipids (218! whereas the
docking of externalized CL to NLRP3 inflammasome primes its assembly and subsequent activation
in mitochondria 2181 as well as mitochondria-associated membranes (MAMSs), a region comprising

highly specialized proteins which is tethered to the endoplasmic reticulum (ER) [21911220]

Melatonin is a potent antioxidant that has been shown to inhibit CL peroxidation in mitochondria, preventing mPTP
opening and Cyt ¢ release [221] by inhibiting peroxidation cascades initiated by specific ROS that accumulate in lipid
headgroups at membrane-water interfaces 74 (Figure 1). The suppression of oxidative stress and lipid
peroxidation may halt the externalization or oxidation of CL, effectively preventing potential pathological

interactions with MLOs such as a-syn and the NLRP3 inflammasome. The interaction between pathological a-syn
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oligomers and externalized CL can result in increased ROS, lipid peroxidation, and mitochondrial dysfunction;
therefore, it is not surprising that melatonin has been demonstrated to block a-syn fibril formation and
oligomerization, decreasing cytotoxicity in primary neuronal cells 2221, as well as rescuing impaired mitochondrial
respiration induced by a-syn in Saccharomyces cerevisiae under ROS attack 223, The NLRP3 inflammasome must
be primed by externalized CL upon ROS stimulation before activation 2941213112191 The regulation of the next phase
where the NLRP3 inflammasome transitions into stable, prionoid-like complexes is mediated by DDX3X, one of the
ATP-bound forms of DEAD-box RNA helicases responsible for the scaffolding of prionoid, self-oligomerizing specks
known as apoptosis-associated speck-like protein containing a C-terminal caspase recruitment domain (ASC)
which cannot be easily disassembled once they are formed [2241225]1226] (Eigyre 2).
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Figure 2. Overview of melatonin regulation of NLRP3 inflammasome (NLRP3) formation, assembly and activation:
(A) Summary of melatonin and metabolite antioxidant cascade inhibiting the initiation and propagation of cardiolipin
(CL) peroxidation, effectively terminating the CL peroxidation cascade; (B) Oxidized CL is externalized from the
cristae/inner mitochondrial membrane (IMM) to the outer mitochondrial membrane (OMM) where it docks and
primes NLRP3 inflammasome assembly prior to activation in mitochondria; (C) DDX3X, an ATP-dependent DEAD-
box RNA helicase, is the mediator that selects the formation of “Pro-Survival” stress granules or the transition of
the NLRP3 inflammasome into “Pro-Death”, stable, prionoid-like complexes. The successful formation of stress
granules is also dependent upon the availability of ATP and RNA, both of which may be regulated by melatonin

(See Abbreviations for additional acronyms).

ATP-dependent DEAD-box RNA helicases (DDXs) are ATPases that post-translationally regulate
RNA-containing phase-separated organelles in prokaryotes and eukaryotes [2271228] DpDXs promote
phase separation in their ATP-bound form, but can also release RNA and induce compartment
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turnover using ATP hydrolysis. Inhibition of DDX ATPase activity can disrupt the disassembly of
physiological MLOs such as P-bodies and stress granules 8159 (Figure 1). Phosphorylation is one
of the most important PTMs that can control the assembly/disassembly of MLOs 229 as well as
stabilize or destabilize MLOs including G bodies 239 and p53 2311, Cells rely on phosphorylation as
rapid, reversible responses to different stimuli by changing the physicochemical properties of
proteins during phase separation multivalent interactions 9232 phosphorylation establishes
covalent bonds between phosphoryl and amino acid hydroxyl groups using the terminal phosphate
group in ATP [2338] The ATP-dependent DEAD-box helicase 2271 DDX3X responsible for initiating
NLRP3 inflammasome aggregation is dependent upon phosphorylation-associated IFN promoter
stimulation [224112341[235]236] \When the conserved, eukaryotic, integrated stress response (ISR)
pathway is activated by external stress stimuli including hypoxia, nutrient deprivation, viral infections,
as well as intrinsic ER stress [237] the phosphorylation of eukaryotic translation initiation factor 2
alpha (elF2a) on Ser51 [23811239] triggers the formation of stress granules as adaptive homeostatic
responses to promote survival and restore homeostasis [2401241]242]243] |t js presently unknown
what prompts DDX3X to select the aggregation of pro-survival stress granules over pro-death
NLRP3 inflammasomes or vice versa [2241234] |t would not be unreasonable to assume that an
excessive oxidative local environment with pathological, enlarged lipid rafts (inflammarafts) [24411245]
in membranes could exert a decisive influence over the selection process (Figure 2).

The activation of the NLRP3 inflammasome is now associated with major neurodegenerative disorders such as AD,
PD and ALS, where positive correlations have been found to exist between NLRP3 levels and abnormal protein
aggregations such as A and a-Syn, whereas the inhibition of the NLRP3 pathway attenuates pathological protein
aggregations 2481, Melatonin inhibited NLRP3 inflammasome activation and reduced the aggregation of ASC
specks in the mice hippocampus with major depressive disorder induced by inflammatory liposaccharides [247;
melatonin also inhibited the formation of hypoxia-induced inflammasome protein complexes and reduced the
aggregation of ASC specks in macrophages of Sugen/hypoxia pulmonary arterial hypertension (PAH) mouse
models (228 Melatonin attenuated the progression of intervertebral disc degeneration in vitro and in vivo by
reducing mitochondrial ROS products to inhibit NLRP3 inflammasome priming and activation, effectively
terminating pro-inflammatory cytokine expression 249, The ability of melatonin to prevent the opening of mPTP and
release of Cyt ¢ 221l inhibit NLRP3 inflammasome priming, activation, and ASC speck aggregation 2472481 p|ock
a-syn fibrillation 222 and improve mitochondrial respiration 223 could be directly related to its ability to stabilize
nanoscopic lipid raft domains and suppress lipid peroxidation, which can alter the composition and molecular

structures of lipid rafts.

During lipid peroxidation events, oxidized moieties were found to mainly reside close to the lipid headgroups
forming hydrogen bonds with water. These oxidized lipids can perturb membrane bilayer structures and modify
membrane properties, including decreasing the membrane fluidity [2302511[252](253] The preferential location of
melatonin in bilayer lipid headgroups allows dynamic interactions that lead to reductions in bilayer thickness and
increased bilayer fluidity [254112551[256] Eykaryotes and prokaryotes use ATPases localized in cell membranes and

lipid raft domains to produce and release ATP energy [[2l12571[25811259]: therefore, increased ATPase activities from
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enhanced membrane fluidity (2892611 can impact how ATP interacts with phospholipids in bilayers 2621 and
modulate the LLPS of MLOs formed at membrane surfaces 44, Moreover, lipid peroxidation is believed to be
associated with the reduction in mitochondrial membrane fluidity during aging in animals 263, Membranes
themselves can affect local protein concentrations 2641 where high-curvature lipids that form rafts may attract
specific proteins that form aggregates to further enhance membrane curvature [283][2661[267][268] |ncreasingly,
neurodegenerative diseases such as AD are viewed as membrane disorders 269 The size of MLOs that aggregate
at membrane surfaces can be tuned through PTMs such as phosphorylation, which is ATP-dependent (279, The
amount of ATP available at membrane surfaces and cytosol drives the formation, tuning, and dissolution of MLOs,

and is regulated by oxidative-stress-sensitive ion channels that reside in lipid rafts (Figure 1).

3.5. Melatonin Maintains a High Cytosolic ATP:ADP Ratio through the Optimization of VDAC-
CYB5R3 Redox Complexes in Lipid Rafts

Lipid rafts are phase-separated regions in lipid bilayers responsible for important biological functions including
signal transduction 221272 a5 well as the trafficking and sorting of proteins and lipids 2232741 The fact that lipid
rafts are also important redox signaling platforms that assemble, recruit, and activate redox regulatory multiprotein
complex NADPH oxidase 27312761 and host the quintessential plasma membrane redox enzyme complex VDAC-
CYB5R3 27712781 emphasizes the relevance of melatonin as an antioxidant in the protection and stabilization of

lipid raft domains.

Nanoscopic transient lipid raft domains in biological membranes are formed by phase separation in response to
external stimuli 27112722791 Eyen though cells may alter lipid constituents to control the composition and size of
lipid rafts (289 the propagation of molecular stress, lipid raft rattling dynamics and relaxation are some of the basic
mechanisms underlying phase separation on the molecular level 281 The presence of hydrophobic molecules
such as melatonin can modulate viscoelastic dynamics through the accumulation and propagation of stress in
lipid—lipid interactions [28112821 Adding melatonin to membrane models led to a breakdown of out-of-phase
membrane displacement patterns and the disruption of the vibrational landing platform of lipid biomolecules at the

water—-membrane interface, effectively slowing the permeation of ROS and other small molecules [281I133],

In 2005, melatonin was first observed to induce phase-separation in DPPC lipid bilayers [22%: recently, melatonin
has been observed to modify lipid hydrocarbon chain order to promote phase separation in ternary membrane
models 283 Due to a preference to localize at membrane interfaces 134 melatonin can form strong hydrogen
bonds with membrane lipid anionic headgroups that could significantly modulate lipid acyl chain flexibility and lipid
dynamics 259 Melatonin is able to directly interact with cholesterol 2841 and displaced cholesterol due to
competitive binding to lipid molecules, increasing disorder in the Ly phase to drive cholesterol into the ordered
L, phase [283], These subtle changes in lipid nanodomains can profoundly affect amyloid processing at membrane
sites. AB1_40 and AB1_4» peptides are known to interact strongly with negatively charged lipids by binding to anionic,
negatively charged membranes [2851(2861[287][288](289] |ncreasing cholesterol content lowered the surface charge of

lipid membranes in saline solution from positive to negative 229, Although cholesterol is an indispensable
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constituent of lipid rafts 2712911 jts electrostatic properties altered interactions of charged or polar biomolecules on

lipid membrane surfaces and attracted the targeted binding of AR deposits at lipid membranes [2921293]294][295]

Local variations in melatonin concentration also affected the re-ordering of lipids in membranes. At 0.5 mol%
concentration, melatonin was documented to penetrate lipid bilayers to form fluid domains that enriched lipid
membranes where melatonin molecules aligned parallel to phospholipid tails with the electron-dense regions
slightly below hydrophilic headgroups; however, at 30 mol% concentration, melatonin molecules aligned parallel to
the lipid bilayer, close to the headgroup regions where one melatonin molecule was associated with two lipid
molecules to form an ordered, uniform, lateral membrane structure distributed evenly throughout the membrane
model 2551, variations in local concentration and conformational changes in melatonin molecules can directly

impact the lipid phase transition, line tension, size, health, and functions of lipid rafts.

Present in all eukaryotes 296 CYB5R3 encodes for a NADH-cytochrome b5 reductase 3 flavoprotein that is
engaged in the one-electron transfer from NADH to cytochrome b5 or plasma membrane coenzyme Q, producing
NAD* as a result [227298] The soluble isoform of CYB5R3 is exclusive to erythrocytes 299 whereas the
membrane-bound isoform is anchored to MOM, ER, and plasma membrane lipid rafts [2781300]301] ‘\mportantly, the
OMM-bound CYB5R3 enzyme, ubiquitously expressed in all mammalian cells, is functionally attached to the

voltage-dependent anion channel 1 (VDAC1), one of the most prevalent proteins located in the OMM [2021[303]

Originally known as mitochondrial porin after its identification in yeast (1985) %4 and humans (1989) 3951 VDAC
was subsequently observed as a resident protein of lipid rafts in the plasma membranes of animal hearts, brains,
and lungs %! from different human cell lines, including epithelial cells, astrocytes, and neurons [B9ZI3%8] Aperrant
lipid composition in neuronal lipid rafts disturbs physiological VDAC protein interactions that can affect the opening
and closing of VDAC channels, resulting in oxidative stress and neuronal impairments prominent in most AD
pathologies 97, The force-from-lipid principle dictates that the opening and closing of membrane embedded
channels can be propelled by the mechanical properties of surrounding lipids [BOBIOIBINBIZ gng their
composition. Changes to raft thickness, curvature and elasticity 12! as a result of lipid peroxidation can therefore

affect physiological functions of the VDAC and CYB5R3 redox complex.

CYB5R3 enzymes form large redox centers in lipid rafts that enhance mitochondrial respiration rate and ATP
production, albeit resulting in increased production of ROS [278300I301] Qyer stimulation and clustering of CYB5R3
induced oxidative stress-mediated apoptosis of cerebellar granule neurons 14l Independent of respiratory chain
activities, the ascorbate-dependent NADH: cytochrome ¢ oxidoreductase oxidation of NADH at CYB5R3 centers in
lipid rafts is also a major source of extracellular superoxide [B93I[815][31613171[318] that can initiate lipid peroxidation. In
Wistar rats, the deregulation of CYB5R3 promptly triggers apoptosis due to the overproduction of superoxide
anions at neuronal plasma membranes 27818151 Excess NADH due to CYB5R3 redox dysfunction can close
VDAC, suppressing OXPHOS and increasing glycolysis 3931319 \yhereas the opening of VDAC also elevates ROS
from increased OXPHOS activities “9. As the most abundant protein in the MOM, VDAC is regarded as a dynamic
regulator of mitochondrial functions, interacting with over 100 proteins in health and disease 229, VDAC opening is

believed to globally control mitochondrial metabolism and ROS formation, modulating mitochondria and cellular
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bioenergetics #9321 Nevertheless, the question of whether apoptosis is associated with the opening (222 or
closure 8231324 of VDAC has been highly debated 323, further emphasizing the important role of this protein in the

regulation of cell life and death [3201326],

VDAC is the gatekeeper which controls the export of ATP out of mitochondria into cytosol and the import of
essential respiratory substrates such as ADP and Pi into mitochondria [2231327]: therefore, VDAC opening may be
instrumental in determining the fate of MLO formation, regulation, and dissolution. ATP is not only a biological
hydrotrope capable of inhibiting protein LLPS and aggregation at high mM concentrations, but it has recently been
observed to act as a universal and specific regulator of IDRs capable of altering physicochemical properties,
conformation dynamics, assembly, and the aggregation of MLOs 4. Not only is the preservation of lipid raft
structure and composition essential for maintaining specific ion channel properties 224, the amount of cytosolic

ATP is dependent upon mitochondrial synthesis and the integrity of CL enriched raft-like lipid domains in
mitochondria [2771(328][329](330]

The mitochondrial electron transport chain is a major ROS-generating site where complex Il and mitochondrial
glycerol 3-phosphate dehydrogenase can produce large amounts of redox signaling molecules such as superoxide
and hydrogen peroxide to the external side of the IMM as well as the matrix 1661331l Bjs-allylic methylenes and
abundant double-bonds in CL lipid chains are vulnerable targets of ROS attacks [1841186[3321[333]: therefore, the lipid
monolayer leaflets facing the crista lumen enriched in CL in mitochondria 293 may be subject to intense
peroxidation events. Peroxidized CL could not support mitochondrial OXPHOS enzyme activities (18413341 |eading

to the depletion of ATP 183 that can potentiate and exacerbate the aggregation of pathological MLOs.

Melatonin is an ancient, potent antioxidant that protects lipid nanodomains from peroxidation caused by excess
oxidative stress. The addition of micromolar concentrations of melatonin to rat heart mitochondria dramatically
inhibited CL oxidation by tert-Butylhydroperoxide (t-BuOOH), a peroxidation promoting peroxide, reversing
cytochrome c release, matrix swelling, and proton motive force (AW) collapse in treated cells 221, The melatonin
molecule is uncharged in the entire pH range 234 and contains both hydrophilic and lipophilic moieties that support
its easy accumulation in all internal membranes of cells as well as other hydrophobic sites 15512491 The exogenous
supplementation of melatonin in rodents results in dose-dependent increases in all subcellular compartments, with
lipid membranes exhibiting 10-fold increases compared to mitochondria (2221, The presence of both hydrophilic and
lipophilic moieties in melatonin not only facilitates the efficacious scavenging of both aqueous and lipophilic free
radicals (1221 but also places the molecule in a unique position during evolution to protect membrane lipids from
oxidative damage and potentially regulate MLOs that form at membrane surfaces in an ATP-dependent manner
(Figure 1).

Melatonin protects the functionality of the VDAC-CYB5R3 complex by reducing oxidative stress, lowering ROS
that may induce lipid peroxidation, which can alter raft composition, thickness, curvature and elasticity 213 that
may impact VDAC ion-channel opening/closure according to the force-from-lipid principle [E0[E10I311]i312] \yDAC
expressed in the plasma membranes of HT22 mouse hippocampal neuronal cells were quiescent under control

conditions with normal ATP and an absence of apoptotic signals. Serum deprivation increased ROS and induced
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VDAC opening in the plasma membranes of hippocampal HT22 cells, resulting in mitochondrial dysfunction and
increased apoptosis and autophagy. HT22 cells pre-loaded with 200 uM melatonin prior to serum deprivation did
not exhibit VDAC activities. In the same manner, the addition of 4 mM ATP blocked the activation of VDAC
channels 3361 with the implication that melatonin was able to maintain optimal VDAC functioning in an ATP-

dependent manner.

3.6. Melatonin May Regulate Glycolytic G Bodies by Increasing ATP

The theoretical maximum of ATP calculated from simultaneous measurements of extracellular acidification and
oxygen consumption indicated that OXPHOS ATP production was close to or more than 16 times above glycolysis,
at 31.45 ATP/glucose (maximum total yield 33.45) and 2 ATP/glucose, respectively 337 As early as 2002,
melatonin was found to increase mitochondria OXPHOS activity and elevate the production of ATP [338] Recent
experimental and theoretical studies have presented different mechanisms explaining how melatonin may function
as a glycolytic, such as stimulating the SIRT3/PDH axis in vitro to reverse the Warburg phenotype in lung cancer
cells (232 converting cells to a healthy phenotype by inhibiting hypoxia-inducible factor-1a to encourage OXPHOS
over glycolysis induced by hypoxic conditions 249 downregulating pyruvate dehydrogenase kinase (PDK) to
increase acetyl CoA synthesis [341l342] or elevating a-ketoglutarate (a-KG) levels in macrophages to promote M2
polarization that favors OXPHOS over glycolysis [2431(344],

Interestingly, in Saccharomyces cerevisiae and human hepatocarcinoma cells challenged with hypoxic stress, the
non-canonical RNA-binding proteins in glycolytic enzymes have been observed to promote phase separation (243
that facilitate and maintain the assembly of glycolysis enzymes into cytoplasmic, membraneless glycolytic G bodies
that increased glycolytic output during hypoxia 239, Melatonin is able to increase ATP concentration in cells 201
[338][339]: therefore, the switch between OXPHOS and glycolysis could possibly be part of the effect where high ATP
concentration dissolves MLO aggregations. Molecular dynamics simulation experiments revealed that the
propensity for self-aggregation enhanced the role of ATP as a hydrotrope, preferentially binding to polymers to
unfold hydrophobic macromolecules and disrupting the aggregation process of hydrophobic assemblies via the
introduction of charges to the macromolecules 28], These results may explain previous observations where a high
cytosolic ATP:ADP ratio readily suppressed glycolysis, whereas the closure of VDAC channels resulting in lower
ATP:ADP ratios in cytosol activated glycolysis in vitro 242, Alterations to the glycolytic pathways are often observed
during the early stages of neurodegenerative diseases where mitochondrial dysfunction and reduced ATP levels
may contribute to protein aggregation 248 Increasingly, the pathogenic aggregation of MLOs such as stress
granules, p53, FUS, TDP-43, and tau exhibiting dysregulated LLPS is believed to play a major part in the

development of neurodegeneration and cancer [12][3491[350][351]

The relationship between melatonin and ATP is likely an ancient one that might date as far back as ~4 billion years
ago when a proposed gene duplication event at ~3.5 Ga involving CP43 and CP47, enzymes unique to
photosystem Il (PSIl), marked the beginning of water oxidation (1181, Regulation of the synthesis and degradation of
the evolutionarily conserved PSII D1 reaction center is mediated by post-translational RNA modulations [3521[353](354]

and the presence of ATP %8l jn a light-dependent manner, where synthesis and/or degradation is induced by light
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but ceased in the dark. Unlike animals (2281, melatonin in plants is increased by the presence of light 5713581 gnd
treatment with melatonin enhanced the synthesis of PSIl D1 reaction centers in tomato seedlings under salt stress
(3591 cyanobacteria, the only known prokaryote capable of water oxidation 118 which also produces melatonin [0
(20681 'has recently been shown to exhibit circadian rhythm in the formation and dissolution of MLOs that remained
soluble during daylight, but became reversible, insoluble condensates at night in an ATP-dependent manner 117:
therefore, it is not unreasonable to hypothesize that the relationship between melatonin, MLOs, and ATP was
already in existence at ~3.5 Ga. The presence of melatonin in primitive unicellular organisms including
Rhodospirillum rubrum and cyanobacteria, precursors to mitochondria and chloroplasts, respectively [22[107][108]
(1091 may have conferred protection against endogenous and exogenous oxidative stress that could readily
damage macromolecules and disrupt ATP production at membrane lipid domains L0ILIOILLL This unique feature
implies that melatonin may have an intrinsic modulatory effect over phase separation, not only in early but present-
day organisms (Figure 1).

| 4. Conclusions

The physiological and pathological functions of biomolecular condensates in health and disease may be shaped by
powerful, complex, interdependent relationships between membraneless organelles, membranes/lipid rafts, ATP,
and most of all, stress and its timely resolution. Melatonin’s intimate association with each of these decisive
influencers may position the potent, ancient antioxidant as an important mediator of the phase separation of
condensates in health and disease via principal ATP-dependent post-translational mechanisms and regulation of
ATP levels in mitochondria and cytoplasm (Figure 1). This novel theoretical review highlights the important
connections between melatonin and ATP in the regulation of biomolecular condensates with the intention to spur
further research interest and exploration in the full, multi-faceted potential of melatonin that may provide solutions

and answers to existing and future challenges and questions in this exciting and promising field of study.
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