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In any membrane filtration, the prediction of permeate flux is critical to calculate the membrane surface required,
which is an essential parameter for scaling-up, equipment sizing, and cost determination. Permeate flux prediction
is an essential parameter in membrane performance evaluation and the projections for scaling-up from laboratory

to the pilot plant or the industrial scale.
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| 1. Introduction

Membrane processes have become major techniques in the food industry over the last few decades, thanks to

their ability to provide gentle treatment of products at low-to-moderate temperatures.

Membrane applications in the food industry have focused on separation, fractionation, purification, clarification, and
concentration of several food products and by-products such as whey, milk, wine, beer, vinegar fruit, and vegetable
juices @, Typical advantages over conventional separation systems include high separation precision, better
selectivity, operation at room temperature, no chemical damage, high automation, easy operation, energy saving,
reduced cost, comprehensive utilization of resources, and reduced pollution. For these reasons, membrane
processes are often recognized as the best available technology (BAT) in the food industry 2=l Among
pressure-driven membrane processes, ultrafiltration (UF) has been extensively applied in the treatment of industrial
effluents BIBIAEBIRIL ojl-based emulsions LHL2USI14] piglogical macromolecules ERIL8ILT  mjlk 18112920 gygar
cane [2122] extracts of soybean flour (23, clay suspensions 24, black kraft liquor (22!, and fruit juices [28](271[28]129][30]
[311[32][331[34](35][361137] among others. Within the fruit juice industry, bergamot, kiwifruit, and pomegranate have great
importance in the market, not only for their volume of production, but also because they are characterized by a high
concentration of phytochemicals which are recognized to be associated with antioxidant activities within others.
Bergamot (Citrus bergamia, Riss0) is an evergreen tree almost exclusively grown on the lonian and Tyrrhenian
Coast of Reggio Calabria Province (South Italy) with a production of 18,750 tons in 2017 28l representing a
significant economic benefit. Bergamot has been mainly cultivated to extract essential oils with applications in food,
cosmetic and pharmaceutical industries B2 because of their high content of phytochemicals such as flavanone
glycosides, limonoids, and quaternary ammonium compounds, all health-beneficial biomolecules 224, On the

other hand, Bergamot juice is considered a residue for its bitter taste; however, this juice is characterized by a large

https://encyclopedia.pub/entry/10431 1/10



Permeate flux prediction | Encyclopedia.pub

guantity and variety of nutraceuticals such as naringin, neoeriocitrin, neohesperidin, rutin, neodesmin, rhoifolin, and
poncirin with demonstrated health implications 28], Kiwifruit is another fruit with a high content of phytonutrients,
including carotenoids, lutein, phenolics, flavonoids, vitamin C, and chlorophyll, all of them with strong antioxidant
activity BLI32I331142]: therefore, it offers benefits for specific health conditions and, consequently, it has a great
potential for industrial exploitation. Italy, as the major producer worldwide, has a production of 330,000 tons/year
(corresponding to 33% of the world production) principally in the regions of Latium, Emilia-Romagna, Piedmont,
and Apulia 2. Pomegranate (Punica granatum L.) is located in many different geographical regions, including
tropical and subtropical regions. The leading producer locations include Mediterranean countries, India, Iran, and
California 48], Since several authors reported the therapeutic benefits of its consumation including antioxidant,
antimicrobial, anti-carcinogenic, and anti-inflammatory properties, increased interest has been garnered for this
fruit 44, Polyphenolic compounds, including ellagotanins, anthocyanins, ellagic acid, and minerals, potassium,
magnesium, and copper, are associated with a beneficial effect on health. The global pomegranate market was
valued at USD 8.2 billion in 2018 and is expected to reach USD 23.14 billion by 2026 at a Compound Annual
Growth Rate (CAGR) of 14.0 percent. Its widespread popularity drives increasing demand for pomegranate and its
derivatives (such as pomegranate powder, pomegranate juice, functional beverages) as well as other

pomegranate-derived products as a functional food and a source of nutraceuticals 22!,

Regarding membrane processes, permeate flux in UF is one of the most critical parameters for evaluating
membrane performance. Indeed, the evaluation of permeate flux, usually expressed as volume (or weight) per unit
membrane area per unit time, is a critical issue in the projection of scaling-up from experience at the laboratory
scale to pilot or industrial plants for a specific volume treatment requirement 48, Thus, it is a crucial task to forecast

permeate flux in long-term operations.

| 2. Theory

Regarding filtration, Carman 48147 was the first one to propose a relationship for an aggregate cake, where the
prediction of permeate flux is related to the structure parameters of the cake layer, including mean particle size and

thickness 8. This relationship is known as the Carman—Kozeny equation.

In a pressure-driven filtration process such as UF, the pure solvent flux (commonly water) through a porous

membrane is directly proportional to the applied hydrostatic pressure, according to:

AP ()
fs B

where J,, is the solvent permeate flux, AP is the transmembrane pressure, L, is the membrane permeability, i, is

the solvent viscosity, and R, is the intrinsic membrane resistance.

Despite the importance of the critical flux theory as an operational parameter, the majority of the
models developed for UF addressed in this review are focused on the prediction of permeate flux
over operating time, but they are not focused on the determination of the limiting point or maximum
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permeate flux. In this regard, from the Carman-Kozeny equation until these days, several models
have been developed as a tool to both describe the reduction in flux and to understand different
phenomena involved in membrane filtration, since the understanding of how these factors affect
membrane performance is crucial for equipment design [79,80]. Ohanessian et al. [81] mentioned
that membrane models available in the literature could be classified into two categories: the end-use,
such as permeate flux prediction, and the understanding of the fouling phenomenon. Some authors
categories: (i) concentration polarization models; (ii) osmotic pressure models; (iii) resistance-in-
series models; (iv) fouling models, based on the classical film theory model; and (v) non-
phenomenological models. Figure 1 summarizes these categories, including models used to predict
permeate flux in both MF and UF processes.

= Gel polarized models

.| (understanding of fouling - Osmatic pressure models
phenomena) - Resistance-in-series models
- Fouling models
UF models
>,
Dread-end
filtration Res Surface M
Non-Phenomenological . J " Rspasve Sarince st dcony. | FSM)
TR = Dynamic models
{correlations between factors - Astificial seural networks (ANNs)
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= ) Cross-Flow
filtration
—

Figure 1. Classification of models developed for MF and UF processes.

| 3. Analysis of Model Goodness-of-Fit

The categories described previously comprised phenomenological, empirical, semi-empirical, and non-
phenomenological models (e.g., statistical tools) developed between 1961 and 2019. In order to compare the
capacity of permeate flux prediction, some models for each category were selected and tested with data of three
fruit juices clarified by UF. The criteria used for the model selection include a series of items in the following order

of importance:

(i) Type of configuration: models tested or developed for cross-flow filtration of fruit juices were
selected.

(i) Validation: models with more than one validation were considered.
(i) The number of citations: models with a high number of citations were selected in order to take
into account the scientific impact of each model.
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(iv) Membrane module: models tested or developed in fruit juice processing with hollow fiber and
tubular membranes were selected.

(v) Mathematical complexity: Considering the easy application of the models, the most
straightforward models were preferred.

Based on these criteria, the models selected were: Shear-induced diffusion by Davis ¥ for concentration
polarization category; models described by Keden and Katchalsky B2 and Wijmans et al. B were selected for
osmotic pressure; Hagen-Poiseuille and Boundary gel law described by De et al. 52 were selected for the
resistance-in-series category; models described by Ho and Zydney 2. Mondal et al. 24 and the dynamic model by
Song 22 were chosen for the fouling category; and models described by Yee et al. 58 and Ruby-Figueroa et al. B4
were selected within the non-phenomenological category. Simulations were performed using experimental data
obtained in the UF of three different fruit juices processed for 10 h, as reported by Ruby-Figueroa et al. 27 |n Table
1, characteristics of the juices, membrane types, and operating conditions are reported. Variables such as
viscosity, bulk concentration, permeate volume, osmotic pressure, the resistance of the polarized layer, gel

concentration, and gel thickness were obtained using a series of correlations available in the literature.

Table 1. Description of the UF membrane, operating conditions, and physicochemical characteristics of the fruit

juices analyzed in this work.

Bergamot Kiwi Fruit Pomegranate
DCQ 11-006C Koch ﬁ:llf\ine;éior ™ FUC 1582 Reference
Membrane characteristics
and operation
Membrane material Polysulfone Polyvinylidene fluoride Triacetate cellulose i
(PS) (PVDF) (CTA)
Configuration Hollow Fiber Tubular Hollow Fiber -
Area (m?) 0.16 0.23 0.26 -
MWCO (kDa) 100 100 150 -
AP (bar) 1 0.85 0.6 :
Temperature (°C) 20 25 25 -
Flow (Lh™) 114 800 400 -
Porosity (dimensionless) 0.0057 1.1 0.0007
Tortuosity (dimensionless) 3 3 0.03 -
Membrane thickness (m) 4.7 x 1077 2.0x 1076 0.00023 1341
Pore density, N 6.0 x 102 4.0 x 10'° 1.0 x 1013 (58]
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Bergamot Kiwi Fruit Pomegranate
Koch Series-Cor TM Reference
DCQ 1I1-006C HEM 251 FUC 1582
(number of pores m™)
Module length, L (mm) 330 406 136 (591
Module diameter (m) 0.0021 0.025 0.0008 (20158160
Hydraulic resistance (m™) 3.6 x 10%? 1.6 x 10%? 2.1 x10% .
Hydraulic permeability 2.7x10710 5.9 x 10710 4.6 x 10710 .
(mPa™"s™)
Fruit juices characteristics
[30][38][43]
Total soluble solids (°Brix) 9.4 12.6 18.7 [61]
[30][38][43]
Titratable Acidity 53.86 (gL ™) - 1.04 (% citric acid) [61]
[30][38][43]
pH 2.40 3.19 3.61 [61]
[30][38][43]
Total phenolic compounds 660 (mg/L) 421.6 (mg/L) 1930 (m?_)GAE/loo 61]
[30][38][43]
Turbidity (%) 33.67 - [61]
Feed density, p (kgm™3) 1091 1070 1131 [62](63]
Feed viscosity, p (Pa s) 0.0019 0.0014 0.0017 (2164]
1990.
Concentration in food (%) 12 10.08 4.9 2222261

Membrane Ultrafiltration: Causes, Consequences, and Control Techniques. Membr. Sci. Technol.
1970, 47-97.
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