

# Achromatopsia

Subjects: **Genetics & Heredity**

Contributor: Catherine Yang

Achromatopsia is a condition characterized by a partial or total absence of color vision. People with complete achromatopsia cannot perceive any colors; they see only black, white, and shades of gray. Incomplete achromatopsia is a milder form of the condition that allows some color discrimination.

genetic conditions

## 1. Introduction

Achromatopsia also involves other problems with vision, including an increased sensitivity to light and glare (photophobia), involuntary back-and-forth eye movements (nystagmus), and significantly reduced sharpness of vision (low visual acuity). Affected individuals can also have farsightedness (hyperopia) or, less commonly, nearsightedness (myopia). These vision problems develop in the first few months of life.

Achromatopsia is different from the more common forms of color vision deficiency (also called color blindness), in which people can perceive color but have difficulty distinguishing between certain colors, such as red and green.

## 2. Frequency

Achromatopsia affects an estimated 1 in 30,000 people worldwide. Complete achromatopsia is more common than incomplete achromatopsia.

Complete achromatopsia occurs frequently among Pingelapese islanders, who live on one of the Eastern Caroline Islands of Micronesia. Between 4 and 10 percent of people in this population have a total absence of color vision.

## 3. Causes

Achromatopsia results from changes in one of several genes: *CNGA3*, *CNGB3*, *GNAT2*, *PDE6C*, or *PDE6H*. A particular *CNGB3* gene mutation underlies the condition in Pingelapese islanders.

Achromatopsia is a disorder of the retina, which is the light-sensitive tissue at the back of the eye. The retina contains two types of light receptor cells, called rods and cones. These cells transmit visual signals from the eye to the brain through a process called phototransduction. Rods provide vision in low light (night vision). Cones provide vision in bright light (daylight vision), including color vision.

Mutations in any of the genes listed above prevent cones from reacting appropriately to light, which interferes with phototransduction. In people with complete achromatopsia, cones are nonfunctional, and vision depends entirely on the activity of rods. The loss of cone function leads to a total lack of color vision and causes the other vision problems. People with incomplete achromatopsia retain some cone function. These individuals have limited color vision, and their other vision problems tend to be less severe.

Some people with achromatopsia do not have identified mutations in any of the known genes. In these individuals, the cause of the disorder is unknown. Other genetic factors that have not been identified likely contribute to this condition.

### 3.1. The genes associated with Achromatopsia

- CNGA3
- CNGB3
- GNAT2
- PDE6C
- PDE6H

## 4. Inheritance

This condition is inherited in an autosomal recessive pattern, which means both copies of the gene in each cell have mutations. The parents of an individual with an autosomal recessive condition each carry one copy of the mutated gene, but they typically do not show signs and symptoms of the condition.

## 5. Other Names for This Condition

- achromatism
- rod monochromatism
- total color blindness

## References

1. Chang B, Grau T, Dangel S, Hurd R, Jurklies B, Sener EC, Andreasson S, DollfusH, Baumann B, Bolz S, Artemyev N, Kohl S, Heckenlively J, Wissinger B. A homologous genetic basis of the

murine *cpfl1* mutant and human achromatopsia linked to mutations in the PDE6C gene. *Proc Natl Acad Sci U S A*. 2009 Nov;106(46):19581-6. doi: 10.1073/pnas.0907720106.

2. Deeb SS. The molecular basis of variation in human color vision. *Clin Genet*. 2005 May;67(5):369-77. Review.
3. Kohl S, Baumann B, Rosenberg T, Kellner U, Lorenz B, Vadalà M, Jacobson SG, Wissinger B. Mutations in the cone photoreceptor G-protein alpha-subunit gene *GNAT2* in patients with achromatopsia. *Am J Hum Genet*. 2002 Aug;71(2):422-5.
4. Kohl S, Coppieters F, Meire F, Schaich S, Roosing S, Brennenstuhl C, Bolz S, van Genderen MM, Riemslag FC; European Retinal Disease Consortium, Lukowski R, den Hollander AJ, Cremers FP, De Baere E, Hoyng CB, Wissinger B. A nonsense mutation in PDE6H causes autosomal-recessive incomplete achromatopsia. *Am J Hum Genet*. 2012 Sep 7;91(3):527-32.
5. Kohl S, Hamel C. Clinical utility gene card for: Achromatopsia - update 2013. *Eur J Hum Genet*. 2013 Nov;21(11). doi: 10.1038/ejhg.2013.44.
6. Kohl S, Jägle H, Wissinger B, Zobor D. Achromatopsia. 2004 Jun 24 [updated 2018 Sep 20]. In: Adam MP, Ardiserger HH, Pagon RA, Wallace SE, Bean LJH, Stephens K, Amemiya A, editors. *GeneReviews®* [Internet]. Seattle (WA): University of Washington, Seattle; 1993-2020. Available from: <http://www.ncbi.nlm.nih.gov/books/NBK1418/>
7. Kohl S, Marx T, Giddings I, Jägle H, Jacobson SG, Apfelstedt-Sylla E, Zrenner E, Sharpe LT, Wissinger B. Total colourblindness is caused by mutations in the gene encoding the alpha-subunit of the cone photoreceptor cGMP-gated cation channel. *Nat Genet*. 1998 Jul;19(3):257-9.
8. Sundin OH, Yang JM, Li Y, Zhu D, Hurd JN, Mitchell TN, Silva ED, Maumenee IH. Genetic basis of total colourblindness among the Pingelapse islanders. *Nat Genet*. 2000 Jul;25(3):289-93.
9. Thiadens AA, den Hollander AJ, Roosing S, Nabuurs SB, Zekveld-Vroon RC, Collin RW, De Baere E, Koenekoop RK, van Schooneveld MJ, Strom TM, van Lith-Verhoeven JJ, Lotery AJ, van Moll Ramirez N, Leroy BP, van den Born LI, Hoyng CB, Cremers FP, Klaver CC. Homozygosity mapping reveals PDE6C mutations in patients with early-onset cone photoreceptor disorders. *Am J Hum Genet*. 2009 Aug;85(2):240-7. doi: 10.1016/j.ajhg.2009.06.016.
10. Thiadens AA, Slingerland NW, Roosing S, van Schooneveld MJ, van Lith-Verhoeven JJ, van Moll Ramirez N, van den Born LI, Hoyng CB, Cremers FP, Klaver CC. Genetic etiology and clinical consequences of complete and incomplete achromatopsia. *Ophthalmology*. 2009 Oct;116(10):1984-9.e1. doi: 10.1016/j.ophtha.2009.03.053.

Retrieved from <https://encyclopedia.pub/entry/history/show/11050>