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Following fertilization, in the mammalian embryo, a series of programmed cell divisions occur whereby the arising
cells progressively acquire their own cellular and molecular identity, and totipotency narrows until when
pluripotency is achieved. The path towards pluripotency involves transcriptome modulation, remodeling of the
chromatin epigenetic landscape to which external modulators contribute. Both human and mouse embryos are a

source of different types of pluripotent stem cells whose characteristics can be captured and maintained in vitro.
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| 1. Introduction

The ability of a cell to differentiate and give rise to different specialized cell types represents the cell potency. Thus,
depending on a cell’s differentiation potential, potency spans from totipotency, pluri-, multi-, oligo- or uni-potency 1
2 The fusion of two highly differentiated cells, an oocyte with a spermatozoon, gives rise to the zygote, a single
totipotent cell, which has the capability to develop into an entire, fully functional organism. Then, as development

proceeds, totipotency becomes restricted at stages that vary among species.

In the mouse, following the first cell division, the blastomeres of 2-cell stage embryos may not be equally totipotent.
Unequal segregation of the zygote cytoplasmic components Bl may influence totipotency continuity in the
blastomere pairs. Then, embryonic cells evolve towards pluripotency while the embryos undergo through cellular
events that occur at specific time points after fertilization. At 2.5 days post coitum (dpc), 8-cell stage embryos
undergo compaction, followed by morula cavitation and blastocyst formation (3.5 dpc), the latter constituted of an
outer single-layered epithelium, the trophectoderm (TE) and an inner cell mass (ICM) facing a fluid-filled cavity (first
lineage specification) ( Figure 1 ). While the TE forms the fetal component of the placenta, the ICM, initially made
of common progenitor cells [, gives rise, through a second lineage specification, to the epiblast (EPI) and the
primitive endoderm (PrE) ( Figure 1 ) B During this time window, EPI cells become pluripotent, i.e., able to
develop into ectoderm, mesoderm and endoderm (the three germ layers), to the germ line and to the
extraembryonic ectoderm and mesoderm. At 4.5 dpc, following hatching from the zona pellucida, the mature

blastocyst implants into the endometrium and gastrulation will then follow at 6.5 dpc.
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Figure 1. Mouse and human embryonic development from the zygote to early post-implantation stages. Zy, zygote.
C, cell. M, morula, EB, early blastocyst. LB, late blastocyst. ICM, inner cell mass. TE, trophectoderm. EPI, epiblast.

PrE, primitive endoderm (5.5 dpc and 10 dpf embryos images were redrawn and modified from [8}).

The embryo cell potency can be captured and transferred in vitro, and both human and mouse peri-implantation
embryos are a source of different types of pluripotent stem cells (PSCs), whose characteristics depend on the
developmental stage of the embryo. The first lines of stem cells (SCs), named embryonic stem cells (ESCs), were
derived from the ICM of mouse 3.5—-4 dpc blastocysts in 1981 by Martin [Z and by Evans and Kaufman 8 and, 17
years later, from the ICM of human 5 dpf blastocysts by Thomson and colleagues . In 2007, mouse epiblast stem
cells (EpiSCs) were originally derived from the EPI, dissected from 5.5 dpc 29 or 5.75 dpc 22 post-implantation
embryos. Following these first studies, EpiSCs were also derived from embryos up to 8 dpc 22, Although strongly
influenced by culture conditions 2, ESCs and EpiSCs represent an extraordinary tool for understanding cell
pluripotency, the mechanisms that underlie its identity, maintenance and evolution. These mechanisms include the
fine regulation of transcriptional networks, epigenetic landscapes, families of RNAs and several inter-related
molecular pathways.

2. Pluripotency features of Mouse and Human Peri-
Implantation Embryos

From the morula stage, lineage specification and differentiation are accompanied by a decrease of global cell
potency, the latter achieved through a precise spatio-temporal activation of key genes 1413l At this stage, the first
lineage specification is determined by several regulatory pathways L8ILAILIANRZ0] |n outer cells, the inactivity of
the Hippo pathway allows the expression of Cdx2 and Gata-3 , which together with Notch , Eomes and EIf5
contribute to the establishment of TE fate [21[2257 [23]124][25][26][271[28] | the inner cells, the Hippo pathway is

activated, allowing transcription of ICM-specific genes (e.g., Oct-4 , Nanog , Sox2 and Esrrb) 22, Mouse ICM is
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composed by heterogeneous cells, which co-express different levels of lineage-associated factors, such as Gata-6
(PrE) and Nanog (EPI) EaE1],

At the blastocyst stage, cells of the ICM undergo a second lineage specification determined by the FGF/FGF-
receptor signaling, mediated via MEK/ERK 2233, Gata-6 and FGF/ERK induce PrE fate [24l34135] hereas Gata-4
and Sox17 are involved in its maintenance 2428l EP| cells are characterized by the expression of Oct-4, Nanog,
Sox2, Kfl2, KIf17 and Esrrb, all involved in pluripotency maintenance [2HE724138]  gpecifically, the establishment
and maintenance of the pluripotency state is characterized by a well-defined “pluripotency gene regulatory
network” (PGRN) and by a strong cooperation of transcription and epigenetic factors that act in synergy 2249 The
PGRN is a very highly interconnected system, in which Oct-4, Nanog and Sox2 represent the central functional
core. Among this triad of genes, Oct-4 is at the top of the pluripotency regulatory hierarchy, being essential to reach

and maintain pluripotency [4111421[43]

In human embryos, at the compacted morula stage (4 dpf), both specific TE determinants and ICM-related genes
are expressed to determine the first lineage specification [66]. The lineage-specific transcripts become mutually
exclusive only at the early blastocyst stage (5 dpf). However, it has been shown that 5 dpf TE cells still retain the
ability to form ICM cells [92], and, conversely, isolated ICMs can also generate TE cells [93], indicating that cells at
this stage of development are not yet fully committed. The specification of the cell lineages does not seem to occur
through a stepwise process, as for the mouse [66], with transcriptional differences being detected at 5 dpf, once
the blastocyst is formed. Additionally, it is unclear whether Hippo pathway determines the first cell fate decision
[55,94]. GATA-3 and CDX2 are also involved in TE cell determination [53,56,95]. Then, a second lineage
specification occurs, where human EPI cells display the expression of NANOG, OCT-4 and SOX2, all required for
pluripotency maintenance, and of KLF17 2413811441 GATA-6, initially broadly expressed in the early blastocysts, is
involved in PrE fate induction (27341 together with SOX17 and GATA-4. These latter two are expressed later and

are restricted to the PrE, where they are required for its maintenance [24134],

During the early phases of development, molecular modifications, e.g., DNA methylation, histone methylation and
acetylation, and, for female embryos, the progressive silencing of X-linked genes for dosage compensation,

determine specific epigenetic landscapes, which contribute to the progressive acquisition of pluripotency.

| 3. Pluripotency Features of Stem Cells In Vitro

SCs, isolated either from embryos at different stages of pre- and early post-implantation development or from PSC
lines, can be maintained in vitro applying self-renewal culture conditions 2148l and possess cellular and molecular
features that mirror different pluripotency states, defined as extended, naive, intermediate and primed. They are
characterized by distinguishable colony morphology, growth factor requirement, energetic metabolism, molecular

signatures and, in the female cell lines, X inactivation status [22l47]148]

Mouse ESCs retain the same molecular and transcriptional features of the EPI cells present at 4.5 dpc pre-

implantation embryo stage 9 with a pluripotency characteristic called “naive” ¥ (Figure 2). When injected in
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early pre-implantation embryos, naive mESCs contribute to all somatic lineages and to germline, indicative of their
pluripotency in vivo 9. Mouse ESCs are in an unstable balance between pluripotency and differentiation signals,
which support self-renewal (maintained by LIF) or promote differentiation (induced by FGF). However, the addition
of exogenous LIF favors self-renewal at the expense of differentiation B, In recent years, SCs, derived from either
5-6.5 dpc mouse embryos or naive ESCs, have been shown to possess intermediate states of pluripotency
between naive and primed. These transition pluripotency states are defined as “poised” 52, “rosette” 53] or
“formative” R4BSIEEIST (Figure 2). These cells, while downregulating the naive transcriptional program, begin to
acquire the competence for multi-lineage differentiation, although they do not yet express lineage-associated
markers. Mouse EpiSCs, derived from the EPI of post-implantation embryos at 6.25-8 dpc, are characterized by a
pluripotency status named “primed”. As naive mESCs, primed mEpiSCs display unlimited potential to self-renewal
and differentiate into the three germ layers in vitro, but they are limited in their pluripotency in vivo, as they cannot

give rise to blastocyst chimeras [2QI[581[59],
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Figure 2. Pluripotency status of stem cells (SCs) derived from 4.5-8 days post coitum (dpc) embryos. ESCs

derived from the mouse blastocyst have a naive pluripotency; EpiSCs derived from post-implantation embryos
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have a primed pluripotency. SCs derived from either 5-6.5 dpc mouse embryos or naive ESCs possess rosette or

formative pluripotency, intermediate between the naive and primed pluripotency. EPI, epiblast.

The first derived human ESC (hESC) lines showed primed pluripotency [2I6AELI62]63] Many efforts were made to
obtain hESCs with naive pluripotency. In a series of studies, naive pluripotency has been successfully acquired
from the conversion of primed hPSCs [B4I85, |n other studies, naive pluripotency was captured from embryos and
maintained in vitro following the development of specific derivation and culture protocols [E2I68IE7I68IEAT0] - Similar
to the mouse, naive and primed hESCs display some differences in their transcriptional networks [249]. When
analyzed with single-cell RNA sequencing, naive and primed populations present different transcriptomes, but all

naive cell lines analyzed are homogeneous among themselves, as well as primed cell lines.

The Oct-4, Sox2 and Nanog triad represents the core of both naive and primed mouse and human pluripotency
networks. The triad is conserved between mouse and human, but few interactor genes are shared between the two
species. In naive PSCs, interactor genes, which relate to the triad, are also expressed in EPI cells, while, in primed
PSCs, interactors are also found expressed in mesoderm, endoderm and ectoderm germ layers, suggesting that
the different pluripotency states are sustained by dissimilar molecular networks, which also change between the

two species.
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