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Following fertilization, in the mammalian embryo, a series of programmed cell divisions occur whereby the arising cells

progressively acquire their own cellular and molecular identity, and totipotency narrows until when pluripotency is

achieved. The path towards pluripotency involves transcriptome modulation, remodeling of the chromatin epigenetic

landscape to which external modulators contribute. Both human and mouse embryos are a source of different types of

pluripotent stem cells whose characteristics can be captured and maintained in vitro. 
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1. Introduction

The ability of a cell to differentiate and give rise to different specialized cell types represents the cell potency. Thus,

depending on a cell’s differentiation potential, potency spans from totipotency, pluri-, multi-, oligo- or uni-potency . The

fusion of two highly differentiated cells, an oocyte with a spermatozoon, gives rise to the zygote, a single totipotent cell,

which has the capability to develop into an entire, fully functional organism. Then, as development proceeds, totipotency

becomes restricted at stages that vary among species.

In the mouse, following the first cell division, the blastomeres of 2-cell stage embryos may not be equally totipotent.

Unequal segregation of the zygote cytoplasmic components  may influence totipotency continuity in the blastomere

pairs. Then, embryonic cells evolve towards pluripotency while the embryos undergo through cellular events that occur at

specific time points after fertilization. At 2.5 days post coitum (dpc), 8-cell stage embryos undergo compaction, followed by

morula cavitation and blastocyst formation (3.5 dpc), the latter constituted of an outer single-layered epithelium, the

trophectoderm (TE) and an inner cell mass (ICM) facing a fluid-filled cavity (first lineage specification) ( Figure 1 ). While

the TE forms the fetal component of the placenta, the ICM, initially made of common progenitor cells , gives rise,

through a second lineage specification, to the epiblast (EPI) and the primitive endoderm (PrE) ( Figure 1 ) . During this

time window, EPI cells become pluripotent, i.e., able to develop into ectoderm, mesoderm and endoderm (the three germ

layers), to the germ line and to the extraembryonic ectoderm and mesoderm. At 4.5 dpc, following hatching from the zona

pellucida, the mature blastocyst implants into the endometrium and gastrulation will then follow at 6.5 dpc.

Figure 1. Mouse and human embryonic development from the zygote to early post-implantation stages. Zy, zygote. C,

cell. M, morula, EB, early blastocyst. LB, late blastocyst. ICM, inner cell mass. TE, trophectoderm. EPI, epiblast. PrE,

primitive endoderm (5.5 dpc and 10 dpf embryos images were redrawn and modified from ).

The embryo cell potency can be captured and transferred in vitro, and both human and mouse peri-implantation embryos

are a source of different types of pluripotent stem cells (PSCs), whose characteristics depend on the developmental stage
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of the embryo. The first lines of stem cells (SCs), named embryonic stem cells (ESCs), were derived from the ICM of

mouse 3.5–4 dpc blastocysts in 1981 by Martin  and by Evans and Kaufman  and, 17 years later, from the ICM of

human 5 dpf blastocysts by Thomson and colleagues . In 2007, mouse epiblast stem cells (EpiSCs) were originally

derived from the EPI, dissected from 5.5 dpc  or 5.75 dpc  post-implantation embryos. Following these first studies,

EpiSCs were also derived from embryos up to 8 dpc . Although strongly influenced by culture conditions , ESCs and

EpiSCs represent an extraordinary tool for understanding cell pluripotency, the mechanisms that underlie its identity,

maintenance and evolution. These mechanisms include the fine regulation of transcriptional networks, epigenetic

landscapes, families of RNAs and several inter-related molecular pathways.

2. Pluripotency features of Mouse and Human Peri-Implantation Embryos

From the morula stage, lineage specification and differentiation are accompanied by a decrease of global cell potency, the

latter achieved through a precise spatio-temporal activation of key genes . At this stage, the first lineage

specification is determined by several regulatory pathways . In outer cells, the inactivity of the Hippo

pathway allows the expression of Cdx2 and Gata-3 , which together with Notch , Eomes and Elf5 contribute to the

establishment of TE fate 51, . In the inner cells, the Hippo pathway is activated, allowing

transcription of ICM-specific genes (e.g., Oct-4 , Nanog , Sox2 and Esrrb) . Mouse ICM is composed by heterogeneous

cells, which co-express different levels of lineage-associated factors, such as Gata-6 (PrE) and Nanog (EPI) .

At the blastocyst stage, cells of the ICM undergo a second lineage specification determined by the FGF/FGF-receptor

signaling, mediated via MEK/ERK . Gata-6 and FGF/ERK induce PrE fate , whereas Gata-4 and Sox17 are

involved in its maintenance . EPI cells are characterized by the expression of Oct-4, Nanog, Sox2, Kfl2, Klf17 and

Esrrb, all involved in pluripotency maintenance . Specifically, the establishment and maintenance of the

pluripotency state is characterized by a well-defined “pluripotency gene regulatory network” (PGRN) and by a strong

cooperation of transcription and epigenetic factors that act in synergy . The PGRN is a very highly interconnected

system, in which Oct-4, Nanog and Sox2 represent the central functional core. Among this triad of genes, Oct-4 is at the

top of the pluripotency regulatory hierarchy, being essential to reach and maintain pluripotency .

In human embryos, at the compacted morula stage (4 dpf), both specific TE determinants and ICM-related genes are

expressed to determine the first lineage specification [66]. The lineage-specific transcripts become mutually exclusive only

at the early blastocyst stage (5 dpf). However, it has been shown that 5 dpf TE cells still retain the ability to form ICM cells

[92], and, conversely, isolated ICMs can also generate TE cells [93], indicating that cells at this stage of development are

not yet fully committed. The specification of the cell lineages does not seem to occur through a stepwise process, as for

the mouse [66], with transcriptional differences being detected at 5 dpf, once the blastocyst is formed. Additionally, it is

unclear whether Hippo pathway determines the first cell fate decision [55,94]. GATA-3 and CDX2 are also involved in TE

cell determination [53,56,95]. Then, a second lineage specification occurs, where human EPI cells display the expression

of NANOG, OCT-4 and SOX2, all required for pluripotency maintenance, and of KLF17 . GATA-6, initially broadly

expressed in the early blastocysts, is involved in PrE fate induction , together with SOX17 and GATA-4. These latter

two are expressed later and are restricted to the PrE, where they are required for its maintenance .

During the early phases of development, molecular modifications, e.g., DNA methylation, histone methylation and

acetylation, and, for female embryos, the progressive silencing of X-linked genes for dosage compensation, determine

specific epigenetic landscapes, which contribute to the progressive acquisition of pluripotency.

3. Pluripotency Features of Stem Cells In Vitro

SCs, isolated either from embryos at different stages of pre- and early post-implantation development or from PSC lines,

can be maintained in vitro applying self-renewal culture conditions  and possess cellular and molecular features that

mirror different pluripotency states, defined as extended, naïve, intermediate and primed. They are characterized by

distinguishable colony morphology, growth factor requirement, energetic metabolism, molecular signatures and, in the

female cell lines, X inactivation status .

Mouse ESCs retain the same molecular and transcriptional features of the EPI cells present at 4.5 dpc pre-implantation

embryo stage , with a pluripotency characteristic called “naïve”  (Figure 2). When injected in early pre-implantation

embryos, naïve mESCs contribute to all somatic lineages and to germline, indicative of their pluripotency in vivo .

Mouse ESCs are in an unstable balance between pluripotency and differentiation signals, which support self-renewal

(maintained by LIF) or promote differentiation (induced by FGF). However, the addition of exogenous LIF favors self-

renewal at the expense of differentiation . In recent years, SCs, derived from either 5–6.5 dpc mouse embryos or naïve

ESCs, have been shown to possess intermediate states of pluripotency between naïve and primed. These transition
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pluripotency states are defined as “poised” , “rosette”  or “formative”  (Figure 2). These cells, while

downregulating the naïve transcriptional program, begin to acquire the competence for multi-lineage differentiation,

although they do not yet express lineage-associated markers. Mouse EpiSCs, derived from the EPI of post-implantation

embryos at 6.25–8 dpc, are characterized by a pluripotency status named “primed”. As naïve mESCs, primed mEpiSCs

display unlimited potential to self-renewal and differentiate into the three germ layers in vitro, but they are limited in their

pluripotency in vivo, as they cannot give rise to blastocyst chimeras .

Figure 2. Pluripotency status of stem cells (SCs) derived from 4.5–8 days post coitum (dpc) embryos. ESCs derived from

the mouse blastocyst have a naïve pluripotency; EpiSCs derived from post-implantation embryos have a primed

pluripotency. SCs derived from either 5–6.5 dpc mouse embryos or naïve ESCs possess rosette or formative pluripotency,

intermediate between the naïve and primed pluripotency. EPI, epiblast.

The first derived human ESC (hESC) lines showed primed pluripotency . Many efforts were made to obtain

hESCs with naïve pluripotency. In a series of studies, naïve pluripotency has been successfully acquired from the

conversion of primed hPSCs .  In other studies, naïve pluripotency was captured from embryos and maintained in

vitro following the development of specific derivation and culture protocols . Similar to the mouse, naïve

and primed hESCs display some differences in their transcriptional networks [249]. When analyzed with single-cell RNA

sequencing, naïve and primed populations present different transcriptomes, but all naïve cell lines analyzed are

homogeneous among themselves, as well as primed cell lines.

The Oct-4, Sox2 and Nanog triad represents the core of both naïve and primed mouse and human pluripotency networks.

The triad is conserved between mouse and human, but few interactor genes are shared between the two species. In

naïve PSCs, interactor genes, which relate to the triad, are also expressed in EPI cells, while, in primed PSCs, interactors

are also found expressed in mesoderm, endoderm and ectoderm germ layers, suggesting that the different pluripotency

states are sustained by dissimilar molecular networks, which also change between the two species.
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